Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Neurocase ; 29(4): 113-116, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-38678308

RESUMO

Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is a rare and severe autoimmune encephalitis that displays neuropsychiatric symptoms and autonomic instability, e.g., hypoventilation and cardiac arrhythmia. Severe arrhythmia including asystole associated with this encephalitis is rare. Several causes have been suggested. Nevertheless, no report of the literature has described examination by functional brain imaging of a patient with asystole during anti-NMDA receptor encephalitis. This case is that of a 34-year-old woman diagnosed as having anti-NMDA receptor encephalitis. She repeatedly showed 10-20 s asystole episodes necessitating a temporary transvenous pacemaker. After resection of the bilateral ovarian cystic tumor, her symptoms improved. Regional cerebral blood flow (rCBF) was evaluated using single-photon emission computed tomography. The rCBF was increased in the amygdala, hypothalamus, anterior cingulate, hippocampus, and anterior temporal lobes, but decreased in the dorsolateral frontal lobes, parietal lobes, and occipital lobes. Findings in this case suggest that altered rCBF in the patient with asystole episodes associated with anti-NMDA receptor encephalitis was observed in several brain lesions. The rCBF increases in the central autonomic networks, i.e., the amygdala, hypothalamus, and anterior cingulate, might be associated with dysregulation of sympathetic and parasympathetic nervous systems leading to asystole.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Circulação Cerebrovascular , Parada Cardíaca , Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Feminino , Encefalite Antirreceptor de N-Metil-D-Aspartato/fisiopatologia , Encefalite Antirreceptor de N-Metil-D-Aspartato/complicações , Encefalite Antirreceptor de N-Metil-D-Aspartato/diagnóstico por imagem , Adulto , Parada Cardíaca/complicações , Parada Cardíaca/fisiopatologia , Parada Cardíaca/etiologia , Circulação Cerebrovascular/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia
2.
Neuroimage ; 237: 118144, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33991697

RESUMO

We used three dose levels (Sham, 2 mA, and 4 mA) and two different electrode montages (unihemispheric and bihemispheric) to examine DOSE and MONTAGE effects on regional cerebral blood flow (rCBF) as a surrogate marker of neural activity, and on a finger sequence task, as a surrogate behavioral measure drawing on brain regions targeted by transcranial direct current stimulation (tDCS). We placed the anodal electrode over the right motor region (C4) while the cathodal or return electrode was placed either over a left supraorbital region (unihemispheric montage) or over the left motor region (C3 in the bihemispheric montage). Performance changes in the finger sequence task for both hands (left hand: p = 0.0026, and right hand: p = 0.0002) showed a linear tDCS dose response but no montage effect. rCBF in the right hemispheric perirolandic area increased with dose under the anodal electrode (p = 0.027). In contrast, in the perirolandic ROI in the left hemisphere, rCBF showed a trend to increase with dose (p = 0.053) and a significant effect of montage (p = 0.00004). The bihemispheric montage showed additional rCBF increases in frontomesial regions in the 4mA condition but not in the 2 mA condition. Furthermore, we found strong correlations between simulated current density in the left and right perirolandic region and improvements in the finger sequence task performance (FSP) for the contralateral hand. Our data support not only a strong direct tDCS dose effect for rCBF and FSP as surrogate measures of targeted brain regions but also indirect effects on rCBF in functionally connected regions (e.g., frontomesial regions), particularly in the higher dose condition and on FSP of the ipsilateral hand (to the anodal electrode). At a higher dose and irrespective of polarity, a wider network of sensorimotor regions is positively affected by tDCS.


Assuntos
Circulação Cerebrovascular/fisiologia , Atividade Motora/fisiologia , Rede Nervosa/fisiologia , Córtex Sensório-Motor/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adulto , Feminino , Dedos , Humanos , Imageamento por Ressonância Magnética , Masculino , Marcadores de Spin , Estimulação Transcraniana por Corrente Contínua/métodos
3.
Brain Behav Immun ; 91: 257-266, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33069798

RESUMO

OBJECTIVE: Toll-like receptor-2 (TLR2), a member of TLR family, plays an important role in the induction and regulation of immune/inflammation. TLR2 gene knockout (TLR2KO) mice have been widely used for animal models of neurological diseases. Since there is close relationship between immune system and neurobehavioral functions, it is important to clarify the exact role of TLR2 defect itself in neurobehavioral functions. The present study aimed to investigate the effect of TLR2KO on neurobehavioral functions in mice and the mechanisms underlying the observed changes. METHODS: Male TLR2KO and wild type (WT) mice aged 3, 7, and 12 months were used for neurobehavioral testing and detection of protein expression by Western blot. Brain magnetic resonance imaging (MRI), electrophysiological recording, and Evans blue (EB) assay were applied to evaluate regional cerebral blood flow (rCBF), synaptic function, and blood-brain barrier (BBB) integrity in 12-month-old TLR2KO and age-matched WT mice. RESULTS: Compared to WT mice, TLR2KO mice showed decreased cognitive function and locomotor activity, as well as increased anxiety, which developed from middle age (before 7-month-old) to old age. In addition, significantly reduced regional cerebral blood flow (rCBF), inhibited long-term potentiation (LTP), and increased blood-brain barrier (BBB) permeability were observed in 12-month-old TLR2KO mice. Furthermore, compared with age-matched WT mice, significant reduction in protein levels of tight junction proteins (ZO-1, Occludin, and Claudin-5) and increased neurofilament protein (SMI32) were observed in 7 and 12-month-old TLR2KO mice, and that myelin basic protein (MBP) decreased in 12-month-old TLR2KO mice. CONCLUSION: Our data demonstrated that TLR2 defect resulted in significantly observable neurobehavioral dysfunctions in mice starting from middle age, as well as multiple abnormalities in brain structure, function, and molecular metabolism.


Assuntos
Barreira Hematoencefálica , Encéfalo , Animais , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
J Cell Mol Med ; 24(2): 1738-1749, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31863639

RESUMO

Glioblastoma is an aggressive brain tumour found in adults, and the therapeutic approaches available have not significantly increased patient survival. Recently, we discovered that ELTD1, an angiogenic biomarker, is highly expressed in human gliomas. Polyclonal anti-ELTD1 treatments were effective in glioma pre-clinical models, however, pAb binding is potentially promiscuous. Therefore, the aim of this study was to determine the effects of an optimized monoclonal anti-ELTD1 treatment in G55 xenograft glioma models. MRI was used to assess the effects of the treatments on animal survival, tumour volumes, perfusion rates and binding specificity. Immunohistochemistry and histology were conducted to confirm and characterize microvessel density and Notch1 levels, and to locate the molecular probes. RNA-sequencing was used to analyse the effects of the mAb treatment. Our monoclonal anti-ELTD1 treatment significantly increased animal survival, reduced tumour volumes, normalized the vasculature and showed higher binding specificity within the tumour compared with both control- and polyclonal-treated mice. Notch1 positivity staining and RNA-seq results suggested that ELTD1 has the ability to interact with and interrupt Notch1 signalling. Although little is known about ELTD1, particularly about its ligand and pathways, our data suggest that our monoclonal anti-ELTD1 antibody is a promising anti-angiogenic therapeutic in glioblastomas.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Receptores Acoplados a Proteínas G/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Anticorpos Monoclonais/farmacologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Galinhas , Glioblastoma/patologia , Humanos , Camundongos , Microvasos/efeitos dos fármacos , Microvasos/patologia , Receptores Notch/metabolismo , Carga Tumoral/efeitos dos fármacos
5.
Neurosurg Focus ; 46(2): E2, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717070

RESUMO

While the majority of cerebral revascularization advancements were made in the last century, it is worth noting the humble beginnings of vascular surgery throughout history to appreciate its progression and application to neurovascular pathology in the modern era. Nearly 5000 years of basic human inquiry into the vasculature and its role in neurological disease has resulted in the complex neurosurgical procedures used today to save and improve lives. This paper explores the story of the extracranial-intracranial approach to cerebral revascularization.


