Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Cell Mol Med ; 27(8): 1045-1055, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36916534

RESUMO

Sentrin/small ubiquitin-like modifier (SUMO) has emerged as a powerful mediator regulating biological processes and participating in pathophysiological processes that cause human diseases, such as cancer, myocardial fibrosis and neurological disorders. Sumoylation has been shown to play a positive regulatory role in keloids. However, the sumoylation mechanism in keloids remains understudied. We proposed that sumoylation regulates keloids via a complex. RanGAP1 acted as a synergistic, functional partner of SUMOs in keloids. Nuclear accumulation of Smad4, a TGF-ß/Smad pathway member, was associated with RanGAP1 after SUMO1 inhibition. RanGAP1*SUMO1 mediated the nuclear accumulation of Smad4 due to its impact on nuclear export and reduction in the dissociation of Smad4 and CRM1. We clarified a novel mechanism of positive regulation of sumoylation in keloids and demonstrated the function of sumoylation in Smad4 nuclear export. The NPC-associated RanGAP1*SUMO1 complex functions as a disassembly machine for the export receptor CRM1 and Smad4. Our research provides new perspectives for the mechanisms of keloids and nucleocytoplasmic transport.


Assuntos
Proteínas Ativadoras de GTPase , Queloide , Proteína Smad4 , Humanos , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Queloide/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Sumoilação
2.
Neurobiol Dis ; 188: 106342, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37918759

RESUMO

SUMOylation is a post-translational modification (PTM) that exerts a regulatory role in different cellular processes, including protein localization, aggregation, and biological activities. It consists of the dynamic formation of covalent isopeptide bonds between a family member of the Small Ubiquitin Like Modifiers (SUMOs) and the target proteins. Interestingly, it is a cellular mechanism implicated in several neurodegenerative pathologies and potentially it could become a new therapeutic target; however, there are very few pharmacological tools to modulate the SUMOylation process. In this study, we have designed and tested the activity of a novel small cell-permeable peptide, COV-1, in a neuroblastoma cell line that specifically prevents protein SUMOylation. COV-1 inhibits UBC9-protein target interaction and efficiently decreases global SUMO-1ylation. Moreover, it can perturb RanGAP-1 perinuclear localization by inducing the downregulation of UBC9. In parallel, we found that COV-1 causes an increase in the ubiquitin degradation system up to its engulfment while enhancing the autophagic flux. Surprisingly, COV-1 modifies protein aggregation, and specifically it mislocalizes TDP-43 within cells, inducing its aggregation and co-localization with SUMO-1. These data suggest that COV-1 could be taken into future consideration as an interesting pharmacological tool to study the cellular cascade effects of SUMOylation prevention.


Assuntos
Proteínas de Ligação a DNA , Sumoilação , Proteínas de Ligação a DNA/metabolismo , Linhagem Celular , Ubiquitina/metabolismo , Peptídeos/metabolismo
3.
Acta Neuropathol ; 136(3): 425-443, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29725819

RESUMO

Amyotrophic lateral sclerosis type 4 (ALS4) is a rare, early-onset, autosomal dominant form of ALS, characterized by slow disease progression and sparing of respiratory musculature. Dominant, gain-of-function mutations in the senataxin gene (SETX) cause ALS4, but the mechanistic basis for motor neuron toxicity is unknown. SETX is a RNA-binding protein with a highly conserved helicase domain, but does not possess a low-complexity domain, making it unique among ALS-linked disease proteins. We derived ALS4 mouse models by expressing two different senataxin gene mutations (R2136H and L389S) via transgenesis and knock-in gene targeting. Both approaches yielded SETX mutant mice that develop neuromuscular phenotypes and motor neuron degeneration. Neuropathological characterization of SETX mice revealed nuclear clearing of TDP-43, accompanied by TDP-43 cytosolic mislocalization, consistent with the hallmark pathology observed in human ALS patients. Postmortem material from ALS4 patients exhibited TDP-43 mislocalization in spinal cord motor neurons, and motor neurons from SETX ALS4 mice displayed enhanced stress granule formation. Immunostaining analysis for nucleocytoplasmic transport proteins Ran and RanGAP1 uncovered nuclear membrane abnormalities in the motor neurons of SETX ALS4 mice, and nuclear import was delayed in SETX ALS4 cortical neurons, indicative of impaired nucleocytoplasmic trafficking. SETX ALS4 mice thus recapitulated ALS disease phenotypes in association with TDP-43 mislocalization and provided insight into the basis for TDP-43 histopathology, linking SETX dysfunction to common pathways of ALS motor neuron degeneration.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Neurônios Motores/patologia , Degeneração Neural/genética , RNA Helicases/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , DNA Helicases , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Masculino , Camundongos , Neurônios Motores/metabolismo , Enzimas Multifuncionais , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Fenótipo , RNA Helicases/metabolismo
4.
Biochim Biophys Acta ; 1863(1): 139-47, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26522917

RESUMO

Protein modification with the small ubiquitin-like modifier (SUMO) is a reversible process regulating many central biological pathways. The reversibility of SUMOylation is ensured by SUMO proteases many of which belong to the sentrin/SUMO-specific protease (SENP) family. In recent years, many advances have been made in allocating SENPs to specific biological pathways. However, due to difficulties in obtaining recombinant full-length active SENPs for thorough enzymatic characterization, our knowledge on these proteases is still limited. In this work, we used in vitro synthesized full-length human SENPs to perform a side-by-side comparison of their activities and substrate specificities. ProSUMO1/2/3, RanGAP1-SUMO1/2/3 and polySUMO2/3 chains were used as substrates in these analyses. We found that SENP1 is by far the most versatile and active SENP whereas SENP3 stands out as the least active of these enzymes. Finally, a comparison between the activities of full-length SENPs and their catalytic domains suggests that in some cases their non-catalytic regions influence their activity.


Assuntos
Endopeptidases/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Catálise , Endopeptidases/genética , Endopeptidases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Especificidade por Substrato/fisiologia
5.
J Neurosci Res ; 95(9): 1745-1759, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28029704

RESUMO

Nuclear pore complexes (NPCs) play an important role in coordinating the transport of proteins and nucleic acids between the nucleus and cytoplasm, and are therefore essential for maintaining normal cellular function and liability. In the present study, we investigated the temporal immunohistochemical distribution of five representative components of NPCs-Ran GTPase-activating protein 1 (RanGap1), glycoprotein-210 (Gp210), nucleoporin 205 (Nup205), nucleoporin 107 (Nup107), and nucleoporin 50 (Nup50)-after 90 min of transient middle cerebral artery occlusion (tMCAO) up to 28 days after the reperfusion in rat brains. Single immunohistochemical analyses showed ring-like stainings along the periphery of the nucleus in sham control brains. After tMCAO, Gp210 and Nup107 immunoreactivity continuously increased from 1 day, and RanGap1, Nup205, and Nup50 increased from 2 days until 28 days, which also displayed progressive precipitations within the nucleus in the peri-ischemic area, while the ischemic core showed scarce expression with collapsed structure. Double immunofluorescent analyses revealed nuclear retention and apparent colocalization of RanGap1 with Nup205, Gp210 with Nup205, and partial colocalization of Nup205 with Nup107; most of the ischemic changes above were similar to those observed in patients with C9orf72-genetic amyotrophic lateral sclerosis. Taken together, these observations suggest that the mislocalization of these nucleoporins may be a common pathogenesis of both ischemic and neurodegenerative disease. © 2016 Wiley Periodicals, Inc.


Assuntos
Isquemia Encefálica/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Ratos , Ratos Wistar
6.
Acta Neuropathol ; 133(6): 907-922, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28357566

RESUMO

Mutations in TDP-43 cause amyotrophic lateral sclerosis (ALS), a fatal paralytic disease characterized by degeneration and premature death of motor neurons. The contribution of mutant TDP-43-mediated damage within motor neurons was evaluated using mice expressing a conditional allele of an ALS-causing TDP-43 mutant (Q331K) whose broad expression throughout the central nervous system mimics endogenous TDP-43. TDP-43Q331K mice develop age- and mutant-dependent motor deficits from degeneration and death of motor neurons. Cre-recombinase-mediated excision of the TDP-43Q331K gene from motor neurons is shown to delay onset of motor symptoms and appearance of TDP-43-mediated aberrant nuclear morphology, and abrogate subsequent death of motor neurons. However, reduction of mutant TDP-43 selectively in motor neurons did not prevent age-dependent degeneration of axons and neuromuscular junction loss, nor did it attenuate astrogliosis or microgliosis. Thus, disease mechanism is non-cell autonomous with mutant TDP-43 expressed in motor neurons determining disease onset but progression defined by mutant acting within other cell types.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neurônios Motores/metabolismo , Adulto , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Envelhecimento/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Atividade Motora/fisiologia , Neurônios Motores/patologia , Mutação , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Adulto Jovem
7.
J Biol Chem ; 290(42): 25620-35, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26304119

RESUMO

The small GTPase Ran coordinates retrograde axonal transport in neurons, spindle assembly during mitosis, and the nucleo-cytoplasmic transport of mRNA. Its localization is tightly regulated by the GTPase-activating protein RanGAP1 and the nuclear guanosine exchange factor (GEF) RCC1. We show that loss of the neuronal E3 ubiquitin ligase MYCBP2 caused the up-regulation of Ran and RanGAP1 in dorsal root ganglia (DRG) under basal conditions and during inflammatory hyperalgesia. SUMOylated RanGAP1 physically interacted with MYCBP2 and inhibited its E3 ubiquitin ligase activity. Stimulation of neurons induced a RanGAP1-dependent translocation of MYCBP2 to the nucleus. In the nucleus of DRG neurons MYCBP2 co-localized with Ran and facilitated through its RCC1-like domain the GDP/GTP exchange of Ran. In accordance with the necessity of a GEF to promote GTP-binding and nuclear export of Ran, the nuclear localization of Ran was strongly increased in MYCBP2-deficient DRGs. The finding that other GEFs for Ran besides RCC1 exist gives new insights in the complexity of the regulation of the Ran signaling pathway.


Assuntos
Proteínas de Transporte/metabolismo , Gânglios Espinais/metabolismo , Neurônios/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Animais , Gânglios Espinais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Sumoilação , Ubiquitina-Proteína Ligases
8.
Cell Signal ; 120: 111222, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38729327

RESUMO

BACKGROUND: Bone development involves the rapid proliferation and differentiation of osteogenic lineage cells, which makes accurate chromosomal segregation crucial for ensuring cell proliferation and maintaining chromosomal stability. However, the mechanism underlying the maintenance of chromosome stability during the rapid proliferation and differentiation of Prx1-expressing limb bud mesenchymal cells into osteoblastic precursor cells remains unexplored. METHODS: A transgenic mouse model of RanGAP1 knockout of limb and head mesenchymal progenitor cells was constructed to explore the impact of RanGAP1 deletion on bone development by histomorphology and immunostaining. Subsequently, G-banding karyotyping analysis and immunofluorescence staining were used to examine the effects of RanGAP1 deficiency on chromosome instability. Finally, the effects of RanGAP1 deficiency on chromothripsis and bone development signaling pathways were elucidated by whole-genome sequencing, RNA-sequencing, and qPCR. RESULTS: The ablation of RanGAP1 in limb and head mesenchymal progenitor cells expressing Prx1 in mice resulted in embryonic lethality, severe cartilage and bone dysplasia, and complete loss of cranial vault formation. Moreover, RanGAP1 loss inhibited chondrogenic or osteogenic differentiation of mesenchymal stem cells (MSCs). Most importantly, we found that RanGAP1 loss in limb bud mesenchymal cells triggered missegregation of chromosomes, resulting in chromothripsis of chromosomes 1q and 14q, further inhibiting the expression of key genes involved in multiple bone development signaling pathways such as WNT, Hedgehog, TGF-ß/BMP, and PI3K/AKT in the chromothripsis regions, ultimately disrupting skeletal development. CONCLUSIONS: Our results establish RanGAP1 as a critical regulator of bone development, as it supports this process by preserving chromosome stability in Prx1-expressing limb bud mesenchymal cells.


Assuntos
Diferenciação Celular , Instabilidade Cromossômica , Botões de Extremidades , Células-Tronco Mesenquimais , Animais , Camundongos , Desenvolvimento Ósseo , Condrogênese/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Botões de Extremidades/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos Knockout , Osteogênese/genética , Transdução de Sinais
9.
Cell Oncol (Dordr) ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37845585

RESUMO

PURPOSE: As a vital component of the hepatitis B virus (HBV) nucleocapsid, HBV core protein (HBC) contributes to hepatocarcinogenesis. Here, we aimed to assess the effects of RANGAP1 and KDM2A on tumorigenesis induced by HBC. METHODS: Co-immunoprecipitation (Co-IP) combined with mass spectrometry were utilized to identify the proteins with the capacity to interact with HBC. The gene and protein levels of RANGAP1 and KDM2A in hepatocellular carcinoma (HCC) and HBV-positive HCC tissues were evaluated using different cohorts. The roles of RANGAP1 and KDM2A in HCC cells mediated by HBC were investigated in vitro and in vivo. Co-IP and western blot were used to estimate the interaction of HBC with RANGAP1 and KDM2A and assess RANGAP1 stabilization regulated by HBC. RESULTS: We discovered that HBC could interact with RANGAP1 and KDM2A, the levels of which were markedly elevated in HCC tissues. Relying on RANGAP1 and KDM2A, HBC facilitated HCC cell growth and migration. The increased stabilization of RANGAP1 mediated by HBC was relevant to the disruption of the interaction between RANGAP1 and an E3 ligase SYVN1. RANGAP1 interacted with KDM2A, and it further promoted KDM2A stabilization by disturbing the interaction between KDM2A and SYVN1. HBC enhanced the interaction of KDM2A with RANGAP1 and upregulated the expression of KDM2A via RANGAP1 in HCC cells. CONCLUSIONS: These findings demonstrate a novel mechanism by which HBC facilitates hepatocarcinogenesis. RANGAP1 and KDM2A could act as potential molecular targets for treating HBV-associated malignancy.

10.
Dev Cell ; 58(3): 192-210.e11, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36696903

RESUMO

Chromothripsis is a catastrophic event of chromosomal instability that involves intensive fragmentation and rearrangements within localized chromosomal regions. However, its cause remains unclear. Here, we show that reduction and inactivation of Ran GTPase-activating protein 1 (RanGAP1) commonly occur in human osteosarcoma, which is associated with a high rate of chromothripsis. In rapidly expanding mouse osteoprogenitors, RanGAP1 deficiency causes chromothripsis in chr1q, instant inactivation of Rb1 and degradation of p53, consequent failure in DNA damage repair, and ultrafast osteosarcoma tumorigenesis. During mitosis, RanGAP1 anchors to the kinetochore, where it recruits PP1-γ to counteract the activity of the spindle-assembly checkpoint (SAC) and prevents TOP2A degradation, thus safeguarding chromatid decatenation. Loss of RanGAP1 causes SAC hyperactivation and chromatid decatenation failure. These findings demonstrate that RanGAP1 maintains mitotic chromosome integrity and that RanGAP1 loss drives tumorigenesis through its direct effects on SAC and decatenation and secondary effects on DNA damage surveillance.


Assuntos
Neoplasias Ósseas , Cromotripsia , Osteossarcoma , Animais , Humanos , Camundongos , Carcinogênese , Instabilidade Cromossômica , Proteínas Ativadoras de GTPase/metabolismo , Cinetocoros/metabolismo , Mitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA