Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.530
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 82(7): 1372-1382.e4, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35240057

RESUMO

Fundamental aspects of DNA replication, such as the anatomy of replication stall sites, how replisomes are influenced by gene transcription, and whether the progression of sister replisomes is coordinated, are poorly understood. Available techniques do not allow the precise mapping of the positions of individual replisomes on chromatin. We have developed a method called Replicon-seq that entails the excision of full-length replicons by controlled nuclease cleavage at replication forks. Replicons are sequenced using Nanopore, which provides a single-molecule readout of long DNA. Using Replicon-seq, we found that sister replisomes function autonomously and yet progress through chromatin with remarkable consistency. Replication forks that encounter obstacles pause for a short duration but rapidly resume synthesis. The helicase Rrm3 plays a critical role both in mitigating the effect of protein barriers and with facilitating efficient termination. Replicon-seq provides a high-resolution means of defining how individual replisomes move across the genome.


Assuntos
DNA Helicases , Replicação do DNA , Cromatina/genética , Cromossomos/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo
2.
Mol Cell ; 82(20): 3826-3839.e9, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36113481

RESUMO

Ribosomal RNAs (rRNAs) are the most abundant cellular RNAs, and their synthesis from rDNA repeats by RNA polymerase I accounts for the bulk of all transcription. Despite substantial variation in rRNA transcription rates across cell types, little is known about cell-type-specific factors that bind rDNA and regulate rRNA transcription to meet tissue-specific needs. Using hematopoiesis as a model system, we mapped about 2,200 ChIP-seq datasets for 250 transcription factors (TFs) and chromatin proteins to human and mouse rDNA and identified robust binding of multiple TF families to canonical TF motifs on rDNA. Using a 47S-FISH-Flow assay developed for nascent rRNA quantification, we demonstrated that targeted degradation of C/EBP alpha (CEBPA), a critical hematopoietic TF with conserved rDNA binding, caused rapid reduction in rRNA transcription due to reduced RNA Pol I occupancy. Our work identifies numerous potential rRNA regulators and provides a template for dissection of TF roles in rRNA transcription.


Assuntos
RNA Polimerase I , Fatores de Transcrição , Humanos , Camundongos , Animais , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , RNA Ribossômico/genética , Transcrição Gênica , DNA Ribossômico/genética , RNA , Cromatina
3.
Genes Dev ; 35(7-8): 483-488, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33664058

RESUMO

It is unknown how ribosomal gene (rDNA) arrays from multiple chromosomal nucleolar organizers (NORs) partition within human nucleoli. Exploration of this paradigm for chromosomal organization is complicated by the shared DNA sequence composition of five NOR-bearing acrocentric chromosome p-arms. Here, we devise a methodology for genetic manipulation of individual NORs. Efficient "scarless" genome editing of rDNA repeats is achieved on "poised" human NORs held within monochromosomal cell hybrids. Subsequent transfer to human cells introduces "active" NORs yielding readily discernible functional customized ribosomes. We reveal that ribosome biogenesis occurs entirely within constrained territories, tethered to individual NORs inside a larger nucleolus.


Assuntos
Nucléolo Celular/metabolismo , Região Organizadora do Nucléolo/genética , Região Organizadora do Nucléolo/metabolismo , Ribossomos/metabolismo , Sequência de Bases , Linhagem Celular , Nucléolo Celular/genética , Cromossomos/metabolismo , Edição de Genes , Humanos , Ribossomos/genética
4.
Mol Cell ; 79(3): 488-503.e11, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32585128

RESUMO

Transcription elongation rates influence RNA processing, but sequence-specific regulation is poorly understood. We addressed this in vivo, analyzing RNAPI in S. cerevisiae. Mapping RNAPI by Miller chromatin spreads or UV crosslinking revealed 5' enrichment and strikingly uneven local polymerase occupancy along the rDNA, indicating substantial variation in transcription speed. Two features of the nascent transcript correlated with RNAPI distribution: folding energy and GC content in the transcription bubble. In vitro experiments confirmed that strong RNA structures close to the polymerase promote forward translocation and limit backtracking, whereas high GC in the transcription bubble slows elongation. A mathematical model for RNAPI elongation confirmed the importance of nascent RNA folding in transcription. RNAPI from S. pombe was similarly sensitive to transcript folding, as were S. cerevisiae RNAPII and RNAPIII. For RNAPII, unstructured RNA, which favors slowed elongation, was associated with faster cotranscriptional splicing and proximal splice site use, indicating regulatory significance for transcript folding.


Assuntos
RNA Polimerase III/genética , RNA Polimerase II/genética , RNA Polimerase I/genética , RNA Fúngico/química , Saccharomyces cerevisiae/genética , Elongação da Transcrição Genética , Composição de Bases , Sequência de Bases , Sítios de Ligação , Cromatina/química , Cromatina/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Regulação Fúngica da Expressão Gênica , Ligação Proteica , Dobramento de RNA , RNA Polimerase I/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase III/metabolismo , Sítios de Splice de RNA , Splicing de RNA , RNA Fúngico/genética , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Termodinâmica
5.
Trends Genet ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39089934

RESUMO

The recent discovery of an association between ribosomal DNA (rDNA) copy number and body mass index (BMI) by Law et al. sheds light on a possible role of 45S rDNA in body-weight regulation. This finding opens new avenues for further investigations into the effect of rDNA on various human phenotypes.

6.
Mol Cell ; 73(4): 645-654.e13, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30612878

RESUMO

Ribosome is the most abundant RNA-protein complex in a cell, and many copies of the ribosomal RNA gene (rDNA) have to be maintained. However, arrays of tandemly repeated rDNA genes can lose the copies by intra-repeat recombination. Loss of the rDNA copies of Saccharomyces cerevisiae is counteracted by gene amplification whereby the number of rDNA repeats stabilizes around 150 copies, suggesting the presence of a monitoring mechanism that counts and adjusts the number. Here, we report that, in response to rDNA copy loss, the upstream activating factor (UAF) for RNA polymerase I that transcribes the rDNA is released and directly binds to a RNA polymerase II-transcribed gene, SIR2, whose gene products silence rDNA recombination, to repress. We show that the amount of UAF determines the rDNA copy number that is stably maintained. UAF ensures rDNA production not only by rDNA transcription activation but also by its copy-number maintenance.


Assuntos
Variações do Número de Cópias de DNA , Dosagem de Genes , RNA Polimerase I/metabolismo , RNA Fúngico/genética , RNA Ribossômico/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase I/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo , Fatores de Transcrição/genética
7.
Mol Cell ; 75(2): 238-251.e5, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348879

RESUMO

BRCT domains support myriad protein-protein interactions involved in genome maintenance. Although di-BRCT recognition of phospho-proteins is well known to support the genotoxic response, whether multi-BRCT domains can acquire distinct structures and functions is unclear. Here we present the tetra-BRCT structures from the conserved yeast protein Rtt107 in free and ligand-bound forms. The four BRCT repeats fold into a tetrahedral structure that recognizes unmodified ligands using a bi-partite mechanism, suggesting repeat origami enabling function acquisition. Functional studies show that Rtt107 binding of partner proteins of diverse activities promotes genome replication and stability in both distinct and concerted manners. A unified theme is that tetra- and di-BRCT domains of Rtt107 collaborate to recruit partner proteins to chromatin. Our work thus illustrates how a master regulator uses two types of BRCT domains to recognize distinct genome factors and direct them to chromatin for constitutive genome protection.


Assuntos
Instabilidade Genômica/genética , Proteínas Nucleares/ultraestrutura , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/genética , Cromatina/genética , Dano ao DNA/genética , Ligantes , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Domínios Proteicos/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
8.
Mol Cell ; 75(6): 1270-1285.e14, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31351877

RESUMO

PARP inhibitors (PARPi) prevent cancer cell growth by inducing synthetic lethality with DNA repair defects (e.g., in BRCA1/2 mutant cells). We have identified an alternative pathway for PARPi-mediated growth control in BRCA1/2-intact breast cancer cells involving rDNA transcription and ribosome biogenesis. PARP-1 binds to snoRNAs, which stimulate PARP-1 catalytic activity in the nucleolus independent of DNA damage. Activated PARP-1 ADP-ribosylates DDX21, an RNA helicase that localizes to nucleoli and promotes rDNA transcription when ADP-ribosylated. Treatment with PARPi or mutation of the ADP-ribosylation sites reduces DDX21 nucleolar localization, rDNA transcription, ribosome biogenesis, protein translation, and cell growth. The salient features of this pathway are evident in xenografts in mice and human breast cancer patient samples. Elevated levels of PARP-1 and nucleolar DDX21 are associated with cancer-related outcomes. Our studies provide a mechanistic rationale for efficacy of PARPi in cancer cells lacking defects in DNA repair whose growth is inhibited by PARPi.


Assuntos
Neoplasias da Mama/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas de Neoplasias/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , RNA Neoplásico/metabolismo , RNA Nucleolar Pequeno/metabolismo , Ribossomos/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , RNA Helicases DEAD-box/genética , Reparo do DNA , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/genética , Poli(ADP-Ribose) Polimerase-1/genética , RNA Neoplásico/genética , RNA Nucleolar Pequeno/genética , Ribossomos/genética
9.
Genes Dev ; 33(5-6): 276-281, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30804226

RESUMO

Formation of individualized sister chromatids is essential for their accurate segregation. In budding yeast, while most of the genome segregates at the metaphase to anaphase transition, resolution of the ribosomal DNA (rDNA) repeats is delayed. The timing and mechanism in human cells is unknown. Here we show that resolution of human rDNA occurs in anaphase after the bulk of the genome, dependent on tankyrase 1, condensin II, and topoisomerase IIα. Defective resolution leads to rDNA bridges, rDNA damage, and aneuploidy of an rDNA-containing acrocentric chromosome. Thus, temporal regulation of rDNA segregation is conserved between yeast and man and is essential for genome integrity.


Assuntos
Adenosina Trifosfatases/metabolismo , Anáfase/fisiologia , DNA Topoisomerases Tipo II/metabolismo , DNA Ribossômico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Tanquirases/metabolismo , Aneuploidia , Segregação de Cromossomos , Dano ao DNA/genética , DNA Ribossômico/genética , Humanos , Saccharomyces cerevisiae/genética
10.
Semin Cell Dev Biol ; 159-160: 1-9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38244478

RESUMO

The ribosomal DNA locus (rDNA) is central for the functioning of cells because it encodes ribosomal RNAs, key components of ribosomes, and also because of its links to fundamental metabolic processes, with significant impact on genome integrity and aging. The repetitive nature of the rDNA gene units forces the locus to maintain sequence homogeneity through recombination processes that are closely related to genomic stability. The co-presence of basic DNA transactions, such as replication, transcription by major RNA polymerases, and recombination, in a defined and restricted area of the genome is of particular relevance as it affects the stability of the rDNA locus by both direct and indirect mechanisms. This condition is well exemplified by the rDNA of Saccharomyces cerevisiae. In this review we summarize essential knowledge on how the complexity and overlap of different processes contribute to the control of rDNA and genomic stability in this model organism.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Instabilidade Genômica/genética , Replicação do DNA/genética
11.
Development ; 150(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37278344

RESUMO

The placenta is essential for reproductive success. The murine placenta includes polyploid giant cells that are crucial for its function. Polyploidy occurs broadly in nature but its regulators and significance in the placenta are unknown. We have discovered that many murine placental cell types are polyploid and have identified factors that license polyploidy using single-cell RNA sequencing. Myc is a key regulator of polyploidy and placental development, and is required for multiple rounds of DNA replication, likely via endocycles, in trophoblast giant cells. Furthermore, MYC supports the expression of DNA replication and nucleotide biosynthesis genes along with ribosomal RNA. Increased DNA damage and senescence occur in trophoblast giant cells without Myc, accompanied by senescence in the neighboring maternal decidua. These data reveal Myc is essential for polyploidy to support normal placental development, thereby preventing premature senescence. Our study, combined with available literature, suggests that Myc is an evolutionarily conserved regulator of polyploidy.


Assuntos
Placenta , Trofoblastos , Animais , Feminino , Camundongos , Gravidez , Placenta/metabolismo , Placentação , Poliploidia , Trofoblastos/metabolismo
12.
Mol Cell ; 72(3): 583-593.e4, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30293780

RESUMO

Copy-number changes generate phenotypic variability in health and disease. Whether organisms protect against copy-number changes is largely unknown. Here, we show that Saccharomyces cerevisiae monitors the copy number of its ribosomal DNA (rDNA) and rapidly responds to copy-number loss with the clonal amplification of extrachromosomal rDNA circles (ERCs) from chromosomal repeats. ERC formation is replicative, separable from repeat loss, and reaches a dynamic steady state that responds to the addition of exogenous rDNA copies. ERC levels are also modulated by RNAPI activity and diet, suggesting that rDNA copy number is calibrated against the cellular demand for rRNA. Last, we show that ERCs reinsert into the genome in a dosage-dependent manner, indicating that they provide a reservoir for ultimately increasing rDNA array length. Our results reveal a DNA-based mechanism for rapidly restoring copy number in response to catastrophic gene loss that shares fundamental features with unscheduled copy-number amplifications in cancer cells.


Assuntos
Variações do Número de Cópias de DNA/fisiologia , DNA Circular/fisiologia , DNA Ribossômico/fisiologia , Variações do Número de Cópias de DNA/genética , Replicação do DNA/fisiologia , DNA Circular/genética , DNA Circular/metabolismo , DNA Ribossômico/genética , Proteínas de Ligação a DNA/fisiologia , Genômica , RNA Ribossômico/genética , Recombinação Genética/genética , Ribossomos/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
Proc Natl Acad Sci U S A ; 120(9): e2219126120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36821584

RESUMO

The nucleolus is the most prominent membraneless compartment within the nucleus-dedicated to the metabolism of ribosomal RNA. Nucleoli are composed of hundreds of ribosomal DNA (rDNA) repeated genes that form large chromosomal clusters, whose high recombination rates can cause nucleolar dysfunction and promote genome instability. Intriguingly, the evolving architecture of eukaryotic genomes appears to have favored two strategic rDNA locations-where a single locus per chromosome is situated either near the centromere (CEN) or the telomere. Here, we deployed an innovative genome engineering approach to cut and paste to an ectopic chromosomal location-the ~1.5 mega-base rDNA locus in a single step using CRISPR technology. This "megablock" rDNA engineering was performed in a fused-karyotype strain of Saccharomyces cerevisiae. The strategic repositioning of this locus within the megachromosome allowed experimentally mimicking and monitoring the outcome of an rDNA migratory event, in which twin rDNA loci coexist on the same chromosomal arm. We showed that the twin-rDNA yeast readily adapts, exhibiting wild-type growth and maintaining rRNA homeostasis, and that the twin loci form a single nucleolus throughout the cell cycle. Unexpectedly, the size of each rDNA array appears to depend on its position relative to the CEN, in that the locus that is CEN-distal undergoes size reduction at a higher frequency compared to the CEN-proximal counterpart. Finally, we provided molecular evidence supporting a mechanism called paralogous cis-rDNA interference, which potentially explains why placing two identical repeated arrays on the same chromosome may negatively affect their function and structural stability.


Assuntos
Nucléolo Celular , Telômero , DNA Ribossômico/genética , Nucléolo Celular/metabolismo , Telômero/metabolismo , Ciclo Celular , Saccharomyces cerevisiae/metabolismo , RNA Ribossômico/metabolismo
14.
Proc Natl Acad Sci U S A ; 120(47): e2314440120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37967216

RESUMO

Ribosomal DNA (rDNA) encodes ribosomal RNA and exists as tandem repeats of hundreds of copies in the eukaryotic genome to meet the high demand of ribosome biogenesis. Tandemly repeated DNA elements are inherently unstable; thus, mechanisms must exist to maintain rDNA copy number (CN), in particular in the germline that continues through generations. A phenomenon called rDNA magnification was discovered over 50 y ago in Drosophila as a process that recovers the rDNA CN on chromosomes that harbor minimal CN. Our recent studies indicated that rDNA magnification is the mechanism to maintain rDNA CN under physiological conditions to counteract spontaneous CN loss that occurs during aging. Our previous studies that explored the mechanism of rDNA magnification implied that asymmetric division of germline stem cells (GSCs) may be particularly suited to achieve rDNA magnification. However, it remains elusive whether GSCs are the unique cell type that undergoes rDNA magnification or differentiating germ cells are also capable of magnification. In this study, we provide empirical evidence that suggests that rDNA magnification operates uniquely in GSCs, but not in differentiating germ cells. We further provide computer simulation that suggests that rDNA magnification is only achievable through asymmetric GSC divisions. We propose that despite known plasticity and transcriptomic similarity between GSCs and differentiating germ cells, GSCs' unique ability to divide asymmetrically serves a critical role of maintaining rDNA CN through generations, supporting germline immortality.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Simulação por Computador , Drosophila/genética , Drosophila/metabolismo , Células Germinativas/metabolismo , Células-Tronco/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
15.
Genes Dev ; 32(15-16): 1075-1084, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30042134

RESUMO

Budding yeast cells produce a finite number of daughter cells before they die. Why old yeast cells stop dividing and die is unclear. We found that age-induced accumulation of the G1/S-phase inhibitor Whi5 and defects in G1/S cyclin transcription cause cell cycle delays and genomic instability that result in cell death. We further identified extrachromosomal rDNA (ribosomal DNA) circles (ERCs) to cause the G1/S cyclin expression defect in old cells. Spontaneous segregation of Whi5 and ERCs into daughter cells rejuvenates old mothers, but daughters that inherit these aging factors die rapidly. Our results identify deregulation of the G1/S-phase transition as the proximal cause of age-induced proliferation decline and cell death in budding yeast.


Assuntos
Pontos de Checagem da Fase G1 do Ciclo Celular , Aneuploidia , Divisão Celular , Ciclina G1/genética , Ciclina G1/metabolismo , Dano ao DNA , DNA Ribossômico/química , Proteínas Fúngicas/metabolismo , Expressão Gênica , Saccharomycetales/citologia , Saccharomycetales/genética , Saccharomycetales/metabolismo , Transcrição Gênica
16.
Semin Cell Dev Biol ; 136: 38-48, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35595601

RESUMO

The ribosomal DNA (rDNA) in Drosophila is found as two additive clusters of individual 35 S cistrons. The multiplicity of rDNA is essential to assure proper translational demands, but the nature of the tandem arrays expose them to copy number variation within and between populations. Here, we discuss means by which a cell responds to insufficient rDNA copy number, including a historical view of rDNA magnification whose mechanism was inferred some 35 years ago. Recent work has revealed that multiple conditions may also result in rDNA loss, in response to which rDNA magnification may have evolved. We discuss potential models for the mechanism of magnification, and evaluate possible consequences of rDNA copy number variation.


Assuntos
Variações do Número de Cópias de DNA , Drosophila melanogaster , Animais , DNA Ribossômico/genética , Variações do Número de Cópias de DNA/genética , Drosophila melanogaster/genética , Drosophila/genética , Ribossomos
17.
J Biol Chem ; 300(5): 107273, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588806

RESUMO

The stability of ribosomal DNA (rDNA) is maintained through transcriptional silencing by the NAD+-dependent histone deacetylase Sir2 in Saccharomyces cerevisiae. Alongside proteostasis, rDNA stability is a crucial factor regulating the replicative lifespan of S. cerevisiae. The unfolded protein response (UPR) is induced by misfolding of proteins or an imbalance of membrane lipid composition and is responsible for degrading misfolded proteins and restoring endoplasmic reticulum (ER) membrane homeostasis. Recent investigations have suggested that the UPR can extend the replicative lifespan of yeast by enhancing protein quality control mechanisms, but the relationship between the UPR and rDNA stability remains unknown. In this study, we found that the deletion of ARV1, which encodes an ER protein of unknown molecular function, activates the UPR by inducing lipid bilayer stress. In arv1Δ cells, the UPR and the cell wall integrity pathway are activated independently of each other, and the high osmolarity glycerol (HOG) pathway is activated in a manner dependent on Ire1, which mediates the UPR. Activated Hog1 translocates the stress response transcription factor Msn2 to the nucleus, where it promotes the expression of nicotinamidase Pnc1, a well-known Sir2 activator. Following Sir2 activation, rDNA silencing and rDNA stability are promoted. Furthermore, the loss of other ER proteins, such as Pmt1 or Bst1, and ER stress induced by tunicamycin or inositol depletion also enhance rDNA stability in a Hog1-dependent manner. Collectively, these findings suggest that the induction of the UPR enhances rDNA stability in S. cerevisiae by promoting the Msn2-Pnc1-Sir2 pathway in a Hog1-dependent manner.


Assuntos
DNA Ribossômico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Resposta a Proteínas não Dobradas , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , DNA Ribossômico/metabolismo , DNA Ribossômico/genética , Bicamadas Lipídicas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Nicotinamidase/metabolismo , Nicotinamidase/genética , Sirtuína 2/metabolismo , Sirtuína 2/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Glicoproteínas de Membrana
18.
Plant J ; 119(3): 1313-1326, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838061

RESUMO

While the phenomenon of uniparental silencing of 35S rDNA in interspecific hybrids and allopolyploids is well documented, there is a notable absence of information regarding whether such silencing extends to the 5S RNA component of ribosomes. To address this gap in knowledge, we analyzed the 5S and 35S rDNA expression in Cardamine (Brassicaceae) allopolyploids, namely C. × insueta (2n = 3x = 24, genome composition RRA), C. flexuosa (2n = 4x = 32, AAHH), and C. scutata (2n = 4x = 32, PPAA) which share a common diploid ancestor (AA). We employed high-throughput sequencing of transcriptomes and genomes and phylogenetic analyses of 5S rRNA variants. The genomic organization of rDNA was further scrutinized through clustering and fluorescence in situ hybridization. In the C. × insueta allotriploid, we observed uniparental dominant expression of 5S and 35S rDNA loci. In the C. flexuosa and C. scutata allotetraploids, the expression pattern differed, with the 35S rDNA being expressed from the A subgenome, whereas the 5S rDNA was expressed from the partner subgenome. Both C. flexuosa and C. scutata but not C. × insueta showed copy and locus number changes. We conclude that in stabilized allopolyploids, transcription of ribosomal RNA components occurs from different subgenomes. This phenomenon appears to result in the formation of chimeric ribosomes comprising rRNA molecules derived from distinct parental origins. We speculate that the interplay of epigenetic silencing and rDNA rearrangements introduces an additional layer of variation in multimolecule ribosomal complexes, potentially contributing to the evolutionary success of allopolyploids.


Assuntos
Cardamine , Inativação Gênica , Filogenia , Poliploidia , RNA Ribossômico 5S , RNA Ribossômico 5S/genética , Cardamine/genética , Genoma de Planta/genética , DNA Ribossômico/genética , Hibridização in Situ Fluorescente , Regulação da Expressão Gênica de Plantas
19.
Plant J ; 118(6): 1922-1936, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493352

RESUMO

Deficiency in chromatin assembly factor-1 (CAF-1) in plants through dysfunction of its components, FASCIATA1 and 2 (FAS1, FAS2), leads to the specific and progressive loss of rDNA and telomere repeats in plants. This loss is attributed to defective repair mechanisms for the increased DNA breaks encountered during replication, a consequence of impaired replication-dependent chromatin assembly. In this study, we explore the role of KU70 in these processes. Our findings reveal that, although the rDNA copy number is reduced in ku70 mutants when compared with wild-type plants, it is not markedly affected by diverse KU70 status in fas1 mutants. This is consistent with our previous characterisation of rDNA loss in fas mutants as a consequence part of the single-strand annealing pathway of homology-dependent repair. In stark contrast to rDNA, KU70 dysfunction fully suppresses the loss of telomeres in fas1 plants and converts telomeres to their elongated and heterogeneous state typical for ku70 plants. We conclude that the alternative telomere lengthening pathway, known to be activated in the absence of KU70, overrides progressive telomere loss due to CAF-1 dysfunction.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fator 1 de Modelagem da Cromatina , Proteínas de Ligação a DNA , Homeostase do Telômero , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fator 1 de Modelagem da Cromatina/metabolismo , Fator 1 de Modelagem da Cromatina/genética , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Mutação , Telômero/metabolismo , Telômero/genética , Cromossomos de Plantas/metabolismo
20.
Plant J ; 119(3): 1481-1493, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38858852

RESUMO

Structural maintenance of chromosome (SMC) complexes play roles in cohesion, condensation, replication, transcription, and DNA repair. Their cores are composed of SMC proteins with a unique structure consisting of an ATPase head, long arm, and hinge. SMC complexes form long rod-like structures, which can change to ring-like and elbow-bent conformations upon binding ATP, DNA, and other regulatory factors. These SMC dynamic conformational changes are involved in their loading, translocation, and DNA loop extrusion. Here, we examined the binding and role of the PpNSE5 regulatory factor of Physcomitrium patens PpSMC5/6 complex. We found that the PpNSE5 C-terminal half (aa230-505) is required for binding to its PpNSE6 partner, while the N-terminal half (aa1-230) binds PpSMC subunits. Specifically, the first 71 amino acids of PpNSE5 were required for binding to PpSMC6. Interestingly, the PpNSE5 binding required the PpSMC6 head-proximal joint region and PpSMC5 hinge-proximal arm, suggesting a long distance between binding sites on PpSMC5 and PpSMC6 arms. Therefore, we hypothesize that PpNSE5 either links two antiparallel SMC5/6 complexes or binds one SMC5/6 in elbow-bent conformation, the later model being consistent with the role of NSE5/NSE6 dimer as SMC5/6 loading factor to DNA lesions. In addition, we generated the P. patens Ppnse5KO1 mutant line with an N-terminally truncated version of PpNSE5, which exhibited DNA repair defects while keeping a normal number of rDNA repeats. As the first 71 amino acids of PpNSE5 are required for PpSMC6 binding, our results suggest the role of PpNSE5-PpSMC6 interaction in SMC5/6 loading to DNA lesions.


Assuntos
Bryopsida , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Bryopsida/genética , Bryopsida/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Cromossomos de Plantas/genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA