RESUMO
Immunotherapy has revolutionized cancer treatment in recent years. Although currently approved checkpoint inhibitors (CPIs) yield remarkable anti-tumoral responses in several cancer types, a substantial proportion of patients do not benefit from such therapies. Local activation of innate immune signaling pathways is a promising approach to overcome the immunosuppressive tumor microenvironment, induce anti-tumor immunity, and improve the efficacy of CPI therapies. Here, we assessed the mode of action and efficacy of the RNA-based innate immune stimulator CV8102 for local immunotherapy in preclinical models. Intratumoral (i.t.) administration of CV8102 activated innate immune responses in the tumor microenvironment and draining lymph nodes, resulting in a dose-dependent anti-tumoral response. Combining i.t. CV8102 with systemic anti-programmed death protein 1 (PD-1) treatment further enhanced anti-tumoral responses, inducing tumor infiltration and activation of CD8+ T cells. The resulting memory response prevented tumor growth in rechallenged animals and impaired the growth of non-injected distal tumors. Therefore, i.t. CV8102 delivery is a promising approach for local cancer immunotherapy, especially in combination with CPIs. Clinical testing of CV8102 is ongoing (NCT03291002).
Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Neoplasias/terapia , Fatores Imunológicos , Imunoterapia/métodos , Microambiente TumoralRESUMO
Infections caused by human respiratory syncytial virus (RSV) are associated with substantial rates of morbidity and mortality. Treatment options are limited, and there is urgent need for the development of efficient antivirals. Pattern recognition receptors such as the cytoplasmic helicase retinoic acid-inducible gene (RIG) I can be activated by viral nucleic acids, leading to activation of interferon-stimulated genes and generation of an "antiviral state." In the current study, we activated RIG-I with synthetic RNA agonists (3pRNA) to induce resistance to RSV infection in vitro and in vivo. In vitro, pretreatment of human, mouse, and ferret airway cell lines with RIG-I agonist before RSV exposure inhibited virus infection and replication. Moreover, a single intravenous injection of 3pRNA 1 day before RSV infection resulted in potent inhibition of virus replication in the lungs of mice and ferrets, but not in nasal tissues. These studies provide evidence that RIG-I agonists represent a promising antiviral drug for RSV prophylaxis.
Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Animais , Humanos , Vírus Sincicial Respiratório Humano/fisiologia , Furões , Pulmão , Replicação Viral , Antivirais/farmacologia , TretinoínaRESUMO
Local immunomodulation can be a promising strategy to augment the efficacy and decrease off-target toxicities associated with cancer treatment. Pancreatic cancer is resistant to immunotherapies due to the immunosuppressive tumor microenvironment. Herein, we investigated a therapeutic approach involving delivery of a short interfering double-stranded RNA (dsRNA), specific to Bcl2, with 5' triphosphate ends, by lipid calcium phosphate nanoparticles, in an orthotopic allograft KPC model of pancreatic cancer. Retinoic acid-inducible gene I (RIG-I)-like receptors can bind to 5' triphosphate dsRNA (ppp dsRNA), a pathogen-associated molecular pattern, producing type I interferon, while Bcl2 silencing can drive apoptosis of cancer cells. Our approach demonstrated a robust enrichment of tumor tissue with therapeutic nanoparticles and enabled a significant tumor growth inhibition, prolonging median overall survival. Nanoparticles encapsulating dual-therapeutic ppp dsRNA allowed strong induction in levels of pro-inflammatory Th1 cytokines, further increasing proportions of CD8+ T cells over regulatory T cells, M1 over M2 macrophages, and decreased levels of immunosuppressive B regulatory and plasma cells in the tumor microenvironment. Thus, these results provide a new immunotherapy approach for pancreatic cancer.
Assuntos
Nanopartículas/química , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Apoptose/fisiologia , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Fosfatos de Cálcio/química , Proteína DEAD-box 58/metabolismo , Feminino , Imunidade Inata/fisiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismoRESUMO
Several SARS-CoV-2 vaccines have received EUAs, but many issues remain unresolved, including duration of conferred immunity and breadth of cross-protection. Adjuvants that enhance and shape adaptive immune responses that confer broad protection against SARS-CoV-2 variants will be pivotal for long-term protection as drift variants continue to emerge. We developed an intranasal, rationally designed adjuvant integrating a nanoemulsion (NE) that activates TLRs and NLRP3 with an RNA agonist of RIG-I (IVT DI). The combination adjuvant with spike protein antigen elicited robust responses to SARS-CoV-2 in mice, with markedly enhanced TH1-biased cellular responses and high virus-neutralizing antibody titers towards both homologous SARS-CoV-2 and a variant harboring the N501Y mutation shared by B1.1.7, B.1.351 and P.1 variants. Furthermore, passive transfer of vaccination-induced antibodies protected naive mice against heterologous viral challenge. NE/IVT DI enables mucosal vaccination, and has the potential to improve the immune profile of a variety of SARS-CoV-2 vaccine candidates to provide effective cross-protection against future drift variants.
Assuntos
Adjuvantes Imunológicos/farmacologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Vacinas Sintéticas/imunologia , Imunidade Adaptativa/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Chlorocebus aethiops , Proteção Cruzada/imunologia , Proteína DEAD-box 58 , Células HEK293 , Humanos , Imunidade Humoral/imunologia , Imunização Passiva , Camundongos , Camundongos Endogâmicos C57BL , Receptores Imunológicos/agonistas , Proteínas Recombinantes/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Células VeroRESUMO
The innate immune sensing of pathogens is important for host to mount defensive responses. STING has emerged in recent years as a critical signaling adaptor in the immune response to cytosolic DNA and RNA derived from pathogens. Liu et al. (2016) demonstrate that the RIG-I-dependent RNA sensing signaling induces STING expression via a TNF-α and IFN-α synergy. The up-regulation of STING is vital for 5'pppRNA restriction of HSV, a DNA virus that infects humans and causes herpes, in vitro and in vivo. This study provides new insights into the cross talk between DNA and RNA pathogen-sensing systems via the control of STING.
RESUMO
DNA vaccination is effective in inducing potent immunity in mice; however it appears to be less so in large animals. Increasing the dose of DNA plasmid to activate innate immunity has been shown to improve DNA vaccine adaptive immunity. Retinoic acid-inducible gene I (RIG-I) is a critical cytoplasmic double-stranded RNA pattern receptor required for innate immune activation in response to viral infection. RIG-I recognise viral RNA and trigger antiviral response, resulting in type I interferon (IFN) and inflammatory cytokine production. In an attempt to enhance the antibody response induced by BVDV DNA in cattle, we expressed BVDV truncated E2 (E2t) and NS3 codon optimised antigens from antibiotic free-plasmid vectors expressing a RIG-I agonist and designated either NTC E2t(co) and NTC NS3(co). To evaluate vaccine efficacy, groups of five BVDV-free calves were intramuscularly injected three times with NTC E2t(co) and NTC NS3(co) vaccine plasmids individually or in combination. Animals vaccinated with our (previously published) conventional DNA vaccines pSecTag/E2 and pTriExNS3 and plasmids expressing RIG-I agonist only presented both the positive and mock-vaccine groups. Our results showed that vaccines coexpressing E2t with a RIG-I agonist induced significantly higher E2 antigen specific antibody response (p<0.05). Additionally, E2t augmented the immune response to NS3 when the two vaccines were delivered in combination. Despite the lack of complete protection, on challenge day 4/5 calves vaccinated with NTC E2t(co) alone or NTC E2t(co) plus NTC NS3(co) had neutralising antibody titres exceeding 1/240 compared to 1/5 in the mock vaccine control group. Based on our results we conclude that co-expression of a RIG-I agonist with viral antigen could enhance DNA vaccine potency in cattle.