Assuntos
Revascularização Cerebral/história , Doenças do Sistema Nervoso/história , Procedimentos Neurocirúrgicos/história , Círculo Arterial do Cérebro/anatomia & histologia , Círculo Arterial do Cérebro/cirurgia , História do Século XIX , História do Século XX , História do Século XXI , História Antiga , História Medieval , Humanos , Doenças do Sistema Nervoso/cirurgia
6.
Neuroimage ; 177: 88-97, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29723641

RESUMO

Mapping the activity of the human mesolimbic dopamine system by BOLD-fMRI is a tempting approach to non-invasively study the action of the brain reward system during different experimental conditions. However, the contribution of dopamine release to the BOLD signal is disputed. To assign the actual contribution of dopaminergic and non-dopaminergic VTA neurons to the formation of BOLD responses in target regions of the mesolimbic system, we used two optogenetic approaches in rats. We either activated VTA dopaminergic neurons selectively, or dopaminergic and mainly glutamatergic projecting neurons together. We further used electrical stimulation to non-selectively activate neurons in the VTA. All three stimulation conditions effectively activated the mesolimbic dopaminergic system and triggered dopamine releases into the NAcc as measured by in vivo fast-scan cyclic voltammetry. Furthermore, both optogenetic stimulation paradigms led to indistinguishable self-stimulation behavior. In contrast to these similarities, however, the BOLD response pattern differed greatly between groups. In general, BOLD responses were weaker and sparser with increasing stimulation specificity for dopaminergic neurons. In addition, repetitive stimulation of the VTA caused a progressive decoupling of dopamine release and BOLD signal strength, and dopamine receptor antagonists were unable to block the BOLD signal elicited by VTA stimulation. To exclude that the sedation during fMRI is the cause of minimal mesolimbic BOLD in response to specific dopaminergic stimulation, we repeated our experiments using CBF SPECT in awake animals. Again, we found activations only for less-specific stimulation. Based on these results we conclude that canonical BOLD responses in the reward system represent mainly the activity of non-dopaminergic neurons. Thus, the minor effects of projecting dopaminergic neurons are concealed by non-dopaminergic activity, a finding which highlights the importance of a careful interpretation of reward-related human fMRI data.


Assuntos
Encéfalo/fisiologia , Dopamina/metabolismo , Imageamento por Ressonância Magnética/métodos , Neurônios/fisiologia , Acoplamento Neurovascular/fisiologia , Recompensa , Área Tegmentar Ventral/fisiologia , Animais , Comportamento Animal/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Antagonistas de Dopamina/farmacologia , Neurônios Dopaminérgicos/fisiologia , Estimulação Elétrica , Eletrodos Implantados , Vetores Genéticos , Neurônios/metabolismo , Optogenética , Ratos , Ratos Long-Evans , Ratos Transgênicos , Ratos Wistar , Autoestimulação/fisiologia , Técnicas Estereotáxicas , Tomografia Computadorizada de Emissão de Fóton Único , Área Tegmentar Ventral/diagnóstico por imagem , Área Tegmentar Ventral/metabolismo
7.
Cereb Cortex ; 27(3): 2175-2182, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27005989

RESUMO

Brain-derived neurotrophic factor (BDNF) is an important modulator of constitutive stress responses mediated by limbic frontotemporal circuits, and its gene contains a functional polymorphism (Val66Met) that may influence trait stress sensitivity. Reports of an association of this polymorphism with anxiety-related personality traits have been controversial and without clear neurophysiological support. We, therefore, determined the relationship between resting regional cerebral blood flow (rCBF) and a well-validated measure of anxiety-related personality, the TPQ Harm Avoidance (HA) scale, as a function of BDNF Val66Met genotype. Sixty-four healthy participants of European ancestry underwent resting H215O positron emission tomography scans. For each genotype group separately, we first determined the relationship between participants' HA scores and their resting rCBF values in each voxel across the entire brain, and then directly compared these HA-rCBF relationships between Val66Met genotype groups. HA-rCBF relationships differed between Val homozygotes and Met carriers in several regions relevant to stress regulation: subgenual cingulate, orbital frontal cortex, and the hippocampal/parahippocampal region. In each of these areas, the relationship was positive in Val homozygotes and negative in Met carriers. These data demonstrate a coupling between trait anxiety and basal resting blood flow in frontolimbic neurocircuitry that may be determined in part by genetically mediated BDNF signaling.


Assuntos
Ansiedade/genética , Ansiedade/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/genética , Encéfalo/fisiologia , Personalidade/genética , Personalidade/fisiologia , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Circulação Cerebrovascular/genética , Circulação Cerebrovascular/fisiologia , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Personalidade , Polimorfismo de Nucleotídeo Único , Tomografia por Emissão de Pósitrons , Descanso , População Branca/genética , Adulto Jovem
8.
Cell Physiol Biochem ; 41(4): 1403-1412, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28315868

RESUMO

OBJECTIVE: To identify the molecular mechanism of post-stroke depression (PSD), and observe the therapeutic effects of cerebellar fastigial nucleus electrical stimulation (FNS) on the behaviors and regional cerebral blood flow (rCBF) in a PSD rat model. METHODS: Healthy SD rats were randomly divided into four groups (sham, stroke, post-stroke depress and FNS group). Sham group (n = 6) underwent sham operation. The other three groups (n = 6*3) underwent MCAO. Rats were examined twice a week in open filed test. Moreover, neuroprotective effect on cerebellar Purkinje cells and expression of cytokines in hippocampal tissue were examined. RESULTS: The PSD group showed a significant weight loss, decreased consumption of sucrose water, reduced rearing and locomotor activities. The FNS significantly alleviates the body weight loss and sucrose preference, locomotor and rearing activities. The bilateral rCBF was also restored after FNS treatment. Moreover, FNS improved the neuroprotection via suppressing apoptosis of cerebellar Purkinje cells. And the inflammatory cytokines mRNA level in hippocampus was significantly decreased. CONCLUSION: FNS treatment alleviates depressive-like behaviors and rCBF in PSD rats model, which could be attributed to its ability to protect cerebellar Purkinje cells and decrease the mRNA level of inflammatory cytokines.


Assuntos
Comportamento Animal , Núcleos Cerebelares , Modelos Animais de Doenças , Terapia por Estimulação Elétrica , Acidente Vascular Cerebral , Animais , Núcleos Cerebelares/metabolismo , Núcleos Cerebelares/fisiopatologia , Citocinas/metabolismo , Depressão/etiologia , Depressão/metabolismo , Depressão/fisiopatologia , Depressão/terapia , Humanos , Células de Purkinje/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia
9.
J Neural Transm (Vienna) ; 124(9): 1109-1121, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28509077

RESUMO

The aim of this study was to examine brain hypoperfusion and its relationship with cognitive dysfunction in late-onset Alzheimer's disease (AD). Forty patients with late-onset AD and not receiving acetylcholinesterase inhibitors were recruited from outpatient clinics. We examined cognitive function using the Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog) and brain perfusion using single-photon emission computed tomography, and analyzed classified gyrus level segments with three-dimensional stereotactic surface projection and the stereotactic extraction estimation method level 3. ADAS-cog subscales were grouped into three domains: language, memory, and praxis. Patients with late-onset AD showed an apparent reduction in regional cerebral blood flow (rCBF) with a z score >1.5 in the frontal, temporal, and limbic lobes, with lesser reduction in the parietal and occipital lobes. Although hypoperfusion in the orbital, rectal, and subcallosal gyri of the frontal lobe was prominent, rCBF in the inferior frontal gyrus of the frontal lobe was significantly correlated with ADAS-cog total and language and praxis subscale scores. The parahippocampal gyrus of the limbic lobe was also significantly correlated with the ADAS-cog total, language, and praxis subscale scores. Additionally, the cingulate of the limbic lobe was significantly related with ADAS-cog memory. In spite of lesser hypoperfusion, the posterior cingulate gyrus of the limbic lobe was significantly related with ADAS-cog total, language, and memory subscale scores. Further, each subdivision of ADAS-cog was found to be related with various brain regions.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Circulação Cerebrovascular , Cognição , Disfunção Cognitiva/fisiopatologia , Tomografia Computadorizada de Emissão de Fóton Único , Idade de Início , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/psicologia , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Circulação Cerebrovascular/fisiologia , Cognição/fisiologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/epidemiologia , Feminino , Humanos , Imageamento Tridimensional , Masculino , Testes Neuropsicológicos , Fluxo Sanguíneo Regional
10.
Int J Mol Sci ; 18(8)2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28820467

RESUMO

The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics.


Assuntos
Aquaporina 4/metabolismo , Barreira Hematoencefálica/metabolismo , Hidrodinâmica , Acoplamento Neurovascular , Água/metabolismo , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Líquido Extracelular/metabolismo , Humanos , Sistema Linfático/metabolismo
11.
Front Neuroendocrinol ; 35(1): 8-30, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23994581

RESUMO

Estrogen is a fundamental regulator of the metabolic system of the female brain and body. Within the brain, estrogen regulates glucose transport, aerobic glycolysis, and mitochondrial function to generate ATP. In the body, estrogen protects against adiposity, insulin resistance, and type II diabetes, and regulates energy intake and expenditure. During menopause, decline in circulating estrogen is coincident with decline in brain bioenergetics and shift towards a metabolically compromised phenotype. Compensatory bioenergetic adaptations, or lack thereof, to estrogen loss could determine risk of late-onset Alzheimer's disease. Estrogen coordinates brain and body metabolism, such that peripheral metabolic state can indicate bioenergetic status of the brain. By generating biomarker profiles that encompass peripheral metabolic changes occurring with menopause, individual risk profiles for decreased brain bioenergetics and cognitive decline can be created. Biomarker profiles could identify women at risk while also serving as indicators of efficacy of hormone therapy or other preventative interventions.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Estrogênios/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Feminino , Humanos , Mitocôndrias/metabolismo , Receptores de Estrogênio/metabolismo
12.
Neuroimage ; 86: 194-202, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23959200

RESUMO

Flow refers to a positive, activity-associated, subjective experience under conditions of a perceived fit between skills and task demands. Using functional magnetic resonance perfusion imaging, we investigated the neural correlates of flow in a sample of 27 human subjects. Experimentally, in the flow condition participants worked on mental arithmetic tasks at challenging task difficulty which was automatically and continuously adjusted to individuals' skill level. Experimental settings of "boredom" and "overload" served as comparison conditions. The experience of flow was associated with relative increases in neural activity in the left anterior inferior frontal gyrus (IFG) and the left putamen. Relative decreases in neural activity were observed in the medial prefrontal cortex (MPFC) and the amygdala (AMY). Subjective ratings of the flow experience were significantly associated with changes in neural activity in the IFG, AMY, and, with trend towards significance, in the MPFC. We conclude that neural activity changes in these brain regions reflect psychological processes that map on the characteristic features of flow: coding of increased outcome probability (putamen), deeper sense of cognitive control (IFG), decreased self-referential processing (MPFC), and decreased negative arousal (AMY).


Assuntos
Nível de Alerta/fisiologia , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Cognição/fisiologia , Motivação/fisiologia , Resolução de Problemas/fisiologia , Análise e Desempenho de Tarefas , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Matemática , Adulto Jovem
13.
Neuroimage ; 85 Pt 1: 566-82, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23872158

RESUMO

Diffuse optical tomography (DOT) has been used by several groups to assess cerebral hemodynamics of cerebral ischemia in humans and animals. In this study, we combined DOT with an indocyanine green (ICG)-tracking method to achieve interleaved images of cerebral hemodynamics and blood flow index (BFI) using two middle cerebral artery occlusion (MCAO) rat models. To achieve volumetric images with high-spatial resolution, we first integrated a depth compensation algorithm (DCA) with a volumetric mesh-based rat head model to generate three-dimensional (3D) DOT on a rat brain atlas. Then, the experimental DOT data from two rat models were collected using interleaved strategy for cerebral hemodynamics and BFI during and after ischemic stroke, with and without a thrombolytic therapy for the embolic MCAO model. The acquired animal data were further analyzed using the integrated rat-atlas-guided DOT method to form time-evolving 3D images of both cerebral hemodynamics and BFI. In particular, we were able to show and identify therapeutic outcomes of a thrombolytic treatment applied to the embolism-induced ischemic model. This paper demonstrates that volumetric DOT is capable of providing high-quality, interleaved images of cerebral hemodynamics and blood perfusion in small animals during and after ischemic stroke, with excellent 3D visualization and quantifications.


Assuntos
Isquemia Encefálica/patologia , Isquemia Encefálica/terapia , Encéfalo/patologia , Circulação Cerebrovascular/fisiologia , Neuroimagem Funcional/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia , Tomografia Óptica/métodos , Algoritmos , Animais , Atlas como Assunto , Corantes , Interpretação Estatística de Dados , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador , Verde de Indocianina , Embolia Intracraniana/complicações , Masculino , Ratos , Ratos Sprague-Dawley
14.
Arch Phys Med Rehabil ; 95(2): 283-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24035769

RESUMO

OBJECTIVE: To assess the efficacy of transcranial direct current stimulation (tDCS) on improving consciousness in patients with persistent unresponsive wakefulness syndrome (UWS) (previously termed persistent vegetative state [PVS]) or in a minimally conscious state (MCS). DESIGN: Prospective, case series trial with follow-up at 12 months. SETTING: General and research hospital. PARTICIPANTS: Inpatients in a PVS/UWS or MCS (N=10; 7 men, 3 women; age range, 19-62y; etiology: traumatic brain injury, n=5; anoxia, n=4; postoperative infarct, n=1; duration of PVS/UWS or MCS range, 6mo-10y). No participant withdrew because of adverse effects. INTERVENTION: All patients received sham tDCS for 20 minutes per day, 5 days per week, for 1 week, and real tDCS for 20 minutes per day, 5 days per week, for 2 weeks. An anodal electrode was placed over the left primary sensorimotor cortex or the left dorsolateral prefrontal cortex, with cathodal stimulation over the right eyebrow. One patient in an MCS received a second round of 10 tDCS sessions 3 months after initial participation. MAIN OUTCOME MEASURE: JFK Coma Recovery Scale-Revised. RESULTS: All patients in an MCS showed clinical improvement immediately after treatment. The patient who received a second round of tDCS 3 months after initial participation showed further improvement and emergence into consciousness after stimulation, with no change between treatments. One patient who was in an MCS for <1 year before treatment (postoperative infarct) showed further improvement and emergence into consciousness at 12-month follow-up. No patient showed improvement before stimulation. No patient in a PVS/UWS showed immediate improvement after stimulation, but 1 patient who was in a PVS/UWS for 6 years before treatment showed improvement and change of status to an MCS at 12-month follow-up. CONCLUSIONS: tDCS seems promising for the rehabilitation of patients with severe disorders of consciousness. Severity and duration of pathology may be related to the degree of tDCS' beneficial effects.


Assuntos
Estimulação Encefálica Profunda/métodos , Estado Vegetativo Persistente/reabilitação , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Recuperação de Função Fisiológica , Resultado do Tratamento
15.
Neuroradiol J ; 37(4): 462-467, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38528780

RESUMO

BACKGROUND: Collateral status (CS) is an important biomarker of functional outcomes in patients with acute ischemic stroke secondary to large vessel occlusion (AIS-LVO). Pretreatment CT perfusion (CTP) parameters serve as reliable surrogates of collateral status (CS). In this study, we aim to assess the relationship between the relative cerebral blood flow less than 38% (rCBF <38%), with the reference standard American Society of Interventional and Therapeutic Neuroradiology (ASITN) collateral score (CS) on DSA. METHODS: In this prospectively collected, retrospectively reviewed analysis, inclusion criteria were as follows: (a) CT angiography (CTA) confirmed anterior circulation large vessel occlusion from 9/1/2017 to 10/01/2023; (b) diagnostic CT perfusion; and (c) underwent mechanical thrombectomy with documented ASITN CS. The ratios of the CTP-derived CBF values were calculated by dividing the values of the ischemic lesion by the corresponding values of the contralateral normal region (which were defined as rCBF). Spearman's rank correlation and logistic regression analysis were performed to determine the relationship of rCBF <38% lesion volume with DSA ASITN CS. p ≤ .05 was considered significant. RESULTS: In total, 223 patients [mean age: 67.77 ± 15.76 years, 56.1% (n = 125) female] met our inclusion criteria. Significant negative correlation was noted between rCBF <38% volume and DSA CS (ρ = -0.37, p < .001). On multivariate logistic regression analysis, rCBF <38% volume was found to be independently associated with worse ASITN CS (unadjusted OR: 3.03, 95% CI: 1.60-5.69, p < .001, and adjusted OR: 2.73, 95% CI: 1.34-5.50, p < .01). CONCLUSION: Greater volume of tissue with rCBF <38% is independently associated with better DSA CS. rCBF <38% is a useful adjunct tool in collateralization-based prognostication. Future studies are needed to expand our understanding of the role of rCBF <38% within the decision-making in patients with AIS-LVO.


Assuntos
Angiografia Digital , Circulação Cerebrovascular , Circulação Colateral , Angiografia por Tomografia Computadorizada , Humanos , Feminino , Masculino , Angiografia Digital/métodos , Circulação Colateral/fisiologia , Idoso , Estudos Retrospectivos , Circulação Cerebrovascular/fisiologia , Angiografia por Tomografia Computadorizada/métodos , Pessoa de Meia-Idade , AVC Isquêmico/diagnóstico por imagem , Angiografia Cerebral/métodos , Idoso de 80 Anos ou mais
16.
Cureus ; 16(4): e58263, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38752030

RESUMO

Cotard's syndrome is a rare clinical condition characterized by the presence of nihilistic delusions, delusions of immortality, depressive mood, and anxiety. Longitudinal changes in regional cerebral blood flow (rCBF) obtained under different conditions with and without Cotard's syndrome have rarely been reported in the literature. We report a case of a patient with Cotard's syndrome in whom longitudinal rCBF was assessed using single-photon emission computed tomography (SPECT). The patient was a 52-year-old man suffering from schizophrenia and mild mental retardation. He was transported to our hospital because of lumbar fractures caused by a suicidal attempt. In the second week after admission, he displayed Cotard's syndrome, i.e., nihilistic delusions, suicidal thoughts, and depressive mood. SPECT with 99mTc-ethyl cysteinate dimer was performed, and the rCBF increased in the bilateral prefrontal cortex but decreased in the occipital and parietal lobes. He was treated with pharmacotherapy mainly using lurasidone, and his Cotard's symptoms disappeared. SPECT was performed again. The increased rCBF in the bilateral prefrontal cortex and the decreased rCBF in the right occipital and parietal lobes were improved. The present case suggests that increased rCBF in the prefrontal cortex and decreased rCBF in the right occipital and parietal lobes are associated with the development of Cotard's syndrome.

17.
Front Psychiatry ; 15: 1330745, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333894

RESUMO

Recoverin is a neuron-specific calcium-binding protein that is mainly located in the retina and pineal gland. Few reports have described patients with anti-recoverin antibody-positive encephalitis, and no cases of psychosis associated with this encephalitis have been reported. We report a patient with anti-recoverin antibody-positive encephalitis with Cotard and Capgras delusions who was successfully treated with electroconvulsive therapy (ECT). The patient was a 25-year-old woman. She exhibited disorientation, executive function deficits, tremors in the upper limbs, generalized athetoid-like involuntary movements, hallucinations, incontinence, and fever, which led to her admission to our hospital. Upon admission, she complained of Cotard delusions. Various diagnostic tests, including cerebrospinal fluid analysis, antibody screening, and brain imaging, were unremarkable, except for positivity for serum anti-recoverin antibodies, non-specific general slowing on electroencephalography and decreased regional cerebral blood flow (rCBF) in the frontal and occipital lobes, and increased rCBF in the basal ganglia and pons on single-photon emission computed tomography. She was eventually diagnosed with encephalitis positive for anti-recoverin antibodies and treated with immunoglobulins and steroids. Her neurological symptoms improved temporarily, but three months later, psychiatric symptoms, i.e., suicidal thoughts and Cotard and Capgras delusions, were exaggerated. After ECT, her condition significantly improved. In conclusion, the present report suggests that pineal gland dysfunction due to anti-recoverin antibody or its cross-reactivity with neuron-specific calcium-binding proteins may contribute to the neuropsychiatric symptoms observed in anti-recoverin antibody-positive encephalitis and that ECT can be a viable treatment option if immunotherapy proves ineffective. Additionally, decreased rCBF in the prefrontal cortex may be associated with the clinical features of Capgras and Cotard delusions.

18.
J Neuroimaging ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223766

RESUMO

BACKGROUND AND PURPOSE: Ischemic strokes due to isolated posterior cerebral artery (PCA) occlusions represent 5% of all strokes but have significant impacts on patients' quality of life, primarily due to visual deficits and thalamic involvement. Current guidelines for acute PCA occlusion management are sparse, and the prognostic value of perfusion imaging parameters remains underexplored. METHODS: We conducted a retrospective analysis of 32 patients with isolated PCA occlusions treated at Johns Hopkins Medical Institutions between January 2017 and March 2023. Patients underwent pretreatment perfusion imaging, with perfusion parameters analyzed using RAPID software. The primary outcome was short-term clinical outcome as measured by the National Institutes of Health Stroke Scale (NIHSS) at discharge. RESULTS: The median age of the cohort was 70 years, with 34% female and 66% male. Significant correlations were found between NIHSS at discharge and various perfusion parameters, including time-to-maximum (Tmax) >6 seconds (ρ = .55, p = .004), Tmax >8 seconds (ρ = .59, p = .002), Tmax >10 seconds (ρ = .6, p = .001), mismatch volume (ρ = .51, p = .008), and cerebral blood volume (CBV) < 34% (ρ = .59, p = .002). CONCLUSIONS: Tmax and CBV volumes significantly correlated with discharge NIHSS with marginal superiority of Tmax >10 seconds and CBV <42% volumes. These findings suggest that CT and MR perfusion imaging can play a crucial role in the acute management of PCA strokes, though larger, standardized studies are needed to validate these results and refine imaging thresholds specific to posterior circulation infarcts.

19.
Asia Ocean J Nucl Med Biol ; 12(2): 120-130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050240

RESUMO

Objectives: A simple noninvasive microsphere (SIMS) method using 123I-IMP and an improved brain uptake ratio (IBUR) method using 99mTc-ECD for the quantitative measurement of regional cerebral blood flow have been recently reported. The input functions of these methods were determined using the administered dose, which was obtained by analyzing the time activity curve of the pulmonary artery (PA) for SIMS and the ascending aorta (AAo) for the IBUR methods for dynamic chest images. If the PA and AAo regions of interest (ROIs) can be determined using deep convolutional neural networks (DCNN) for segmentation, the accuracy of these ROI-setting methods can be improved through simple analytical operations to ensure repeatability and reproducibility. The purpose of this study was to develop new PA and AAo-ROI setting methods using a DCNN (DCNN-ROI method). Methods: A U-Net architecture based on convolutional neural networks was used to determine the PA and AAo candidate regions. Images of 290 patients who underwent 123I-IMP RI-angiography and 108 patients who underwent 99mTc-ECD RI-angiography were used. The PA and AAo-ROI results for the DCNN-ROI method were compared to those obtained using manual methods. The counts for the input function on the PA and AAo-ROI were determined by integrating the area under the curve (AUC) counts of the time-activity curve of PA and AAo-ROI, respectively. The effectiveness of the DCNN-ROI method was elucidated through a comparison with the integrated AUC counts of the DCNN-ROI and the manual ROI. Results: The coincidence ratio for the locations of the PA and AAo-ROI obtained using the DCNN method and that for the manual method was 100%. Strong correlations were observed between the AUC counts using the DCNN and manual methods. Conclusion: New ROI- setting programs were developed using a deep convolution neural network DCNN to determine the input functions for the SIMS and IBUR methods. The accuracy of these methods is comparable to that of the manual method.

20.
Front Radiol ; 4: 1307586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445104

RESUMO

Relative cerebral blood volume (rCBV) derived from dynamic susceptibility contrast (DSC) perfusion MR imaging (pMRI) has been shown to be a robust marker of neuroradiological tumor burden. Recent consensus recommendations in pMRI acquisition strategies have provided a pathway for pMRI inclusion in diverse patient care centers, regardless of size or experience. However, even with proper implementation and execution of the DSC-MRI protocol, issues will arise that many centers may not easily recognize or be aware of. Furthermore, missed pMRI issues are not always apparent in the resulting rCBV images, potentiating inaccurate or missed radiological diagnoses. Therefore, we gathered from our database of DSC-MRI datasets, true-to-life examples showcasing the breakdowns in acquisition, postprocessing, and interpretation, along with appropriate mitigation strategies when possible. The pMRI issues addressed include those related to image acquisition and postprocessing with a focus on contrast agent administration, timing, and rate, signal-to-noise quality, and susceptibility artifact. The goal of this work is to provide guidance to minimize and recognize pMRI issues to ensure that only quality data is interpreted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA