Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 93(1): 289-316, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38316136

RESUMO

RAF family protein kinases are a key node in the RAS/RAF/MAP kinase pathway, the signaling cascade that controls cellular proliferation, differentiation, and survival in response to engagement of growth factor receptors on the cell surface. Over the past few years, structural and biochemical studies have provided new understanding of RAF autoregulation, RAF activation by RAS and the SHOC2 phosphatase complex, and RAF engagement with HSP90-CDC37 chaperone complexes. These studies have important implications for pharmacologic targeting of the pathway. They reveal RAF in distinct regulatory states and show that the functional RAF switch is an integrated complex of RAF with its substrate (MEK) and a 14-3-3 dimer. Here we review these advances, placing them in the context of decades of investigation of RAF regulation. We explore the insights they provide into aberrant activation of the pathway in cancer and RASopathies (developmental syndromes caused by germline mutations in components of the pathway).


Assuntos
Transdução de Sinais , Quinases raf , Proteínas ras , Humanos , Proteínas ras/metabolismo , Proteínas ras/genética , Proteínas ras/química , Quinases raf/metabolismo , Quinases raf/genética , Animais , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética
2.
Cell ; 170(1): 17-33, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666118

RESUMO

RAS proteins are binary switches, cycling between ON and OFF states during signal transduction. These switches are normally tightly controlled, but in RAS-related diseases, such as cancer, RASopathies, and many psychiatric disorders, mutations in the RAS genes or their regulators render RAS proteins persistently active. The structural basis of the switch and many of the pathways that RAS controls are well known, but the precise mechanisms by which RAS proteins function are less clear. All RAS biology occurs in membranes: a precise understanding of RAS' interaction with membranes is essential to understand RAS action and to intervene in RAS-driven diseases.


Assuntos
Proteínas ras/metabolismo , Animais , Membrana Celular/metabolismo , Anormalidades Congênitas/metabolismo , Humanos , Transtornos Mentais/metabolismo , Mutação , Neoplasias/metabolismo , Filogenia , Transdução de Sinais , Leveduras , Proteínas ras/química , Proteínas ras/genética
3.
Mol Cell ; 82(22): 4262-4276.e5, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36347258

RESUMO

BRAF is frequently mutated in human cancer and the RASopathy syndromes, with RASopathy mutations often observed in the cysteine-rich domain (CRD). Although the CRD participates in phosphatidylserine (PS) binding, the RAS-RAF interaction, and RAF autoinhibition, the impact of these activities on RAF function in normal and disease states is not well characterized. Here, we analyze a panel of CRD mutations and show that they increase BRAF activity by relieving autoinhibition and/or enhancing PS binding, with relief of autoinhibition being the major factor determining mutation severity. Further, we show that CRD-mediated autoinhibition prevents the constitutive plasma membrane localization of BRAF that causes increased RAS-dependent and RAS-independent function. Comparison of the BRAF- and CRAF-CRDs also indicates that the BRAF-CRD is a stronger mediator of autoinhibition and PS binding, and given the increased catalytic activity of BRAF, our studies reveal a more critical role for CRD-mediated autoinhibition in BRAF regulation.


Assuntos
Cisteína , Proteínas Proto-Oncogênicas B-raf , Humanos , Cisteína/genética , Proteínas Proto-Oncogênicas B-raf/genética , Domínios Proteicos , Mutação , Síndrome
4.
Am J Hum Genet ; 108(11): 2112-2129, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34626534

RESUMO

Upregulated signal flow through RAS and the mitogen-associated protein kinase (MAPK) cascade is the unifying mechanistic theme of the RASopathies, a family of disorders affecting development and growth. Pathogenic variants in more than 20 genes have been causally linked to RASopathies, the majority having a dominant role in promoting enhanced signaling. Here, we report that SPRED2 loss of function is causally linked to a recessive phenotype evocative of Noonan syndrome. Homozygosity for three different variants-c.187C>T (p.Arg63∗), c.299T>C (p.Leu100Pro), and c.1142_1143delTT (p.Leu381Hisfs∗95)-were identified in four subjects from three families. All variants severely affected protein stability, causing accelerated degradation, and variably perturbed SPRED2 functional behavior. When overexpressed in cells, all variants were unable to negatively modulate EGF-promoted RAF1, MEK, and ERK phosphorylation, and time-course experiments in primary fibroblasts (p.Leu100Pro and p.Leu381Hisfs∗95) documented an increased and prolonged activation of the MAPK cascade in response to EGF stimulation. Morpholino-mediated knockdown of spred2a and spred2b in zebrafish induced defects in convergence and extension cell movements indicating upregulated RAS-MAPK signaling, which were rescued by expressing wild-type SPRED2 but not the SPRED2Leu381Hisfs∗95 protein. The clinical phenotype of the four affected individuals included developmental delay, intellectual disability, cardiac defects, short stature, skeletal anomalies, and a typical facial gestalt as major features, without the occurrence of the distinctive skin signs characterizing Legius syndrome. These features, in part, characterize the phenotype of Spred2-/- mice. Our findings identify the second recessive form of Noonan syndrome and document pleiotropic consequences of SPRED2 loss of function in development.


Assuntos
Mutação com Perda de Função , Síndrome de Noonan/genética , Fenótipo , Proteínas Repressoras/genética , Alelos , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Peixe-Zebra
5.
Mol Med ; 30(1): 47, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594640

RESUMO

BACKGROUND: RASopathies are genetic syndromes affecting development and having variable cancer predisposition. These disorders are clinically related and are caused by germline mutations affecting key players and regulators of the RAS-MAPK signaling pathway generally leading to an upregulated ERK activity. Gain-of-function (GOF) mutations in PTPN11, encoding SHP2, a cytosolic protein tyrosine phosphatase positively controlling RAS function, underlie approximately 50% of Noonan syndromes (NS), the most common RASopathy. A different class of these activating mutations occurs as somatic events in childhood leukemias. METHOD: Here, we evaluated the application of a FRET-based zebrafish ERK reporter, Teen, and used quantitative FRET protocols to monitor non-physiological RASopathy-associated changes in ERK activation. In a multi-level experimental workflow, we tested the suitability of the Teen reporter to detect pan-embryo ERK activity correlates of morphometric alterations driven by the NS-causing Shp2D61G allele. RESULTS: Spectral unmixing- and acceptor photobleaching (AB)-FRET analyses captured pathological ERK activity preceding the manifestation of quantifiable body axes defects, a morphological pillar used to test the strength of SHP2 GoF mutations. Last, the work shows that by multi-modal FRET analysis, we can quantitatively trace back the modulation of ERK phosphorylation obtained by low-dose MEK inhibitor treatment to early development, before the onset of morphological defects. CONCLUSION: This work proves the usefulness of FRET imaging protocols on both live and fixed Teen ERK reporter fish to readily monitor and quantify pharmacologically- and genetically-induced ERK activity modulations in early embryos, representing a useful tool in pre-clinical applications targeting RAS-MAPK signaling.


Assuntos
Síndrome de Noonan , Peixe-Zebra , Animais , Humanos , Adolescente , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Transferência Ressonante de Energia de Fluorescência , Síndrome de Noonan/genética , Mutação , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
6.
Biochem Soc Trans ; 52(3): 1061-1069, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38695730

RESUMO

The RAF kinases are required for signal transduction through the RAS-RAF-MEK-ERK pathway, and their activity is frequently up-regulated in human cancer and the RASopathy developmental syndromes. Due to their complex activation process, developing drugs that effectively target RAF function has been a challenging endeavor, highlighting the need for a more detailed understanding of RAF regulation. This review will focus on recent structural and biochemical studies that have provided 'snapshots' into the RAF regulatory cycle, revealing structures of the autoinhibited BRAF monomer, active BRAF and CRAF homodimers, as well as HSP90/CDC37 chaperone complexes containing CRAF or BRAFV600E. In addition, we will describe the insights obtained regarding how BRAF transitions between its regulatory states and examine the roles that various BRAF domains and 14-3-3 dimers play in both maintaining BRAF as an autoinhibited monomer and in facilitating its transition to an active dimer. We will also address the function of the HSP90/CDC37 chaperone complex in stabilizing the protein levels of CRAF and certain oncogenic BRAF mutants, and in serving as a platform for RAF dephosphorylation mediated by the PP5 protein phosphatase. Finally, we will discuss the regulatory differences observed between BRAF and CRAF and how these differences impact the function of BRAF and CRAF as drivers of human disease.


Assuntos
Proteínas de Choque Térmico HSP90 , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Multimerização Proteica , Quinases raf/metabolismo , Quinases raf/química , Animais , Chaperoninas/metabolismo , Chaperoninas/química , Transdução de Sinais , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/química , Modelos Moleculares
7.
Clin Genet ; 106(2): 199-203, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38679877

RESUMO

RASopathies represent a distinct class of neurodevelopmental syndromes caused by germline variants in the Ras/MAPK pathways. Recently, a novel disease-gene association was implicated in MAPK kinase kinase kinase 4 (MAP4K4), which regulates the upstream signals of the MAPK pathways. However, to our knowledge, only two studies have reported the genotype-phenotype relationships in the MAP4K4-related disorder. This study reports on a Korean boy harboring a novel de novo missense variant in MAP4K4 (NM_001242559:c.569G>T, p.Gly190Val), revealed by trio exome sequencing, and located in the hotspot of the protein kinase domain. The patient exhibited various clinical features, including craniofacial dysmorphism, language delay, congenital heart defects, genitourinary anomalies, and sagittal craniosynostosis. Our study expands the phenotypic association of the MAP4K4-related disorder to include syndromic craniosynostosis, thereby providing further insights into the role of the RAS/MAPK pathways in the development of premature fusion of calvarial sutures.


Assuntos
Craniossinostoses , Estudos de Associação Genética , Mutação de Sentido Incorreto , Humanos , Masculino , Craniossinostoses/genética , Craniossinostoses/patologia , Sequenciamento do Exoma , Predisposição Genética para Doença , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Mutação de Sentido Incorreto/genética , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Síndrome
8.
Clin Genet ; 105(5): 573-580, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38332451

RESUMO

The RREB1 is a zinc finger transcription factor that plays a role in regulating gene expression and inactivating MAPK signalling components. To date, no pathogenic variant in the RREB1 gene has been associated with any disease, but several cases of 6p terminal deletions affecting the RREB1 gene have been reported. In this study, we report the first case of RREB1-associated Noonan-like RASopathy caused by a pathogenic variant within this gene. Genetic testing included whole-genome sequencing (WGS) of the proband and Sanger sequencing of the proband, his parents, and his sibling. The proband had a de novo c.2677del, p.(Ala893Argfs*20) variant, likely resulting in RREB1 haploinsufficiency. Comparative analysis of patients with microdeletions, including in the RREB1 gene, confirmed shared clinical traits while highlighting unique features, such as blue sclerae and absence of cardiac anomalies. This study reinforces previous data on RREB1 haploinsufficiency as the driver of a new Noonan-like RASopathy variant, which includes intellectual disability, delayed motor skills, short stature, short neck, and distinctive facial dysmorphisms as key clinical indicators. These findings shed light on this RREB1-related syndrome and underscore the necessity for further investigation into the functional consequences of RREB1 mutations.


Assuntos
Cardiopatias Congênitas , Síndrome de Noonan , Humanos , Síndrome de Noonan/genética , Mutação/genética , Testes Genéticos , Cardiopatias Congênitas/genética , Fenótipo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
9.
Am J Med Genet A ; 194(5): e63494, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38156365

RESUMO

RASopathies are a group of malformation syndromes known to lead to nonimmune hydrops fetalis (NIHF) in severe presentations. Pathogenic variants can be de novo or parentally inherited. Despite being a known frequent presentation, the fraction of monogenic NIHF cases due to RASopathies is limited in the literature. Also, the specific parental contribution of RASopathies to NIHF is not well described. Our objective was to review pooled exome sequencing (ES) diagnostic yield of RASopathies for NIHF and to determine the parental contribution of RASopathy to NIHF. We performed a systematic review of prenatal ES studies from January 1, 2000 to August 1, 2022. Thirty-six studies met inclusion criteria. Cases with RASopathy gene variants were reviewed. NIHF cases were further classified as isolated or non-isolated. Thirty-six ES studies including 46 pregnancies with NIHF and a diagnosed RASopathy were reviewed. Forty-four diagnostic variants and 2 variants of uncertain significance in 12 RASopathy genes were identified. Expanding on what was previously published, a total of 506 NIHF cases were extracted with 191 cases yielding a positive diagnosis by ES. The overall rate of RASopathy diagnosis in clinically diagnosed NIHF cases was 9% (44/506). The rate of RASopathy diagnosis among NIHF cases with positive genetic diagnosis by ES was 23% (44/191). Of the 46 cases identified, 13 (28%) variants were parentally inherited; specifically, 5/13 (38%) maternal, 3/13 (23%) paternal, 2/13 (15%) biparental, and 3/13 (23%) unspecified. Majority of NIHF cases 29/46 (63%) were isolated. Among NIHF cases with positive ES diagnoses, RASopathy diagnostic yield by ES was 23%. NIHF secondary to RASopathies was parentally inherited in 28% of cases. Most cases of NIHF due to RASopathy were isolated, with no prenatal detection of associated anomalies.


Assuntos
Sequenciamento do Exoma , Hidropisia Fetal , Humanos , Hidropisia Fetal/genética , Hidropisia Fetal/diagnóstico , Gravidez , Feminino , Mutação/genética , Diagnóstico Pré-Natal , Exoma/genética , Predisposição Genética para Doença , Síndrome
10.
Am J Med Genet A ; 194(2): 301-310, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37827855

RESUMO

Treatment-resistant epilepsy is among the most serious complications of cardiofaciocutaneous syndrome (CFCS), a rare disorder caused by germline variants in the RAS-MAPK signaling pathway. This study analyzed the clinical characteristics of epilepsy and response to anti-seizure medications (ASMs) in a multinational CFCS cohort. A caregiver survey provided data regarding seizure history, use of ASMs and other treatment approaches, adverse effects, caregiver perception of treatment response, and neurological disease burden impact among individuals with CFCS. Results from 138 survey responses were quantitatively analyzed in conjunction with molecular genetic results and neurological records. The disease burden impact of CFCS was higher among individuals with epilepsy (n = 74/138), especially those with more severe seizure presentation. Oxcarbazepine, a sodium-channel blocker, had the best seizure control profile with relatively infrequent adverse effects. The most commonly prescribed ASM, levetiracetam, demonstrated comparatively poor seizure control. ASM efficacy was generally similar for individuals with BRAF and MAP2K1 gene variants. The high proportion of patients with CFCS who experienced poor seizure control despite use of multiple ASMs highlights a substantial unmet treatment need. Prospective study of ASM efficacy and clinical trials of therapies to attenuate RAS-MAPK signaling may improve avenues for clinical management.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Displasia Ectodérmica , Epilepsia , Fácies , Insuficiência de Crescimento , Cardiopatias Congênitas , Humanos , Estudos Prospectivos , Epilepsia/tratamento farmacológico , Epilepsia/genética , Levetiracetam , Convulsões/tratamento farmacológico , Convulsões/genética , Anticonvulsivantes/uso terapêutico
11.
Am J Med Genet A ; : e63711, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934655

RESUMO

RASopathies encompass a diverse set of disorders affecting genes that encode proteins within the RAS-MAPK pathway. RASA1 mutations are the cause of an autosomal dominant disorder called capillary malformation-arteriovenous malformation type 1 (CM-AVM1). Unlike other RASopathies, facial dysmorphism has not been described in these patients. We phenotypically delineated a large family of individuals with multifocal fast-flow capillary malformations, severe lymphatic anomalies of perinatal onset, and dysmorphic features not previously described. Sequencing studies were performed on probands and related family members, confirming the segregation of dysmorphic features in affected members of a novel heterozygous variant in RASA1 (NM_002890.3:c.2366G>A, p.(Arg789Gln)). In this work, we broaden the phenotypic spectrum of CM-AVM type 1 and propose a new RASA1 variant as likely pathogenic.

12.
Pediatr Blood Cancer ; 71(7): e31032, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38711167

RESUMO

BACKGROUND: Angiopoietin-2 (Ang-2) is increased in the blood of patients with kaposiform lymphangiomatosis (KLA) and kaposiform hemangioendothelioma (KHE). While the genetic causes of KHE are not clear, a somatic activating NRASQ61R mutation has been found in the lesions of KLA patients. PROCEDURE: Our study tested the hypothesis that the NRASQ61R mutation drives elevated Ang-2 expression in endothelial cells. Ang-2 was measured in human endothelial progenitor cells (EPC) expressing NRASQ61R and a genetic mouse model with endothelial targeted NRASQ61R. To determine the signaling pathways driving Ang-2, NRASQ61R EPC were treated with signaling pathway inhibitors. RESULTS: Ang-2 levels were increased in EPC expressing NRASQ61R compared to NRASWT by Western blot analysis of cell lysates and ELISA of the cell culture media. Ang-2 levels were elevated in the blood of NRASQ61R mutant mice. NRASQ61R mutant mice also had reduced platelet counts and splenomegaly with hypervascular lesions, like some KLA patients. mTOR inhibitor rapamycin attenuated Ang-2 expression by NRASQ61R EPC. However, MEK1/2 inhibitor trametinib was more effective blocking increases in Ang-2. CONCLUSIONS: Our studies show that the NRASQ61R mutation in endothelial cells induces Ang-2 expression in vitro and in vivo. In cultured human endothelial cells, NRASQ61R drives elevated Ang-2 through MAP kinase and mTOR-dependent signaling pathways.


Assuntos
Angiopoietina-2 , Proteínas de Membrana , Animais , Humanos , Camundongos , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , Mutação , Transdução de Sinais
13.
Eur J Pediatr ; 183(3): 1011-1019, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37863846

RESUMO

Noonan syndrome belongs to the family of RASopathies, a group of multiple congenital anomaly disorders caused by pathogenic variants in genes encoding components or regulators of the RAS/mitogen-activated protein kinase (MAPK) signalling pathway. Collectively, all these pathogenic variants lead to increased RAS/MAPK activation. The better understanding of the molecular mechanisms underlying the different manifestations of NS and RASopathies has led to the identification of molecular targets for specific pharmacological interventions. Many specific agents (e.g. SHP2 and MEK inhibitors) have already been developed for the treatment of RAS/MAPK-driven malignancies. In addition, other molecules with the property of modulating RAS/MAPK activation are indicated in non-malignant diseases (e.g. C-type natriuretic peptide analogues in achondroplasia or statins in hypercholesterolemia).  Conclusion: Drug repositioning of these molecules represents a challenging approach to treat or prevent medical complications associated with RASopathies. What is Known: • Noonan syndrome and related disorders are caused by pathogenic variants in genes encoding components or regulators of the RAS/mitogen-activated protein kinase (MAPK) signalling pathway, resulting in increased activation of this pathway. • This group of disorders is now known as RASopathies and represents one of the largest groups of multiple congenital anomaly diseases known. What is New: • The identification of pathophysiological mechanisms provides new insights into the development of specific therapeutic strategies, in particular treatment aimed at reducing RAS/MAPK hyperactivation. • Drug repositioning of specific agents already developed for the treatment of malignant (e.g. SHP2 and MEK inhibitors) or non-malignant diseases (e.g. C-type natriuretic peptide analogues in achondroplasia or statins in hypercholesterolaemia) represents a challenging approach to the treatment of RASopathies.


Assuntos
Anormalidades Múltiplas , Acondroplasia , Inibidores de Hidroximetilglutaril-CoA Redutases , Síndrome de Noonan , Humanos , Síndrome de Noonan/tratamento farmacológico , Síndrome de Noonan/genética , Peptídeo Natriurético Tipo C , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno
14.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39201250

RESUMO

RASopathies are a group of related genetic disorders caused by mutations in genes within the RAS/MAPK signaling pathway. This pathway is crucial for cell division, growth, and differentiation, and its disruption can lead to a variety of developmental and health issues. RASopathies present diverse clinical features and pose significant diagnostic and therapeutic challenges. Studying the landscape of biomarkers in RASopathies has the potential to improve both clinical practices and the understanding of these disorders. This review provides an overview of recent discoveries in RASopathy molecular profiling, which extend beyond traditional gene mutation analysis. mRNAs, non-coding RNAs, protein expression patterns, and post-translational modifications characteristic of RASopathy patients within pivotal signaling pathways such as the RAS/MAPK, PI3K/AKT/mTOR, and Rho/ROCK/LIMK2/cofilin pathways are summarized. Additionally, the field of metabolomics holds potential for uncovering metabolic signatures associated with specific RASopathies, which are crucial for developing precision medicine. Beyond molecular markers, we also examine the role of histological characteristics and non-invasive physiological assessments in identifying potential biomarkers, as they provide evidence of the disease's effects on various systems. Here, we synthesize key findings and illuminate promising avenues for future research in RASopathy biomarker discovery, underscoring rigorous validation and clinical translation.


Assuntos
Biomarcadores , Proteínas ras , Humanos , Biomarcadores/metabolismo , Proteínas ras/metabolismo , Proteínas ras/genética , Transdução de Sinais , Mutação , Mancha Vinho do Porto/genética , Mancha Vinho do Porto/metabolismo , Mancha Vinho do Porto/patologia , Síndrome de Costello/genética , Síndrome de Costello/metabolismo , Síndrome de Costello/patologia , Displasia Ectodérmica/genética , Displasia Ectodérmica/metabolismo , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/patologia , Insuficiência de Crescimento/genética , Insuficiência de Crescimento/metabolismo , Animais , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Fácies
15.
Glia ; 71(12): 2701-2719, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37382486

RESUMO

Evidence for myelin regulating higher-order brain function and disease is rapidly accumulating; however, defining cellular/molecular mechanisms remains challenging partially due to the dynamic brain physiology involving deep changes during development, aging, and in response to learning and disease. Furthermore, as the etiology of most neurological conditions remains obscure, most research models focus on mimicking symptoms, which limits understanding of their molecular onset and progression. Studying diseases caused by single gene mutations represents an opportunity to understand brain dys/function, including those regulated by myelin. Here, we discuss known and potential repercussions of abnormal central myelin on the neuropathophysiology of Neurofibromatosis Type 1 (NF1). Most patients with this monogenic disease present with neurological symptoms diverse in kind, severity, and onset/decline, including learning disabilities, autism spectrum disorders, attention deficit and hyperactivity disorder, motor coordination issues, and increased risk for depression and dementia. Coincidentally, most NF1 patients show diverse white matter/myelin abnormalities. Although myelin-behavior links were proposed decades ago, no solid data can prove or refute this idea yet. A recent upsurge in myelin biology understanding and research/therapeutic tools provides opportunities to address this debate. As precision medicine moves forward, an integrative understanding of all cell types disrupted in neurological conditions becomes a priority. Hence, this review aims to serve as a bridge between fundamental cellular/molecular myelin biology and clinical research in NF1.

16.
Am J Med Genet C Semin Med Genet ; 193(2): 160-166, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36734411

RESUMO

Gain of function pathogenic variants in MRAS have been found in a small subset of pediatric subjects presenting with Noonan syndrome (NS) associated with hypertrophic cardiomyopathy (HCM) and moderate to severe intellectual disability. These variants are considered to confer a high-risk for the development of severe HCM with poor prognosis and fatal outcome. We report on the natural history of the first adult subject with NS carrying the recurrent pathogenic p.Thr68Ile amino acid substitution. Different from what had previously been observed, he presented with a mild, late-onset left ventricular hypertrophy, and a constellation of additional symptoms rarely seen in NS. The present case provides evidence that HCM does not represent an obligatory, early-onset and severe complication in subjects with MRAS variants. It also adds new data about late-onset features suggesting that other unexpected complications might be observed in adult subjects providing anticipatory guidance for individuals of all age.


Assuntos
Cardiomiopatia Hipertrófica , Síndrome de Noonan , Masculino , Criança , Humanos , Adulto , Síndrome de Noonan/complicações , Síndrome de Noonan/genética , Síndrome de Noonan/diagnóstico , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/complicações , Cardiomiopatia Hipertrófica/genética , Substituição de Aminoácidos , Mutação , Fenótipo , Proteínas ras/genética
17.
Am J Hum Genet ; 107(3): 499-513, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32721402

RESUMO

Signal transduction through the RAF-MEK-ERK pathway, the first described mitogen-associated protein kinase (MAPK) cascade, mediates multiple cellular processes and participates in early and late developmental programs. Aberrant signaling through this cascade contributes to oncogenesis and underlies the RASopathies, a family of cancer-prone disorders. Here, we report that de novo missense variants in MAPK1, encoding the mitogen-activated protein kinase 1 (i.e., extracellular signal-regulated protein kinase 2, ERK2), cause a neurodevelopmental disease within the RASopathy phenotypic spectrum, reminiscent of Noonan syndrome in some subjects. Pathogenic variants promote increased phosphorylation of the kinase, which enhances translocation to the nucleus and boosts MAPK signaling in vitro and in vivo. Two variant classes are identified, one of which directly disrupts binding to MKP3, a dual-specificity protein phosphatase negatively regulating ERK function. Importantly, signal dysregulation driven by pathogenic MAPK1 variants is stimulus reliant and retains dependence on MEK activity. Our data support a model in which the identified pathogenic variants operate with counteracting effects on MAPK1 function by differentially impacting the ability of the kinase to interact with regulators and substrates, which likely explains the minor role of these variants as driver events contributing to oncogenesis. After nearly 20 years from the discovery of the first gene implicated in Noonan syndrome, PTPN11, the last tier of the MAPK cascade joins the group of genes mutated in RASopathies.


Assuntos
Carcinogênese/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Transtornos do Neurodesenvolvimento/genética , Síndrome de Noonan/genética , Pré-Escolar , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/patologia , Síndrome de Noonan/fisiopatologia , Fenótipo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Transdução de Sinais , Sequenciamento do Exoma , Proteínas ras/genética
18.
Am J Med Genet A ; 191(11): 2783-2792, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37697822

RESUMO

Cardio-facio-cutaneous syndrome (CFCS) is a rare genetic disorder belonging to the RASopathies, a group of developmental syndromes caused by upregulated RAS/MAPK signaling. Pathogenic variants affecting four genes, KRAS, BRAF, MAP2K1 and MAP2K2, encoding core signal transducers of the pathway, underlie the condition. Major clinical features include a distinctive facies, ectodermal and cardiac anomalies, reduced postnatal growth, intellectual disability, and musculoskeletal abnormalities. Similar to other RASopathies, reports of visual impairment, high refractive error, optic nerve pallor, and other ocular abnormalities have been anecdotally reported in the literature. The aim of our study is to report the prevalence of ophthalmologic abnormalities in a large monocentric cohort of individuals affected by CFCS and explore the occurrence of genotype-endophenotype correlations in this series of patients. We observed that BRAF mutations are associated to a higher prevalence of anisometropia >3D (11.8% vs. 0%) and high astigmatism (29.4% vs. 0%; both p < 0.001) while patients with mutations in other genes had a significantly higher prevalence of myopia >6 D (60% vs. 5.9%; p = 0.012). Pale optic disc was associated with higher prevalence of inferior oblique muscle (IO) overaction (33.3% vs. 0%) and lower prevalence of ptosis (0% vs. 11.8%; both p < 0.001). Combined exotropia, IO overaction and nystagmus were frequent in patients with pale optic nerve. Our findings might suggest the need for earlier ophthalmologic referral for CFCS patients due to high risk of amblyopia, especially those expressing BRAF mutations.

19.
Cardiovasc Drugs Ther ; 37(6): 1193-1204, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35156148

RESUMO

The RAS/mitogen-activated protein kinase (MAPK) pathway controls a plethora of developmental and post-developmental processes. It is now clear that mutations in the RAS-MAPK pathway cause developmental diseases collectively referred to as the RASopathies. The RASopathies include Noonan syndrome, Noonan syndrome with multiple lentigines, cardiofaciocutaneous syndrome, neurofibromatosis type 1, and Costello syndrome. RASopathy patients exhibit a wide spectrum of congenital heart defects (CHD), such as valvular abnormalities and hypertrophic cardiomyopathy (HCM). Since the cardiovascular defects are the most serious and recurrent cause of mortality in RASopathy patients, it is critical to understand the pathological signaling mechanisms that drive the disease. Therapies for the treatment of HCM and other RASopathy-associated comorbidities have yet to be fully realized. Recent developments have shown promise for the use of repurposed antineoplastic drugs that target the RAS-MAPK pathway for the treatment of RASopathy-associated HCM. However, given the impact of the RAS-MAPK pathway in post-developmental physiology, establishing safety and evaluating risk when treating children will be paramount. As such insight provided by preclinical and clinical information will be critical. This review will highlight the cardiovascular manifestations caused by the RASopathies and will discuss the emerging therapies for treatment.


Assuntos
Síndrome de Costello , Displasia Ectodérmica , Cardiopatias Congênitas , Síndrome de Noonan , Criança , Humanos , Cardiopatias Congênitas/tratamento farmacológico , Cardiopatias Congênitas/genética , Síndrome de Noonan/tratamento farmacológico , Síndrome de Noonan/genética , Síndrome de Costello/genética , Insuficiência de Crescimento/tratamento farmacológico , Insuficiência de Crescimento/genética , Displasia Ectodérmica/genética
20.
Pediatr Int ; 65(1): e15589, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37615376

RESUMO

BACKGROUND: The RASopathies (Noonan syndrome [NS] and Costello syndrome [CS]) are rare disorders. Although these have been characterized, precise delineation of the differences in the spinal deformities associated with RASopathy has not been described. This study characterized the spinal deformities found in NS and CS and describes a strategy for the screening of scoliosis. METHODS: The clinical records and spinal X-rays of 35 consecutive NS and CS patients were reviewed. Spinal X-rays were assessed to define the presence and progression of scoliosis. Clinical records were examined to identify the risk factors associated with scoliosis. In addition, we investigated the association between clinical records and scoliosis using logistic regression analysis. RESULTS: Twenty-four patients with NS and 11 with CS were included. Nine patients with NS and five with CS showed scoliosis. The mean ± SD age at diagnosis was 12.6 ± 2.4 years in NS and 11.4 ± 2.5 years in CS (p = 0.55), and mean follow-up period was 4.8 ± 2.6 years and 6.3 ± 2.4 years (p = 0.42), respectively. The coronal angular deformity at final follow-up was 27.3 ± 8.5° in NS and 19.4 ± 6.9° in CS (p = 0.030) with a mean annual progression of 2.8 ± 1.1° in NS 1.0 ± 1.0° in CS (p = 0.030). Cardiac disease was present in eight out of nine patients with NS with concomitant scoliosis in NS, and significantly more than in CS (p = 0.007). PTPN11 significantly correlated with scoliosis (odds ratio 12.4 0.035, 95% confidence interval: 1.20-128.00). CONCLUSIONS: Spinal deformity in NS is more severe than in CS. This study identified a relationship between PTPN11 and scoliosis. Therefore, PTPN11 can be used for the screening of scoliosis.


Assuntos
Síndrome de Costello , Síndrome de Noonan , Escoliose , Humanos , Escoliose/diagnóstico por imagem , Escoliose/epidemiologia , Síndrome de Noonan/complicações , Síndrome de Noonan/diagnóstico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA