RESUMO
PURPOSE: Epigenetic dysregulation has been associated with many inherited disorders. RBBP5 (HGNC:9888) encodes a core member of the protein complex that methylates histone 3 lysine-4 and has not been implicated in human disease. METHODS: We identify 5 unrelated individuals with de novo heterozygous variants in RBBP5. Three nonsense/frameshift and 2 missense variants were identified in probands with neurodevelopmental symptoms, including global developmental delay, intellectual disability, microcephaly, and short stature. Here, we investigate the pathogenicity of the variants through protein structural analysis and transgenic Drosophila models. RESULTS: Both missense p.(T232I) and p.(E296D) variants affect evolutionarily conserved amino acids located at the interface between RBBP5 and the nucleosome. In Drosophila, overexpression analysis identifies partial loss-of-function mechanisms when the variants are expressed using the fly Rbbp5 or human RBBP5 cDNA. Loss of Rbbp5 leads to a reduction in brain size. The human reference or variant transgenes fail to rescue this loss and expression of either missense variant in an Rbbp5 null background results in a less severe microcephaly phenotype than the human reference, indicating both missense variants are partial loss-of-function alleles. CONCLUSION: Haploinsufficiency of RBBP5 observed through de novo null and hypomorphic loss-of-function variants is associated with a syndromic neurodevelopmental disorder.
RESUMO
Genome-wide deleterious mutations were identified in zebu cattle (Bos indicus) using in silico approach. The ddRAD sequence data of Sahiwal cattle were annotated and aligned with the cattle reference genome (ARS-UCD1.2). A total of 279,383 SNPs were identified at Read Depth10, which were further filtered to 692 missense SNPs. These SNPs were further analyzed, for functional consequences, by using Variant Effect Predictor, PolyPhen, PROVEAN, and PANTHER tools. A total of 18 SNPs, were finally identified as deleterious, and among these, 12 SNPs were mapped on nine different genes. ERRAT, ProSA-web, Project HOPE, TM-Align, and YASSARA tools, further confirmed the protein malfunctioning of one missense (L290V) mutation of Retinoblastoma binding protein-5 (RBBP5) gene, transcribing a cell cycle regulatory protein and associated with Retinoblastoma in human. This derived bioinformatics pipeline may be useful for preliminarily identifying the deleterious DNA mutations in livestock, specifically in absence of any genetic disease records.
Assuntos
Estudo de Associação Genômica Ampla , Genoma , Bovinos/genética , Humanos , Animais , Genoma/genética , Mutação , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Ligação a DNA/genéticaRESUMO
Colorectal cancer (CRC) is prevalent worldwide and novel diagnostic and prognostic biomarkers are needed to improve precision medicine. Circular RNAs (circRNAs) are currently being considered as emerging tumor biomarkers. Herein, we aimed to explore the possible clinical application of circRNAs in the early diagnosis and prognostic prediction of CRC. First, candidate circRNA was selected by integrating analysis of Gene Expression Omnibus (GEO) database using GEO2R program. ROC curve analysis demonstrated the predictive values and likelihood ratios of circ_001659 were satisfactory for the diagnosis of CRC, including patients in early-stage disease or patients with carcinoembryonic antigen (CEA)-negative status. Moreover, serum circ_001659 may be a novel biomarker in the assessment of successful treatment and remission of cancer tracking. We further investigated the oncogenic role of circ_001659. In vivo and in vitro experiments indicated that circ_001659 could promote CRC cell invasion and migration. Mechanistically, circ_001659 was localized in the nucleus, recruited the RBBP5 to Vimentin promoter and increased H3K4 trimethylation level on the Vimentin promoter region, which epigenetically activated Vimentin transcription. Our findings demonstrate that circ_001659 could be a useful serum biomarker for CRC diagnosis and prognosis. Targeting circ_001659 and its pathway may be meaningful for treating patients with CRC.
Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Colorretais/sangue , Neoplasias Colorretais/diagnóstico , Metástase Neoplásica , RNA Circular/sangue , Animais , Biomarcadores Tumorais/genética , Antígeno Carcinoembrionário/sangue , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica/genética , Prognóstico , Regiões Promotoras Genéticas/genética , RNA Circular/genética , Transcrição Gênica , Vimentina/genéticaRESUMO
BACKGROUND: Metabolic reprogramming is a hallmark of cancer. However, the roles of long noncoding RNAs (lncRNAs) in cancer metabolism, especially glucose metabolism remain largely unknown. RESULTS: In this study, we identified and functionally characterized a novel metabolism-related lncRNA, LINC00930, which was upregulated and associated with tumorigenesis, lymphatic invasion, metastasis, and poor prognosis in nasopharyngeal carcinoma (NPC). Functionally, LINC00930 was required for increased glycolysis activity and cell proliferation in multiple NPC models in vitro and in vivo. Mechanistically, LINC00930 served as a scaffold to recruit the RBBP5 and GCN5 complex to the PFKFB3 promoter and increased H3K4 trimethylation and H3K9 acetylation levels in the PFKFB3 promoter region, which epigenetically transactivating PFKFB3, and thus promoting glycolytic flux and cell cycle progression. Clinically, targeting LINC00930 and PFKFB3 in combination with radiotherapy induced tumor regression. CONCLUSIONS: Collectively, LINC00930 is mechanistically, functionally and clinically oncogenic in NPC. Targeting LINC00930 and its pathway may be meaningful for treating patients with NPC.
Assuntos
Glicólise/genética , Neoplasias Nasofaríngeas/genética , Oncogenes/genética , Fosfofrutoquinase-2/metabolismo , RNA Longo não Codificante/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Neoplasias Nasofaríngeas/patologia , TransfecçãoRESUMO
KMT2 family methyltransferases methylate histone H3 lysine 4 and play essential roles in multiple cellular processes. MLL2 (KMT2B) is required for early epigenetic decisions during development and contributes to the methylation of bivalent promoters. Here, we determined the crystal structure of the MLL2SET-RBBP5AS-ABM-ASH2LSPRY complex and confirmed that RBBP5AS-ABM-ASH2LSPRY was essential for activating the MLL2 SET domain through a conserved mechanism across KMT2 family complexes. In the MLL2 complex structure, a short N-terminal loop of MLL2SET adopts a similar configuration of the H3 peptide and inserts into the substrate-binding pocket of another MLL2SET, indicating a potential substrate for MLL2SET. We identify that P53 contains a sequence similar to the N-terminal loop of MLL2SET, and demonstrate that K305 of P53 could be methylated by KMT2 family complexes except for SET1A. Our results provide an important implication of functional interplay between P53 and KMT2 family complexes, and also suggest the possible broad landscape of non-histone substrate for KMT2 family methyltransferases.
Assuntos
Proteínas de Ligação a DNA/química , Histona-Lisina N-Metiltransferase/metabolismo , Complexos Multiproteicos/química , Proteínas de Neoplasias/química , Proteína Supressora de Tumor p53/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/química , Histonas/química , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Complexos Multiproteicos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Domínios Proteicos , Especificidade por Substrato , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/químicaRESUMO
Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex. Here we discuss recent findings that try to elucidate the important question of how KMT2 complexes are recruited to specific sites on chromatin. This is embedded into short overviews of the biological functions of KMT2 complexes and the consequences of H3K4 methylation.
RESUMO
Tumors contain hostile inflammatory signals generated by aberrant proliferation, necrosis, and hypoxia. These signals are sensed and acted upon acutely by the Toll-like receptors (TLRs) to halt proliferation and activate an immune response. Despite the presence of TLR ligands within the microenvironment, tumors progress, and the mechanisms that permit this growth remain largely unknown. We report that self-renewing cancer stem cells (CSCs) in glioblastoma have low TLR4 expression that allows them to survive by disregarding inflammatory signals. Non-CSCs express high levels of TLR4 and respond to ligands. TLR4 signaling suppresses CSC properties by reducing retinoblastoma binding protein 5 (RBBP5), which is elevated in CSCs. RBBP5 activates core stem cell transcription factors, is necessary and sufficient for self-renewal, and is suppressed by TLR4 overexpression in CSCs. Our findings provide a mechanism through which CSCs persist in hostile environments because of an inability to respond to inflammatory signals.
Assuntos
Autorrenovação Celular/imunologia , Glioblastoma/imunologia , Glioblastoma/patologia , Evasão da Resposta Imune , Imunidade Inata , Células-Tronco Neoplásicas/patologia , Receptor 4 Toll-Like/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA , Feminino , Humanos , Camundongos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de SinaisRESUMO
EMT (epithelial-mesenchymal transition) occurs in a wide range of tumor types, and has been shown to be crucial for metastasis. Epigenetic modifications of histones contribute to chromatin structure and result in the alterations in gene expression. Tri-methylation of histone H3 lysine 4 (H3K4me3) is associated with the promoters of actively transcribed genes and can serve as a transcriptional on/off switch. RbBP5 is a component of the COMPASS/ -like complex, which catalyzes H3K4me3 formation. In this study, we found that in the process of TGF-Beta1 induced EMT in the prostate cancer cell line DU145, H3K4me3 enrichment and RbBP5 binding increased in the vicinity of Snail (SNAI1) transcription start site. Knocking-down of RbBP5 notably decreased Snail expression and EMT. Recruitment of RbBP5 and formation of H3K4me3 at Snail TSS during EMT depend on binding of SMAD2/3 and CBP at Snail TSS. This study links the SMAD2/3 signal with Snail transcription via a histone modification - H3K4me3. Furthermore, our research also demonstrates that RbBP5 and even WRAD may be a promising therapeutic candidates in treating prostate cancer metastasis, and that DU145 cells maintain their incomplete mesenchymal state in an auto/ paracrine manner.
Assuntos
Histonas/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/metabolismo , Fatores de Transcrição da Família Snail/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Epigênese Genética , Transição Epitelial-Mesenquimal/genética , Humanos , Masculino , Metilação , Proteínas Nucleares/genética , Fragmentos de Peptídeos/metabolismo , Neoplasias da Próstata/genética , Ligação Proteica , RNA Interferente Pequeno/genética , Sialoglicoproteínas/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Sítio de Iniciação de Transcrição , Fator de Crescimento Transformador beta/metabolismoRESUMO
DNA replication licensing occurs on chromatin, but how the chromatin template is regulated for replication remains mostly unclear. Here, we have analyzed the requirement of histone methyltransferases for a specific type of replication: the DNA re-replication induced by the downregulation of either Geminin, an inhibitor of replication licensing protein CDT1, or the CRL4CDT2 ubiquitin E3 ligase. We found that siRNA-mediated reduction of essential components of the MLL-WDR5-RBBP5 methyltransferase complexes including WDR5 or RBBP5, which transfer methyl groups to histone H3 at K4 (H3K4), suppressed DNA re-replication and chromosomal polyploidy. Reduction of WDR5/RBBP5 also prevented the activation of H2AX checkpoint caused by re-replication, but not by ultraviolet or X-ray irradiation; and the components of MLL complexes co-localized with the origin recognition complex (ORC) and MCM2-7 replicative helicase complexes at replication origins to control the levels of methylated H3K4. Downregulation of WDR5 or RBBP5 reduced the methylated H3K4 and suppressed the recruitment of MCM2-7 complexes onto replication origins. Our studies indicate that the MLL complexes and H3K4 methylation are required for DNA replication but not for DNA damage repair.
RESUMO
The mixed lineage leukemia-1 (MLL1) enzyme is a histone H3 lysine 4 (H3K4) monomethyltransferase and has served as a paradigm for understanding the mechanism of action of the human SET1 family of enzymes that include MLL1-MLL4 and SETd1a,b. Dimethylation of H3K4 requires a sub-complex including WRAD (WDR5, RbBP5, Ash2L, and DPY-30), which binds to each SET1 family member forming a minimal core complex that is required for multiple lysine methylation. We recently demonstrated that WRAD is a novel histone methyltransferase that preferentially catalyzes H3K4 dimethylation in a manner that is dependent on an unknown non-active-site surface from the MLL1 SET domain. Recent genome sequencing studies have identified a number of human disease-associated missense mutations that localize to the SET domains of several MLL family members. In this investigation, we mapped many of these mutations onto the three-dimensional structure of the SET domain and noticed that a subset of MLL2 (KMT2D, ALR, MLL4)-associated Kabuki syndrome missense mutations map to a common solvent-exposed surface that is not expected to alter enzymatic activity. We introduced these mutations into the MLL1 SET domain and observed that all are defective for H3K4 dimethylation by the MLL1 core complex, which is associated with a loss of the ability of MLL1 to interact with WRAD or with the RbBP5/Ash2L heterodimer. Our results suggest that amino acids from this surface, which we term the Kabuki interaction surface or KIS, are required for formation of a second active site within SET1 family core complexes.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Nucleares/metabolismo , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Histona-Lisina N-Metiltransferase , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/genética , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de ProteínasRESUMO
Post-translational modifications of histone proteins lie at the heart of the epigenetic landscape in the cell's nucleus and the precise regulation of gene expression. A myriad of studies have showed that several histone-modifying enzymes are controlled by modulatory protein partner subunits and other post-transcriptional modifications deposited in the vicinity of the targeted site. All together, these mechanisms create an intricate network of interactions that regulate enzymatic activities and ultimately control the site-specific deposition of covalent modifications. In this Point-of-View, we discuss our evolving understanding on the assembly and architecture of histone H3 Lys-4 (H3K4) methyltransferase COMPASS complexes and the techniques that progressively allowed us to better define the molecular basis of complex formation and function. We further briefly discuss some of the challenges lying ahead and additional approaches required to understand mechanistic details for the function of such complexes.