Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 910
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Genes Dev ; 36(5-6): 313-330, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35210222

RESUMO

In mammals, the conserved telomere binding protein Rap1 serves a diverse set of nontelomeric functions, including activation of the NF-kB signaling pathway, maintenance of metabolic function in vivo, and transcriptional regulation. Here, we uncover the mechanism by which Rap1 modulates gene expression. Using a separation-of-function allele, we show that Rap1 transcriptional regulation is largely independent of TRF2-mediated binding to telomeres and does not involve direct binding to genomic loci. Instead, Rap1 interacts with the TIP60/p400 complex and modulates its histone acetyltransferase activity. Notably, we show that deletion of Rap1 in mouse embryonic stem cells increases the fraction of two-cell-like cells. Specifically, Rap1 enhances the repressive activity of Tip60/p400 across a subset of two-cell-stage genes, including Zscan4 and the endogenous retrovirus MERVL. Preferential up-regulation of genes proximal to MERVL elements in Rap1-deficient settings implicates these endogenous retroviral elements in the derepression of proximal genes. Altogether, our study reveals an unprecedented link between Rap1 and the TIP60/p400 complex in the regulation of pluripotency.


Assuntos
Proteínas de Ligação a Telômeros , Telômero , Animais , Regulação da Expressão Gênica , Genoma , Mamíferos/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
2.
Genes Dev ; 35(23-24): 1625-1641, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34764137

RESUMO

The mammalian telomeric shelterin complex-comprised of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1-blocks the DNA damage response at chromosome ends and interacts with telomerase and the CST complex to regulate telomere length. The evolutionary origins of shelterin are unclear, partly because unicellular organisms have distinct telomeric proteins. Here, we describe the evolution of metazoan shelterin, showing that TRF1 emerged in vertebrates upon duplication of a TRF2-like ancestor. TRF1 and TRF2 diverged rapidly during vertebrate evolution through the acquisition of new domains and interacting factors. Vertebrate shelterin is also distinguished by the presence of an HJRL domain in the split C-terminal OB fold of POT1, whereas invertebrate POT1s carry inserts of variable nature. Importantly, the data reveal that, apart from the primate and rodent POT1 orthologs, all metazoan POT1s are predicted to have a fourth OB fold at their N termini. Therefore, we propose that POT1 arose from a four-OB-fold ancestor, most likely an RPA70-like protein. This analysis provides insights into the biology of shelterin and its evolution from ancestral telomeric DNA-binding proteins.


Assuntos
Proteína 2 de Ligação a Repetições Teloméricas , Tripeptidil-Peptidase 1 , Animais , Mamíferos/genética , Complexo Shelterina , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
3.
Mol Cell ; 77(3): 488-500.e9, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31761495

RESUMO

Pioneer transcription factors (pTFs) bind to target sites within compact chromatin, initiating chromatin remodeling and controlling the recruitment of downstream factors. The mechanisms by which pTFs overcome the chromatin barrier are not well understood. Here, we reveal, using single-molecule fluorescence, how the yeast transcription factor Rap1 invades and remodels chromatin. Using a reconstituted chromatin system replicating yeast promoter architecture, we demonstrate that Rap1 can bind nucleosomal DNA within a chromatin fiber but with shortened dwell times compared to naked DNA. Moreover, we show that Rap1 binding opens chromatin fiber structure by inhibiting inter-nucleosome contacts. Finally, we reveal that Rap1 collaborates with the chromatin remodeler RSC to displace promoter nucleosomes, paving the way for long-lived bound states on newly exposed DNA. Together, our results provide a mechanistic view of how Rap1 gains access and opens chromatin, thereby establishing an active promoter architecture and controlling gene expression.


Assuntos
Cromatina/metabolismo , Nucleossomos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/metabolismo , Cromatina/genética , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/genética , Nucleossomos/metabolismo , Nucleossomos/fisiologia , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética
4.
Trends Biochem Sci ; 48(9): 761-775, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482516

RESUMO

The cell orchestrates the dance of chromosome segregation with remarkable speed and fidelity. The mitotic spindle is built from scratch after interphase through microtubule (MT) nucleation, which is dependent on the γ-tubulin ring complex (γ-TuRC), the universal MT template. Although several MT nucleation pathways build the spindle framework, the question of when and how γ-TuRC is targeted to these nucleation sites in the spindle and subsequently activated remains an active area of investigation. Recent advances facilitated the discovery of new MT nucleation effectors and their mechanisms of action. In this review, we illuminate each spindle assembly pathway and subsequently consider how the pathways are merged to build a spindle.


Assuntos
Proteínas Associadas aos Microtúbulos , Tubulina (Proteína) , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo , Centro Organizador dos Microtúbulos/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(35): e2320804121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39172790

RESUMO

Breast Cancer Type 1 Susceptibility Protein (BRCA1) is a tumor-suppressor protein that regulates various cellular pathways, including those that are essential for preserving genome stability. One essential mechanism involves a BRCA1-A complex that is recruited to double-strand breaks (DSBs) by RAP80 before initiating DNA damage repair (DDR). How RAP80 itself is recruited to DNA damage sites, however, is unclear. Here, we demonstrate an intrinsic correlation between a methyltransferase DOT1L-mediated RAP80 methylation and BRCA1-A complex chromatin recruitment that occurs during cancer cell radiotherapy resistance. Mechanistically, DOT1L is quickly recruited onto chromatin and methylates RAP80 at multiple lysines in response to DNA damage. Methylated RAP80 is then indispensable for binding to ubiquitinated H2A and subsequently triggering BRCA1-A complex recruitment onto DSBs. Importantly, DOT1L-catalyzed RAP80 methylation and recruitment of BRCA1 have clinical relevance, as inhibition of DOT1L or RAP80 methylation seems to enhance the radiosensitivity of cancer cells both in vivo and in vitro. These data reveal a crucial role for DOT1L in DDR through initiating recruitment of RAP80 and BRCA1 onto chromatin and underscore a therapeutic strategy based on targeting DOT1L to overcome tumor radiotherapy resistance.


Assuntos
Proteína BRCA1 , Reparo do DNA , Chaperonas de Histonas , Histona-Lisina N-Metiltransferase , Animais , Humanos , Camundongos , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Metilação , Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Tolerância a Radiação/genética
6.
Genes Dev ; 33(23-24): 1702-1717, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31699778

RESUMO

The establishment of polyubiquitin conjugates with distinct linkages play important roles in the DNA damage response. Much remains unknown about the regulation of linkage-specific ubiquitin signaling at sites of DNA damage. Here we reveal that Cezanne (also known as Otud7B) deubiquitinating enzyme promotes the recruitment of Rap80/BRCA1-A complex by binding to Lys63-polyubiquitin and targeting Lys11-polyubiquitin. Using a ubiquitin binding domain protein array screen, we identify that the UBA domains of Cezanne and Cezanne2 (also known as Otud7A) selectively bind to Lys63-linked polyubiquitin. Increased Lys11-linkage ubiquitination due to lack of Cezanne DUB activity compromises the recruitment of Rap80/BRCA1-A. Cezanne2 interacts with Cezanne, facilitating Cezanne in the recruitment of Rap80/BRCA1-A, Rad18, and 53BP1, in cellular resistance to ionizing radiation and DNA repair. Our work presents a model that Cezanne serves as a "reader" of the Lys63-linkage polyubiquitin at DNA damage sites and an "eraser" of the Lys11-linkage ubiquitination, indicating a crosstalk between linkage-specific ubiquitination at DNA damage sites.


Assuntos
Dano ao DNA , Reparo do DNA/genética , Endopeptidases/genética , Endopeptidases/metabolismo , Poliubiquitina/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Dano ao DNA/efeitos da radiação , Proteínas de Ligação a DNA , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Chaperonas de Histonas , Humanos , Lisina/metabolismo , Proteínas Nucleares , Análise Serial de Proteínas , Ligação Proteica , Domínios Proteicos , Transporte Proteico/genética , Radiação Ionizante
7.
EMBO J ; 41(20): e110458, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36059259

RESUMO

The conserved Rap1 protein is part of the shelterin complex that plays critical roles in chromosome end protection and telomere length regulation. Previous studies have addressed how fission yeast Rap1 contributes to telomere length maintenance, but the mechanism by which the protein inhibits end fusions has remained elusive. Here, we use a mutagenesis screen in combination with high-throughput sequencing to identify several amino acid positions in Rap1 that have key roles in end protection. Interestingly, mutations at these sites render cells susceptible to genome instability in a conditional manner, whereby longer telomeres are prone to undergoing end fusions, while telomeres within the normal length range are sufficiently protected. The protection of long telomeres is in part dependent on their nuclear envelope attachment mediated by the Rap1-Bqt4 interaction. Our data demonstrate that long telomeres represent a challenge for the maintenance of genome integrity, thereby providing an explanation for species-specific upper limits on telomere length.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Aminoácidos/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Complexo Shelterina , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
8.
Trends Immunol ; 44(11): 917-931, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37858490

RESUMO

Following stimulation, the T cell receptor (TCR) and its coreceptors integrate multiple intracellular signals to initiate T cell proliferation, migration, gene expression, and metabolism. Among these signaling molecules are the small GTPases RAS and RAP1, which induce MAPK pathways and cellular adhesion to activate downstream effector functions. Although many studies have helped to elucidate the signaling intermediates that mediate T cell activation, the molecules and pathways that keep naive T cells in check are less understood. Several recent studies provide evidence that RASA2 and RASA3, which are GAP1-family GTPase-activating proteins (GAPs) that inactivate RAS and RAP1, respectively, are crucial molecules that limit T cell activation and adhesion. In this review we describe recent data on the roles of RASA2 and RASA3 as gatekeepers of T cell activation and migration.


Assuntos
Proteínas Ativadoras de GTPase , Transdução de Sinais , Humanos , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Transdução de Sinais/fisiologia , Adesão Celular/fisiologia , Linfócitos T/metabolismo , Proteínas Ativadoras de ras GTPase
9.
Mol Cell ; 72(6): 942-954.e7, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30576656

RESUMO

Many active eukaryotic gene promoters exhibit divergent noncoding transcription, but the mechanisms restricting expression of these transcripts are not well understood. Here, we demonstrate how a sequence-specific transcription factor represses divergent noncoding transcription at highly expressed genes in yeast. We find that depletion of the transcription factor Rap1 induces noncoding transcription in a large fraction of Rap1-regulated gene promoters. Specifically, Rap1 prevents transcription initiation at cryptic promoters near its binding sites, which is uncoupled from transcription regulation in the protein-coding direction. We further provide evidence that Rap1 acts independently of previously described chromatin-based mechanisms to repress cryptic or divergent transcription. Finally, we show that divergent transcription in the absence of Rap1 is elicited by the RSC chromatin remodeler. We propose that a sequence-specific transcription factor limits access of basal transcription machinery to regulatory elements and adjacent sequences that act as divergent cryptic promoters, thereby providing directionality toward productive transcription.


Assuntos
Regulação Fúngica da Expressão Gênica , RNA Fúngico/metabolismo , RNA não Traduzido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sítios de Ligação , Montagem e Desmontagem da Cromatina , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Fúngico/genética , RNA não Traduzido/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética
10.
Mol Cell ; 72(6): 955-969.e7, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30576657

RESUMO

The fidelity of transcription initiation is essential for accurate gene expression, but the determinants of start site selection are not fully understood. Rap1 and other general regulatory factors (GRFs) control the expression of many genes in yeast. We show that depletion of these factors induces widespread ectopic transcription initiation within promoters. This generates many novel non-coding RNAs and transcript isoforms with diverse stability, drastically altering the coding potential of the transcriptome. Ectopic transcription initiation strongly correlates with altered nucleosome positioning. We provide evidence that Rap1 can suppress ectopic initiation by a "place-holder" mechanism whereby it physically occludes inappropriate sites for pre-initiation complex formation. These results reveal an essential role for GRFs in the fidelity of transcription initiation and in the suppression of pervasive transcription, profoundly redefining current models for their function. They have important implications for the mechanism of transcription initiation and the control of gene expression.


Assuntos
Regulação Fúngica da Expressão Gênica , RNA Fúngico/biossíntese , RNA Mensageiro/biossíntese , RNA não Traduzido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sítios de Ligação , Montagem e Desmontagem da Cromatina , Nucleossomos/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Fúngico/genética , RNA Mensageiro/genética , RNA não Traduzido/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética , Sítio de Iniciação de Transcrição , Iniciação da Transcrição Genética
11.
J Biol Chem ; 300(5): 107257, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574891

RESUMO

The Hippo signaling is instrumental in regulating organ size, regeneration, and carcinogenesis. The cytoskeleton emerges as a primary Hippo signaling modulator. Its structural alterations in response to environmental and intrinsic stimuli control Hippo signaling pathway activity. However, the precise mechanisms underlying the cytoskeleton regulation of Hippo signaling are not fully understood. RAP2 GTPase is known to mediate the mechanoresponses of Hippo signaling via activating the core Hippo kinases LATS1/2 through MAP4Ks and MST1/2. Here we show the pivotal role of the reciprocal regulation between RAP2 GTPase and the cytoskeleton in Hippo signaling. RAP2 deletion undermines the responses of the Hippo pathway to external cues tied to RhoA GTPase inhibition and actin cytoskeleton remodeling, such as energy stress and serum deprivation. Notably, RhoA inhibitors and actin disruptors fail to activate LATS1/2 effectively in RAP2-deficient cells. RNA sequencing highlighted differential regulation of both actin and microtubule networks by RAP2 gene deletion. Consistently, Taxol, a microtubule-stabilizing agent, was less effective in activating LATS1/2 and inhibiting cell growth in RAP2 and MAP4K4/6/7 knockout cells. In summary, our findings position RAP2 as a central integrator of cytoskeletal signals for Hippo signaling, which offers new avenues for understanding Hippo regulation and therapeutic interventions in Hippo-impaired cancers.


Assuntos
Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Humanos , Camundongos , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Paclitaxel/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Fosforilação
12.
J Cell Sci ; 136(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37772773

RESUMO

Centrosome amplification (CA) is a prominent feature of human cancers linked to tumorigenesis in vivo. Here, we report mechanistic contributions of CA induction alone to tumour architecture and extracellular matrix (ECM) remodelling. CA induction in non-tumorigenic breast cells MCF10A causes cell migration and invasion, with underlying disruption of epithelial cell-cell junction integrity and dysregulation of expression and subcellular localisation of cell junction proteins. CA also elevates expression of integrin ß-3, its binding partner fibronectin-1 and matrix metalloproteinase enzymes, promoting cell-ECM attachment, ECM degradation, and a migratory and invasive cell phenotype. Using a chicken embryo xenograft model for in vivo validation, we show that CA-induced (+CA) MCF10A cells invade into the chick mesodermal layer, with inflammatory cell infiltration and marked focal reactions between chorioallantoic membrane and cell graft. We also demonstrate a key role of small GTPase Rap-1 signalling through inhibition using GGTI-298, which blocked various CA-induced effects. These insights reveal that in normal cells, CA induction alone (without additional oncogenic alterations) is sufficient to confer early pro-tumorigenic changes within days, acting through Rap-1-dependent signalling to alter cell-cell contacts and ECM disruption.


Assuntos
Neoplasias da Mama , Neoplasias , Embrião de Galinha , Humanos , Animais , Feminino , Galinhas , Neoplasias/metabolismo , Transdução de Sinais , Movimento Celular , Centrossomo/metabolismo , Linhagem Celular Tumoral , Neoplasias da Mama/genética
13.
J Cell Sci ; 136(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37078342

RESUMO

Talin (herein referring to the talin-1 form), is a cytoskeletal adapter protein that binds integrin receptors and F-actin, and is a key factor in the formation and regulation of integrin-dependent cell-matrix adhesions. Talin forms the mechanical link between the cytoplasmic domain of integrins and the actin cytoskeleton. Through this linkage, talin is at the origin of mechanosignaling occurring at the plasma membrane-cytoskeleton interface. Despite its central position, talin is not able to fulfill its tasks alone, but requires help from kindlin and paxillin to detect and transform the mechanical tension along the integrin-talin-F-actin axis into intracellular signaling. The talin head forms a classical FERM domain, which is required to bind and regulate the conformation of the integrin receptor, as well as to induce intracellular force sensing. The FERM domain allows the strategic positioning of protein-protein and protein-lipid interfaces, including the membrane-binding and integrin affinity-regulating F1 loop, as well as the interaction with lipid-anchored Rap1 (Rap1a and Rap1b in mammals) GTPase. Here, we summarize the structural and regulatory features of talin and explain how it regulates cell adhesion and force transmission, as well as intracellular signaling at integrin-containing cell-matrix attachment sites.


Assuntos
Actinas , Talina , Animais , Talina/metabolismo , Integrinas/metabolismo , Adesão Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Lipídeos , Mamíferos/metabolismo
14.
Annu Rev Genet ; 51: 311-333, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28876981

RESUMO

Bacteria use diffusible chemical messengers, termed pheromones, to coordinate gene expression and behavior among cells in a community by a process known as quorum sensing. Pheromones of many gram-positive bacteria, such as Bacillus and Streptococcus, are small, linear peptides secreted from cells and subsequently detected by sensory receptors such as those belonging to the large family of RRNPP proteins. These proteins are cytoplasmic pheromone receptors sharing a structurally similar pheromone-binding domain that functions allosterically to regulate receptor activity. X-ray crystal structures of prototypical RRNPP members have provided atomic-level insights into their mechanism and regulation by pheromones. This review provides an overview of RRNPP prototype signaling; describes the structure-function of this protein family, which is spread widely among gram-positive bacteria; and suggests approaches to target RRNPP systems in order to manipulate beneficial and harmful bacterial behaviors.


Assuntos
Bacillus/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Feromônios/genética , Receptores de Feromônios/genética , Streptococcus/genética , Bacillus/classificação , Bacillus/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Modelos Moleculares , Peptídeos/genética , Peptídeos/metabolismo , Feromônios/metabolismo , Filogenia , Percepção de Quorum/genética , Receptores de Feromônios/metabolismo , Transdução de Sinais , Streptococcus/classificação , Streptococcus/metabolismo , Relação Estrutura-Atividade , Transativadores/genética , Transativadores/metabolismo
15.
Mol Ther ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256999

RESUMO

Cerebral reperfusion injury in stroke, stemming from interconnected thrombotic and inflammatory signatures, often involves platelet activation, aggregation and its interaction with various immune cells, contributing to microvascular dysfunction. However, the regulatory mechanisms behind this platelet activation and the resulting inflammation are not well understood, complicating the development of effective stroke therapies. Utilizing animal models and platelets from hemorrhagic stroke patients, our research demonstrates that human cerebral dopamine neurotrophic factor (CDNF) acts as an endogenous antagonist, mitigating platelet aggregation and associated neuroinflammation. CDNF moderates mitochondrial membrane potential, reactive oxygen species production, and intracellular calcium in activated platelets by interfering with GTP binding to Rap1b, thereby reducing Rap1b activation and downregulating the Rap1b-MAPK-PLA2 signaling pathway, which decreases release of the pro-inflammatory mediator thromboxane A2. In addition, CDNF reduces the inflammatory response in BV2 microglial cells co-cultured with activated platelets. Consistent with ex vivo findings, subcutaneous administration of CDNF in a rat model of ischemic stroke significantly reduces platelet activation, aggregation, lipid mediator production, infarct volume, and neurological deficits. In summary, our study highlights CDNF as a promising therapeutic target for mitigating platelet-induced inflammation and enhancing recovery in stroke. Harnessing the CDNF pathway may offer a novel therapeutic strategy for stroke intervention.

16.
J Lipid Res ; 65(3): 100515, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38309417

RESUMO

LDL-C lowering is the main goal of atherosclerotic cardiovascular disease prevention, and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is now a validated therapeutic strategy that lowers serum LDL-C and reduces coronary events. Ironically, the most widely used medicine to lower cholesterol, statins, has been shown to increase circulating PCSK9 levels, which limits their efficacy. Here, we show that geranylgeranyl isoprenoids and hepatic Rap1a regulate both basal and statin-induced expression of PCSK9 and contribute to LDL-C homeostasis. Rap1a prenylation and activity is inhibited upon statin treatment, and statin-mediated PCSK9 induction is dependent on geranylgeranyl synthesis and hepatic Rap1a. Accordingly, treatment of mice with a small-molecule activator of Rap1a lowered PCSK9 protein and plasma cholesterol and inhibited statin-mediated PCSK9 induction in hepatocytes. The mechanism involves inhibition of the downstream RhoA-ROCK pathway and regulation of PCSK9 at the post-transcriptional level. These data further identify Rap1a as a novel regulator of PCSK9 protein and show that blocking Rap1a prenylation through lowering geranylgeranyl levels contributes to statin-mediated induction of PCSK9.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Pró-Proteína Convertase 9 , Camundongos , Animais , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , LDL-Colesterol , Anticorpos Monoclonais/farmacologia , Colesterol
17.
Dev Biol ; 501: 20-27, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37276970

RESUMO

The continuity of a lumen within an epithelial tubule is critical for its function. We previously found that the F-actin binding protein Afadin is required for timely lumen formation and continuity in renal tubules formed from the nephrogenic mesenchyme in mice. Afadin is a known effector and interactor of the small GTPase Rap1, and in the current study, we examine the role of Rap1 in nephron tubulogenesis. Here, we demonstrate that Rap1 is required for nascent lumen formation and continuity in cultured 3D epithelial spheroids and in vivo in murine renal epithelial tubules derived from the nephrogenic mesenchyme, where its absence ultimately leads to severe morphogenetic defects in the tubules. By contrast, Rap1 is not required for lumen continuity or morphogenesis in renal tubules derived from the ureteric epithelium, which differ in that they form by extension from a pre-existing tubule. We further demonstrate that Rap1 is required for correct localization of Afadin to adherens junctions both in vitro and in vivo. Together, these results suggest a model in which Rap1 localizes Afadin to junctional complexes, which in turn regulates nascent lumen formation and positioning to ensure continuous tubulogenesis.


Assuntos
Túbulos Renais , Proteínas dos Microfilamentos , Animais , Camundongos , Junções Aderentes/metabolismo , Túbulos Renais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Néfrons/metabolismo
18.
J Biol Chem ; 299(6): 104698, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37059183

RESUMO

Identifying events that regulate the prenylation and localization of small GTPases will help define new strategies for therapeutic targeting of these proteins in disorders such as cancer, cardiovascular disease, and neurological deficits. Splice variants of the chaperone protein SmgGDS (encoded by RAP1GDS1) are known to regulate prenylation and trafficking of small GTPases. The SmgGDS-607 splice variant regulates prenylation by binding preprenylated small GTPases but the effects of SmgGDS binding to the small GTPase RAC1 versus the splice variant RAC1B are not well defined. Here we report unexpected differences in the prenylation and localization of RAC1 and RAC1B and their binding to SmgGDS. Compared to RAC1, RAC1B more stably associates with SmgGDS-607, is less prenylated, and accumulates more in the nucleus. We show that the small GTPase DIRAS1 inhibits binding of RAC1 and RAC1B to SmgGDS and reduces their prenylation. These results suggest that prenylation of RAC1 and RAC1B is facilitated by binding to SmgGDS-607 but the greater retention of RAC1B by SmgGDS-607 slows RAC1B prenylation. We show that inhibiting RAC1 prenylation by mutating the CAAX motif promotes RAC1 nuclear accumulation, suggesting that differences in prenylation contribute to the different nuclear localization of RAC1 versus RAC1B. Finally, we demonstrate RAC1 and RAC1B that cannot be prenylated bind GTP in cells, indicating that prenylation is not a prerequisite for activation. We report differential expression of RAC1 and RAC1B transcripts in tissues, consistent with these two splice variants having unique functions that might arise in part from their differences in prenylation and localization.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Prenilação , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Prenilação de Proteína
19.
Neurogenetics ; 25(3): 179-191, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795246

RESUMO

Primary microcephaly is a rare neurogenic and genetically heterogeneous disorder characterized by significant brain size reduction that results in numerous neurodevelopmental disorders (NDD) problems, including mild to severe intellectual disability (ID), global developmental delay (GDD), seizures and other congenital malformations. This disorder can arise from a mutation in genes involved in various biological pathways, including those within the brain. We characterized a recessive neurological disorder observed in nine young adults from five independent consanguineous Pakistani families. The disorder is characterized by microcephaly, ID, developmental delay (DD), early-onset epilepsy, recurrent infection, hearing loss, growth retardation, skeletal and limb defects. Through exome sequencing, we identified novel homozygous variants in five genes that were previously associated with brain diseases, namely CENPJ (NM_018451.5: c.1856A > G; p.Lys619Arg), STIL (NM_001048166.1: c.1235C > A; p.(Pro412Gln), CDK5RAP2 (NM_018249.6 c.3935 T > G; p.Leu1312Trp), RBBP8 (NM_203291.2 c.1843C > T; p.Gln615*) and CEP135 (NM_025009.5 c.1469A > G; p.Glu490Gly). These variants were validated by Sanger sequencing across all family members, and in silico structural analysis. Protein 3D homology modeling of wild-type and mutated proteins revealed substantial changes in the structure, suggesting a potential impact on function. Importantly, all identified genes play crucial roles in maintaining genomic integrity during cell division, with CENPJ, STIL, CDK5RAP2, and CEP135 being involved in centrosomal function. Collectively, our findings underscore the link between erroneous cell division, particularly centrosomal function, primary microcephaly and ID.


Assuntos
Proteínas de Ciclo Celular , Deficiência Intelectual , Microcefalia , Linhagem , Humanos , Microcefalia/genética , Deficiência Intelectual/genética , Masculino , Feminino , Proteínas de Ciclo Celular/genética , Adulto , Proteínas Cromossômicas não Histona/genética , Proteínas do Tecido Nervoso/genética , Divisão Celular/genética , Mutação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Genômica , Adulto Jovem , Consanguinidade , Sequenciamento do Exoma , Homozigoto , Deficiências do Desenvolvimento/genética , Adolescente , Paquistão , Proteínas Associadas aos Microtúbulos
20.
Mol Microbiol ; 120(1): 20-31, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37042030

RESUMO

In the last two decades, an increasing number of bacterial species have been recognized that are able to generate a phenotypically diverse population that shares an identical genotype. This ability is dependent on a complex genetic regulatory network that includes cellular and environmental signals, as well as stochastic elements. Among Bacilli, a broadly distributed family of Rap (Response-regulator aspartyl phosphate) phosphatases is known to modulate the function of the main phenotypic heterogeneity regulators by controlling their phosphorylation. Even more, their related extracellular Phr (Phosphatase regulator) peptides function as signals, creating a cell-cell communication network that regulates the phenotypic development of the entire population. In this review, we examine the role that the Rap phosphatases and their Phr peptides play in the regulation of Bacillus subtilis phenotypic differentiation, and in other members of the Bacillus genus. We also highlight the contribution of these regulatory elements to the fitness of bacterial cells and mobile genetic elements, for example, prophages and conjugative vectors.


Assuntos
Bacillus , Monoéster Fosfórico Hidrolases , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Bacillus/genética , Redes Reguladoras de Genes , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Peptídeos/genética , Bacillus subtilis/metabolismo , Adaptação Fisiológica , Regulação Bacteriana da Expressão Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA