Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 34(21-22): 1410-1421, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33872193

RESUMO

The roles of SPRED proteins in signaling, development, and cancer are becoming increasingly recognized. SPRED proteins comprise an N-terminal EVH-1 domain, a central c-Kit-binding domain, and C-terminal SROUTY domain. They negatively regulate signaling from tyrosine kinases to the Ras-MAPK pathway. SPRED1 binds directly to both c-KIT and to the RasGAP, neurofibromin, whose function is completely dependent on this interaction. Loss-of-function mutations in SPRED1 occur in human cancers and cause the developmental disorder, Legius syndrome. Genetic ablation of SPRED genes in mice leads to behavioral problems, dwarfism, and multiple other phenotypes including increased risk of leukemia. In this review, we summarize and discuss biochemical, structural, and biological functions of these proteins including their roles in normal cell growth and differentiation and in human disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Crescimento e Desenvolvimento/fisiologia , Neoplasias/metabolismo , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Crescimento e Desenvolvimento/genética , Humanos , Neoplasias/genética , Domínios Proteicos , Transdução de Sinais/genética
2.
Dev Biol ; 510: 17-28, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38423203

RESUMO

From insects to humans, oogenesis is tightly linked to nutritional input, yet little is known about how whole organism physiology matches dietary changes with oocyte development. Considering that diet-induced adipose tissue dysfunction is associated with an increased risk for fertility problems, and other obesity-associated pathophysiologies, it is critical to decipher the cellular and molecular mechanisms linking adipose nutrient sensing to remote control of the ovary and other tissues. Our previous studies in Drosophila melanogaster have shown that amino acid sensing, via the amino acid response pathway and mTOR-mediated signaling function within adipocytes to control germline stem cell maintenance and ovulation, respectively. Additionally, we demonstrated that insulin/insulin-like growth factor signaling within adipocytes employs distinct effector axes, PI3K/Akt1-dependent and -independent, downstream of insulin receptor activity to mediate fat-to-ovary communication. Here, we report that the Ras/MAPK signaling axis functions in adipocytes to regulate early germline cyst survival and ovulation of mature oocytes but is not important for germline stem cell maintenance or the progression through vitellogenesis. Thus, these studies uncover the complexity of signaling pathway activity that mediates inter-organ communication.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Humanos , Feminino , Drosophila melanogaster/metabolismo , Ovário/metabolismo , Transdução de Sinais/fisiologia , Oogênese/fisiologia , Ovulação , Tecido Adiposo/metabolismo , Células Germinativas/metabolismo , Aminoácidos/metabolismo , Proteínas de Drosophila/metabolismo
3.
Mol Cell ; 68(6): 1067-1082.e12, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29272704

RESUMO

Enhancer elements are genomic regulatory sequences that direct the selective expression of genes so that genetically identical cells can differentiate and acquire the highly specialized forms and functions required to build a functioning animal. To differentiate, cells must select from among the ∼106 enhancers encoded in the genome the thousands of enhancers that drive the gene programs that impart their distinct features. We used a genetic approach to identify transcription factors (TFs) required for enhancer selection in fibroblasts. This revealed that the broadly expressed, growth-factor-inducible TFs FOS/JUN (AP-1) play a central role in enhancer selection. FOS/JUN selects enhancers together with cell-type-specific TFs by collaboratively binding to nucleosomal enhancers and recruiting the SWI/SNF (BAF) chromatin remodeling complex to establish accessible chromatin. These experiments demonstrate how environmental signals acting via FOS/JUN and BAF coordinate with cell-type-specific TFs to select enhancer repertoires that enable differentiation during development.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Elementos Facilitadores Genéticos , Proteínas Proto-Oncogênicas c-fos/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Animais , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleossomos , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
4.
Angiogenesis ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969873

RESUMO

Arteriovenous malformations (AVM) are benign vascular anomalies prone to pain, bleeding, and progressive growth. AVM are mainly caused by mosaic pathogenic variants of the RAS-MAPK pathway. However, a causative variant is not identified in all patients. Using ultra-deep sequencing, we identified novel somatic RIT1 delins variants in lesional tissue of three AVM patients. RIT1 encodes a RAS-like protein that can modulate RAS-MAPK signaling. We expressed RIT1 variants in HEK293T cells, which led to a strong increase in ERK1/2 phosphorylation. Endothelial-specific mosaic overexpression of RIT1 delins in zebrafish embryos induced AVM formation, highlighting their functional importance in vascular development. Both ERK1/2 hyperactivation in vitro and AVM formation in vivo could be suppressed by pharmacological MEK inhibition. Treatment with the MEK inhibitor trametinib led to a significant decrease in bleeding episodes and AVM size in one patient. Our findings implicate RIT1 in AVM formation and provide a rationale for clinical trials with targeted treatments.

5.
Arch Biochem Biophys ; 760: 110130, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39173700

RESUMO

Lung adenocarcinoma (LUAC) as the most common lung cancer, and its incidence is increasing. Complement factor B (CFB) is an important factor in the alternative complement pathway. CFB has been reported to be involved in the progression of many cancers, including in pancreatic cancer, cutaneous squamous cell carcinoma, and nasopharyngeal carcinoma, but the function and molecular mechanism of CFB in LUAC remains unclear. The present study aimed to explore the role of CFB in LUAC malignant progression. In our previous study, we found that CFB was downregulated expression in LUAC clinical samples. Here, we firstly detected the cell function in vitro. Cell proliferation and migration were increased, while cell apoptosis and cell cycle arrest were suppressed after CFB knockdown. Overexpression of CFB repressed the malignant progression of LUAC in vitro. Besides, in vivo experiments revealed that upregulation of CFB inhibited tumor growth and Ki67 expression. Additionally, our data indicated that CFB negatively regulated Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Furthermore, upregulation of CFB inhibited the progression of LUAC was reversed by Ras/MAPK pathway activators (ML-098 or C16-PAF). Our study uncovered that CFB acts as a tumor suppressor repressed tumorigenesis of LUAC through inhibiting the Ras/MAPK pathway, suggesting that CFB may be a potential biomarker and therapeutic target for LUAC.

6.
Am J Med Genet A ; 194(9): e63652, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38741564

RESUMO

Noonan syndrome is a so-called "RASopathy," that is characterized by short stature, distinctive facial features, congenital heart defects, and developmental delay. Of individuals with a clinical diagnosis of Noonan syndrome, 80%-90% have pathogenic variants in the known genes implicated in the disorder, but the molecular mechanism is unknown in the remaining cases. Heterozygous pathogenic variants of ETS2 repressor factor (ERF), which functions as a repressor in the RAS/MAPK signaling pathway, cause syndromic craniosynostosis. Here, we report an ERF frameshift variant cosegregating with a Noonan syndrome-like phenotype in a family. The proband was a 3-year-old female who presented with dysmorphic facial features, including proptosis, hypertelorism, slightly down slanted palpebral fissures, low-set posteriorly rotated ears, depressed nasal bridge, short stature, and developmental delay. Exome sequencing of the proband identified a heterozygous ERF variant [NM_006494.4: c.185del p.(Glu62Glyfs*15)]. Her mother and sister showed a similar phenotype and had the same heterozygous ERF variant. A large proportion of the previously reported patients with syndromic craniosynostosis and pathogenic ERF variants also showed characteristic features that overlap with those of Noonan syndrome. The present finding supports an association between heterozygous ERF variants and a Noonan syndrome-like phenotype.


Assuntos
Mutação da Fase de Leitura , Síndrome de Noonan , Proteínas Repressoras , Pré-Escolar , Feminino , Humanos , Craniossinostoses/genética , Craniossinostoses/patologia , Craniossinostoses/diagnóstico , Sequenciamento do Exoma , Heterozigoto , Síndrome de Noonan/genética , Síndrome de Noonan/patologia , Síndrome de Noonan/diagnóstico , Linhagem , Fenótipo , Proteínas Repressoras/genética , Criança
7.
Am J Med Genet A ; : e63824, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031930

RESUMO

Legius syndrome, commonly referred to as SPRED1-related neurofibromatosis type 1-like syndrome, is a rare autosomal dominant disorder characterized by café-au-lait macules, freckling, lipomas, macrocephaly, and heterogeneous neurodevelopmental manifestations, including a different degree of learning difficulties. Although a partial clinical overlap exists with neurofibromatosis type 1 (NF1), Legius syndrome is distinguished by its genetic etiology and the absence of neurofibromas, indicating an inherent lack of tumor risk. The SPRED1 gene encodes the Sprouty-related protein with an EVH1 domain 1 (SPRED1), a negative regulator of the RAS-MAPK signaling pathway with a crucial role in cellular growth and development. Despite various genetic variants and genomic deletions associated with Legius syndrome, the full genetic spectrum of this condition remains elusive. In this study, we investigated the underlying genetic etiology in a cohort of patients presenting with typical manifestations of Legius syndrome using a custom Next Generation Sequencing (NGS) panel and Multiplex Ligation-Dependent Probe Amplification (MLPA) for NF1 and SPRED1. We identified 12 novel SPRED1 damaging variants segregating with the phenotype in all families. These rare variants affect conserved residues of the protein and are predicted damaging according to in silico tools. No clear genotype-phenotype correlations could be observed in the current cohort and previously reported patients, underscoring the heterogeneous genotype spectrum of this condition. Our findings expand the understanding of SPRED1 variants causing Legius syndrome and underscore the importance of comprehensively characterizing the genetic landscape of this disorder. Despite the absence of clear genotype-phenotype correlations, elucidating the genetic etiology of Legius syndrome is pertinent for facilitating accurate diagnosis, genetic counseling, and therapeutic interventions.

8.
Eur J Pediatr ; 183(3): 1011-1019, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37863846

RESUMO

Noonan syndrome belongs to the family of RASopathies, a group of multiple congenital anomaly disorders caused by pathogenic variants in genes encoding components or regulators of the RAS/mitogen-activated protein kinase (MAPK) signalling pathway. Collectively, all these pathogenic variants lead to increased RAS/MAPK activation. The better understanding of the molecular mechanisms underlying the different manifestations of NS and RASopathies has led to the identification of molecular targets for specific pharmacological interventions. Many specific agents (e.g. SHP2 and MEK inhibitors) have already been developed for the treatment of RAS/MAPK-driven malignancies. In addition, other molecules with the property of modulating RAS/MAPK activation are indicated in non-malignant diseases (e.g. C-type natriuretic peptide analogues in achondroplasia or statins in hypercholesterolemia).  Conclusion: Drug repositioning of these molecules represents a challenging approach to treat or prevent medical complications associated with RASopathies. What is Known: • Noonan syndrome and related disorders are caused by pathogenic variants in genes encoding components or regulators of the RAS/mitogen-activated protein kinase (MAPK) signalling pathway, resulting in increased activation of this pathway. • This group of disorders is now known as RASopathies and represents one of the largest groups of multiple congenital anomaly diseases known. What is New: • The identification of pathophysiological mechanisms provides new insights into the development of specific therapeutic strategies, in particular treatment aimed at reducing RAS/MAPK hyperactivation. • Drug repositioning of specific agents already developed for the treatment of malignant (e.g. SHP2 and MEK inhibitors) or non-malignant diseases (e.g. C-type natriuretic peptide analogues in achondroplasia or statins in hypercholesterolaemia) represents a challenging approach to the treatment of RASopathies.


Assuntos
Anormalidades Múltiplas , Acondroplasia , Inibidores de Hidroximetilglutaril-CoA Redutases , Síndrome de Noonan , Humanos , Síndrome de Noonan/tratamento farmacológico , Síndrome de Noonan/genética , Peptídeo Natriurético Tipo C , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno
9.
Mol Cell ; 64(6): 1048-1061, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27867007

RESUMO

The ERK-regulated ternary complex factors (TCFs) act with the transcription factor serum response factor (SRF) to activate mitogen-induced transcription. However, the extent of their involvement in the immediate-early transcriptional response, and their wider functional significance, has remained unclear. We show that, in MEFs, TCF inactivation significantly inhibits over 60% of TPA-inducible gene transcription and impairs cell proliferation. Using integrated SRF ChIP-seq and Hi-C data, we identified over 700 TCF-dependent SRF direct target genes involved in signaling, transcription, and proliferation. These also include a significant number of cytoskeletal gene targets for the Rho-regulated myocardin-related transcription factor (MRTF) SRF cofactor family. The TCFs act as general antagonists of MRTF-dependent SRF target gene expression, competing directly with the MRTFs for access to SRF. As a result, TCF-deficient MEFs exhibit hypercontractile and pro-invasive behavior. Thus, competition between TCFs and MRTFs for SRF determines the balance between antagonistic proliferative and contractile programs of gene expression.


Assuntos
Fibroblastos/metabolismo , Regulação da Expressão Gênica , Fator de Resposta Sérica/genética , Fatores de Complexo Ternário/genética , Animais , Sequência de Bases , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Perfilação da Expressão Gênica , Teste de Complementação Genética , Humanos , Camundongos , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , Fatores de Complexo Ternário/antagonistas & inibidores , Fatores de Complexo Ternário/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo
10.
Cell Mol Life Sci ; 81(1): 5, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085330

RESUMO

SHP2 phosphatase promotes full activation of the RTK-dependent Ras/MAPK pathway. Its mutations can drive cancer and RASopathies, a group of neurodevelopmental disorders (NDDs). Here we ask how same residue mutations in SHP2 can lead to both cancer and NDD phenotypes, and whether we can predict what the outcome will be. We collected and analyzed mutation data from the literature and cancer databases and performed molecular dynamics simulations of SHP2 mutants. We show that both cancer and Noonan syndrome (NS, a RASopathy) mutations favor catalysis-prone conformations. As to cancer versus RASopathies, we demonstrate that cancer mutations are more likely to accelerate SHP2 activation than the NS mutations at the same genomic loci, in line with NMR data for K-Ras4B more aggressive mutations. The compiled experimental data and dynamic features of SHP2 mutants lead us to propose that different from strong oncogenic mutations, SHP2 activation by NS mutations is less likely to induce a transition of the ensemble from the SHP2 inactive state to the active state. Strong signaling promotes cell proliferation, a hallmark of cancer. Weak, or moderate signals are associated with differentiation. In embryonic neural cells, dysregulated differentiation is connected to NDDs. Our innovative work offers structural guidelines for identifying and correlating mutations with clinical outcomes, and an explanation for why bearers of RASopathy mutations may have a higher probability of cancer. Finally, we propose a drug strategy against SHP2 variants-promoting cancer and RASopathies.


Assuntos
Neoplasias , Síndrome de Noonan , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Síndrome de Noonan/genética , Mutação/genética , Neoplasias/genética , Domínios de Homologia de src/genética , Fenótipo
11.
Childs Nerv Syst ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761264

RESUMO

Pediatric-type low-grade glioma (PLGG) encompasses a heterogeneous group of WHO grade 1 or 2 tumors and is the most common central nervous system tumor found in children. PLGG extends beyond pediatrics, into adolescents and young adults (AYA, ages 15-40). PLGG represents 25% of all gliomas diagnosed in AYA with differences in tumor location and molecular alterations compared to children, resulting in improved outcome for AYAs. Long-term outcome is excellent, though patients may suffer significant morbidity depending on tumor location. There are differences in treatment practices with radiation used to treat PLGG in AYAs more often than in children. Most PLGG in AYA harbor an alteration in the RAS/MAPK pathway, with limited insight into response to targeted therapy in this age group. This review discusses the epidemiology, current therapeutic approaches, and challenges in the management of PLGG in AYA.

12.
Adv Exp Med Biol ; 1441: 761-775, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884747

RESUMO

Lesions of the semilunar valve and the aortic arch can occur either in isolation or as part of well-described clinical syndromes. The polygenic cause of calcific aortic valve disease will be discussed including the key role of NOTCH1 mutations. In addition, the complex trait of bicuspid aortic valve disease will be outlined, both in sporadic/familial cases and in the context of associated syndromes, such as Alagille, Williams, and Kabuki syndromes. Aortic arch abnormalities particularly coarctation of the aorta and interrupted aortic arch, including their association with syndromes such as Turner and 22q11 deletion, respectively, are also discussed. Finally, the genetic basis of congenital pulmonary valve stenosis is summarized, with particular note to Ras-/mitogen-activated protein kinase (Ras/MAPK) pathway syndromes and other less common associations, such as Holt-Oram syndrome.


Assuntos
Aorta Torácica , Valva Aórtica , Humanos , Aorta Torácica/anormalidades , Aorta Torácica/patologia , Valva Aórtica/anormalidades , Valva Aórtica/patologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Doença da Válvula Aórtica Bicúspide/genética , Estenose da Valva Pulmonar/genética , Mutação , Receptor Notch1/genética , Valvopatia Aórtica/genética , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/patologia , Calcinose/genética , Calcinose/patologia , Doenças Hematológicas/genética , Doenças Hematológicas/patologia , Doenças Vestibulares/genética , Doenças Vestibulares/patologia
13.
Adv Exp Med Biol ; 1441: 505-534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884729

RESUMO

Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.


Assuntos
Comunicação Interventricular , Humanos , Aberrações Cromossômicas , Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença/genética , Comunicação Interventricular/genética , Mutação , Fatores de Transcrição/genética
14.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892436

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest of human malignancies and carries an exceptionally poor prognosis. It is mostly driven by multiple oncogenic alterations, with the highest mutation frequency being observed in the KRAS gene, which is a key oncogenic driver of tumorogenesis and malignant progression in PDAC. However, KRAS remained undruggable for decades until the emergence of G12C mutation specific KRAS inhibitors. Despite this development, this therapeutic approach to target KRAS directly is not routinely used for PDAC patients, with the reasons being the rare presence of G12C mutation in PDAC with only 1-2% of occurring cases, modest therapeutic efficacy, activation of compensatory pathways leading to cell resistance, and absence of effective KRASG12D or pan-KRAS inhibitors. Additionally, indirect approaches to targeting KRAS through upstream and downstream regulators or effectors were also found to be either ineffective or known to cause major toxicities. For this reason, new and more effective treatment strategies that combine different therapeutic modalities aiming at achieving synergism and minimizing intrinsic or adaptive resistance mechanisms are required. In the current work presented here, pancreatic cancer cell lines with oncogenic KRAS G12C, G12D, or wild-type KRAS were treated with specific KRAS or SOS1/2 inhibitors, and therapeutic synergisms with concomitant MEK inhibition and irradiation were systematically evaluated by means of cell viability, 2D-clonogenic, 3D-anchorage independent soft agar, and bioluminescent ATP assays. Underlying pathophysiological mechanisms were examined by using Western blot analyses, apoptosis assay, and RAS activation assay.


Assuntos
Neoplasias Pancreáticas , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/radioterapia , Carcinoma Ductal Pancreático/terapia , Transdução de Sinais/efeitos dos fármacos , Apoptose , Mutação , Proliferação de Células/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
15.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063027

RESUMO

Imiqualines are analogues of the immunomodulatory drug imiquimod. EAPB02303, the lead of the second-generation imiqualines, is characterized by significant anti-tumor effects with IC50s in the nanomolar range. We used Caenorhabditis elegans transgenic and mutant strains of two key signaling pathways (PI3K-Akt and Ras-MAPK) disrupted in human cancers to investigate the mode of action of EAPB02303. The ability of this imiqualine to inhibit the insulin/IGF1 signaling (IIS) pathway via the PI3K-Akt kinase cascade was explored through assessing the lifespan of wild-type worms. Micromolar doses of EAPB02303 significantly enhanced longevity of N2 strain and led to the nuclear translocation and subsequent activation of transcription factor DAF-16, the only forkhead box transcription factor class O (Fox O) homolog in C. elegans. Moreover, EAPB02303 significantly reduced the multivulva phenotype in let-60/Ras mutant strains MT2124 and MT4698, indicative of its mode of action through the Ras pathway. In summary, we showed that EAPB02303 potently reduced the activity of IIS and Ras-MAPK signaling in C. elegans. Our results revealed the mechanism of action of EAPB02303 against human cancers associated with hyperactivated IIS pathway and oncogenic Ras mutations.


Assuntos
Antineoplásicos , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Fatores de Transcrição Forkhead , Quinoxalinas , Transdução de Sinais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Animais , Quinoxalinas/farmacologia , Quinoxalinas/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Antineoplásicos/farmacologia , Antineoplásicos/química , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Longevidade/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Imidazóis/farmacologia , Imidazóis/química , Animais Geneticamente Modificados
16.
J Hepatol ; 79(3): 704-716, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37201672

RESUMO

BACKGROUND & AIMS: Recurrent somatic mutations of the RPS6KA3 gene encoding for the serine/threonine kinase RSK2 were identified in hepatocellular carcinomas (HCCs), suggesting its tumour-suppressive function. Our goal was to demonstrate the tumour suppressor role of RSK2 in the liver and investigate the functional consequences of its inactivation. METHODS: We analysed a series of 1,151 human HCCs for RSK2 mutations and 20 other driver genetic alterations. We then modelled RSK2 inactivation in mice in various mutational contexts recapitulating or not those naturally found in human HCC, using transgenic mice and liver-specific carcinogens. These models were monitored for liver tumour appearance and subjected to phenotypic and transcriptomic analyses. Functional consequences of RSK2 rescue were also investigated in a human RSK2-deficient HCC cell line. RESULTS: RSK2-inactivating mutations are specific to human HCC and frequently co-occur with AXIN1-inactivating or ß-catenin-activating mutations. Modelling of these co-occurrences in mice showed a cooperative effect in promoting liver tumours with transcriptomic profiles recapitulating those of human HCCs. By contrast, there was no cooperation in liver tumour induction between RSK2 loss and BRAF-activating mutations chemically induced by diethylnitrosamine. In human liver cancer cells, we also showed that RSK2 inactivation confers some dependency to the activation of RAS/MAPK signalling that can be targeted by MEK inhibitors. CONCLUSIONS: Our study demonstrates the tumour suppressor role of RSK2 and its specific synergistic effect in hepatocarcinogenesis when its loss of function is specifically combined with AXIN1 inactivation or ß-catenin activation. Furthermore, we identified the RAS/MAPK pathway as a potential therapeutic target for RSK2-inactivated liver tumours. IMPACT AND IMPLICATIONS: This study demonstrated the tumour suppressor role of RSK2 in the liver and showed that its inactivation specifically synergises with AXIN1 inactivation or ß-catenin activation to promote the development of HCC with similar transcriptomic profiles as found in humans. Furthermore, this study highlights that activation of the RAS/MAPK pathway is one of the key signalling pathways mediating the oncogenic effect of RSK2 inactivation that can be targeted with already available anti-MEK therapies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Proteína Axina/genética , beta Catenina/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Mutação , Transdução de Sinais
17.
Mod Pathol ; 36(12): 100323, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37678673

RESUMO

Primary diffuse large B-cell lymphoma of the primary central nervous system (CNS-DLBCL) is an aggressive disease, with dismal prognosis despite the use of high-dose methotrexate-based polychemotherapy. Our study aimed to expand the biologic profiles of CNS-DLBCL and to correlate them with clinical/imaging findings to gain diagnostic insight and possibly identify new therapeutic targets. We selected 61 CNS-DLBCL whose formalin-fixed paraffin-embedded samples were available at first diagnosis. These were investigated by immunohistochemistry, cMYC rearrangements were explored by fluorescence in situ hybridization, and CNS-DLBCL mutated genes were evaluated by next-generation sequencing. CD10, BCL6, and IRF4 were observed in 16%, 83.6%, and 93% of cases, respectively. As typical of CNS lymphoma, 10 (16.4%) of 61 cases were classified as germinal center (GCB) type and 51 (83.6%) of 61 as non-germinal center (non-GCB) type according to the Hans algorithm. Double-expression status for BCL2 and cMYC was detected in 36 (59%) of 61 cases whereas 25 (41%) of 61 were non-DE. Rearrangement of the cMYC gene was detected in 2 cases, associated with BCL6 translocation only in 1 case MYD88, PIM1, CD79B, and TP53 were mutated in 54.5%, 53.5%, 30.2%, and 18.4% cases, respectively. Novel mutations not previously reported in CNS-DLBCL were found: AIP in 23.1%, PI3KCA in 15%, NOTCH1 in 11.4%, GNAS in 8.1%, CASP8 in 7.9%, EGFR in 6.4%, PTEN in 5.1, and KRAS in 2.6% of cases. Survival was significantly longer for patients with mutated MYD88 (8.7 months vs 1.7 months; log-rank test = 5.43; P = .020) and for patients with mutated CD79B (10.8 months vs 2.5 months; log-rank test = 4.64; P = .031). MYD88 and CD79B predicted a longer survival in patients affected by CNS-DLBCL. Notably, we identified novel mutations that enrich the mutational landscape of CNS-DLBCL, suggest a role of PTEN-PI3K-AKT and receptor tyrosine kinase-RAS-mitogen-activated protein kinase signaling in a subset of CNS-DLBCL, and provide new potential therapeutic targets.


Assuntos
Linfoma Difuso de Grandes Células B , Fator 88 de Diferenciação Mieloide , Humanos , Hibridização in Situ Fluorescente , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fosfatidilinositol 3-Quinases/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Prognóstico , Genômica
18.
Cell Mol Neurobiol ; 43(5): 2309-2322, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36449154

RESUMO

Glioma is a malignancy of the central nervous system with a poor prognosis. Therefore, the elaboration of its molecular features creates therapeutic opportunities. Looking for the regulatory non-coding RNAs (lncRNAs and miRNAs) that are involved in glioma incidence/progression, RNA-seq analysis introduced upregulated ADAMTS9-AS1 as a bona fide candidate that sponges miR-128 and miR-150 and shows the negative correlation of expression with them. Then, RT-qPCR verified the upregulation of ADAMTS9-AS1 in glioma tissues and cell lines. Furthermore, dual-luciferase assay supported that cytoplasmic ADAMTS9-AS1 is capable of sponging miR-128 and miR-150, which are known as regulators of Ras/MAPK, PI3K, and Wnt pathways. Following the overexpression of ADAMTS9-AS1 in 1321N1 and U87 glioma cells, tyrosine kinase receptors (IGF1R and TrkC), as well as Wnt receptors (Lrp6 and Fzd) were upregulated, detected by RT-qPCR. Furthermore, downstream genes of both Ras/MAPK and Wnt pathways were upregulated. Finally following the ADAMTS9-AS1 overexpression, upregulation of Ras/MAPK and Wnt signaling pathways was verified through western blotting and Top/Fop flash assay, respectively. At the cellular level, ADAMTS9-AS1 overexpression brought about reduced sub-G1 cell population, increased proliferation rate, reduced apoptosis level, increased migration rate, shortened Bax/Bcl2 ratio, induced EMT, and stemness characteristics of transfected cells, detected by flow cytometry, MTT assay, scratch test, and RT-qPCR. Overall, these results introduced ADAMTS9-AS1 as an oncogene that upregulates Ras/MAPK and Wnt pathways through sponging of the miR-128 and miR-150 in glioma cells. The outcome of ADAMTS9-AS1 expression is more aggression of the glioma cells through increased EMT and stemness characteristics. These features candidate ADAMTS9-AS1 locus for glioma therapy. As a result, we discovered the oncogenic properties of ADAMTS9-AS1 in glioma cancer. It sponges miR-128 and miR-150 and subsequently overstimulates RAS/MAPK and Wnt signaling pathways, particularly at the receptors level. Thus, ADAMTS9-AS1 increases proliferation, migration, and stemness in glioma cell lines. A schematic representation showing the functional effect of ADAMTS9-AS1.


Assuntos
Glioma , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Glioma/patologia , Via de Sinalização Wnt/genética , Linhagem Celular Tumoral , Receptores Proteína Tirosina Quinases/metabolismo , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteína ADAMTS9/genética , Proteína ADAMTS9/metabolismo
19.
Am J Med Genet A ; 191(2): 323-331, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36308388

RESUMO

We systematically delineated the prenatal phenotype, and obstetrical and neonatal outcomes of the RASopathy cardio-facio-cutaneous (CFC) syndrome. A comprehensive, retrospective medical history survey was distributed to parents of children with confirmed CFC in collaboration with CFC International, Inc. Data were collected on CFC gene variant, maternal characteristics, pregnancy course, delivery, and neonatal outcomes with the support of medical records. We identified 43 individuals with pathogenic variants in BRAF (81%), MEK1 (14%), or MEK2 (5%) genes. The median age was 8.5 years. Hyperemesis gravidarum, gestational diabetes, gestational hypertension, and preeclampsia occurred in 5/43 (12%), 4/43 (9%), 3/43 (7%), and 3/43 (7%) of pregnancies, respectively. Second and third trimester ultrasound abnormalities included polyhydramnios, macrocephaly, macrosomia, and renal and cardiac abnormalities. Delivery occurred via spontaneous vaginal, operative vaginal, or cesarean delivery in 15/42 (36%), 7/42 (16%), and 20/42 (48%), respectively. Median gestational age at delivery was 37 weeks and median birth weight was 3501 grams. Germline pathogenic vaiants had mutiple congenital consequences including polyhydramnios, renal and cardiac abnormalities, macrosomia, and macrocephaly on second and third trimester ultrasound. Elevated rates of operative delivery and neonatal complications were also noted. Understanding and defining a prenatal phenotype may improve prenatal prognostic counseling and outcomes.


Assuntos
Displasia Ectodérmica , Cardiopatias Congênitas , Megalencefalia , Poli-Hidrâmnios , Humanos , Gravidez , Feminino , Estudos Retrospectivos , Macrossomia Fetal , Proteínas Proto-Oncogênicas B-raf/genética , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Displasia Ectodérmica/patologia , Fácies , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia
20.
Arch Microbiol ; 205(7): 262, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37310490

RESUMO

Cancer is characterized by mutagenic events that lead to disrupted cell signaling and cellular functions. It is one of the leading causes of death worldwide. Literature suggests that pathogens, mainly Helicobacter pylori and Epstein-Barr virus (EBV), have been associated with the etiology of human cancer. Notably, their co-infection may lead to gastric cancer. Pathogen-mediated DNA damage could be the first and crucial step in the carcinogenesis process that modulates numerous cellular signaling pathways. Altogether, it dysregulates the metabolic pathways linked with cell growth, apoptosis, and DNA repair. Modulation in these pathways leads to abnormal growth and proliferation. Several signaling pathways such RTK, RAS/MAPK, PI3K/Akt, NFκB, JAK/STAT, HIF1α, and Wnt/ß-catenin are known to be altered in cancer. Therefore, this review focuses on the oncogenic roles of H. pylori, EBV, and its associated signaling cascades in various cancers. Scrutinizing these signaling pathways is crucial and may provide new insights and targets for preventing and treating H. pylori and EBV-associated cancers.


Assuntos
Infecções por Vírus Epstein-Barr , Helicobacter pylori , Neoplasias Gástricas , Humanos , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4 , Fosfatidilinositol 3-Quinases , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA