Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int Immunol ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39387130

RESUMO

Onco-immunotherapy via blocking checkpoint-inhibitors has revolutionized the treatment-landscape of several malignancies, though not in the metastatic castration-resistant prostate cancer (PCa) owing to immunosuppressive and poorly immunogenic "cold" tumor microenvironment (TME). Turning up the heat of such cold TME via triggering innate immunity is now of increasing interest to restore immune-surveillance. Retinoic acid-inducible gene- I (RIG-I)-like receptors (RLRs) are cytosolic innate-sensors that can detect exogenous RNAs and induce type-I interferons and other pro-inflammatory signaling. RIG-I activation is suggested to be a valuable addition to the treatment approaches for several cancers. However, the knowledge about RIG-I signaling in PCa remains elusive. The present study evaluated the expression of two important RLRs, RIG-I and melanoma differentiation-associated protein 5 (MDA5) along with their downstream partners, mitochondrial antiviral-signaling protein (MAVS) and ERA G-protein-like 1 (ERAL1) during PCa progression in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. The early stage of PCa revealed a significant increment in the expression of RLRs, but not MAVS. However, the advanced stage showed downregulated RLR signaling. Further, the therapeutic implication of 5'ppp-dsRNA, a synthetic RIG-I agonist and Bcl2 gene silencer has been investigated in vitro and in vivo. Intra-tumoral delivery of 5'ppp-dsRNA regressed tumor growth via triggering tumor cells apoptosis, immunomodulation, and inducing phagocytic "eat me" signals. These findings highlight that, for the first time, RIG-I activation and Bcl-2 silencing with 5'ppp-dsRNA can serve as a potent tumor-suppressor strategy in PCa and has a significant clinical implication in transforming "cold" TME into immunogenic "hot" TME of PCa.

2.
J Biol Chem ; 299(8): 104960, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37364688

RESUMO

A novel coronavirus now known as SARS-CoV-2 emerged in late 2019, possibly following a zoonotic crossover from a coronavirus present in bats. This virus was identified as the pathogen responsible for the severe respiratory disease, coronavirus disease-19 (COVID-19), which as of May 2023, has killed an estimated 6.9 million people globally according to the World Health Organization. The interferon (IFN) response, a cornerstone of antiviral innate immunity, plays a key role in determining the outcome of infection by SARS-CoV-2. This review considers evidence that SARS-CoV-2 infection leads to IFN production; that virus replication is sensitive to IFN antiviral action; molecular mechanisms by which the SARS-CoV-2 virus antagonizes IFN action; and how genetic variability of SARS-CoV-2 and the human host affects the IFN response at the level of IFN production or action or both. Taken together, the current understanding suggests that deficiency of an effective IFN response is an important determinant underlying some cases of critical COVID-19 disease and that IFNλ and IFNα/ß have potential as therapeutics for the treatment of SARS-CoV-2 infection.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , COVID-19/genética , SARS-CoV-2 , Linhagem Celular , Antivirais/farmacologia , Antivirais/uso terapêutico , Interferon-alfa , Imunidade Inata , Interferon Tipo I/genética
3.
Fish Shellfish Immunol ; 82: 101-114, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30099139

RESUMO

The recognition of microbial pathogens, which is mediated by pattern recognition receptors (PRRs), is critical to the initiation of innate immune responses. In the present study, we isolated the full-length cDNA and genomic DNA sequences of the MDA5, LGP2 and MAVS genes in Nile tilapia, termed OnMDA5, OnLGP2 and OnMAVS. The OnMDA5 gene encodes 974 amino acids and contains two caspase-associated recruitment domains (CARDs), a DExDc domain (DExD/H box-containing domain), a HELICc (helicase superfamily C-terminal) domain and a C-terminal regulatory domain (RD). The OnLGP2 gene encodes 679 amino acids and contains a DExDc, a HELICc and an RD. The OnMAVS gene encodes 556 amino acids and contains a CARD, a proline-rich domain, a transmembrane helix domain and a putative TRAF2-binding motif (269PVQDT273). Phylogenetic analyses showed that all three genes from Nile tilapia were clustered together with their counterparts from other teleost fishes. Real-time PCR analyses showed that all three genes were constitutively expressed in all examined tissues in Nile tilapia. OnMDA5 presented the highest expression level in the blood and the lowest expression level in the liver, while OnMAVS presented the highest expression level in the kidney. The highest expression level of OnLGP2 was detected in the liver. An examination of the expression patterns of these RIG-I-like receptors (RLRs) during embryonic development showed that the highest expression levels of OnMDA5 occurred at 2 days postfertilization (dpf), and the expression significantly decreased from 3 to 8 dpf. The expression levels of OnLGP2 significantly increased from 4 to 8 dpf. The expression levels of OnMAVS mRNA were stable from 2 to 8 dpf. Upon stimulation by intraperitoneal injection of Streptococcus agalactiae, the expression levels of OnMDA5 were first downregulated and then upregulated in the blood, gill and spleen. In the intestine and kidney, the expression of OnMDA5 was first upregulated, then downregulated, and then upregulated again. The expression of OnLGP2 was upregulated in the kidney and intestine, and the expression of OnMAVS was upregulated in the spleen. Overexpression of OnMAVS increased NF-κB activation in 293 T cells (p < 0.05), and after cotransfection with OnMDA5, the OnMAVS-dependent NF-κB activation was slightly increased (p > 0.05), after cotransfection with OnLGP2, the OnMAVS-dependent NF-κB activation was significantly decreased (p < 0.05). These findings suggest that, although the deduced protein structure of OnMDA5 is evolutionarily conserved with the structures of other RLR members, its signal transduction function is markedly different. The results also suggest that OnLGP2 has a negative regulatory effect on the OnMAVS gene. OnMDA5 and OnMAVS were uniformly distributed throughout the cytoplasm in 293 T cells, whereas OnLGP2 was distributed throughout the cytoplasm and nucleus. These results are helpful for clarifying the innate immune response against bacterial infection in Nile tilapia.


Assuntos
Ciclídeos/genética , Ciclídeos/imunologia , Proteínas de Peixes/genética , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Transdução de Sinais/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Ciclídeos/metabolismo , Proteína DEAD-box 58/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Filogenia
4.
Mol Biol Evol ; 31(1): 140-53, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24109602

RESUMO

Animals deploy various molecular sensors to detect pathogen infections. RIG-like receptor (RLR) proteins identify viral RNAs and initiate innate immune responses. The three human RLRs recognize different types of RNA molecules and protect against different viral pathogens. The RLR protein family is widely thought to have originated shortly before the emergence of vertebrates and rapidly diversified through a complex process of domain grafting. Contrary to these findings, here we show that full-length RLRs and their downstream signaling molecules were present in the earliest animals, suggesting that the RLR-based immune system arose with the emergence of multicellularity. Functional differentiation of RLRs occurred early in animal evolution via simple gene duplication followed by modifications of the RNA-binding pocket, many of which may have been adaptively driven. Functional analysis of human and ancestral RLRs revealed that the ancestral RLR displayed RIG-1-like RNA-binding. MDA5-like binding arose through changes in the RNA-binding pocket following the duplication of the ancestral RLR, which may have occurred either early in Bilateria or later, after deuterostomes split from protostomes. The sensitivity and specificity with which RLRs bind different RNA structures has repeatedly adapted throughout mammalian evolution, suggesting a long-term evolutionary arms race with viral RNA or other molecules.


Assuntos
Evolução Molecular , Imunidade Inata , Filogenia , Vertebrados/imunologia , Vertebrados/virologia , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Fases de Leitura Aberta , Conformação Proteica , RNA Helicases/genética , RNA Helicases/imunologia , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia , Alinhamento de Sequência , Vertebrados/classificação
5.
Biomedicines ; 11(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36831177

RESUMO

The reemergence of the Zika virus (ZIKV) infection in recent years has posed a serious threat to global health. Despite being asymptomatic or mildly symptomatic in a majority of infected individuals, ZIKV infection can result in severe manifestations including neurological complications in adults and congenital abnormalities in newborns. In a human host, ZIKV is primarily recognized by RIG-like receptors and Toll-like receptors that elicit anti-viral immunity through the secretion of type I interferon (IFN) to limit viral survival, replication, and pathogenesis. Intriguingly, ZIKV evades its host immune system through various immune evasion strategies, including suppressing the innate immune receptors and signaling pathways, mutation of viral structural and non-structural proteins, RNA modulation, or alteration of cellular pathways. Here, we present an overview of ZIKV recognition by the host immune system and the evasion strategies employed by ZIKV. Characterization of the host-viral interaction and viral disease mechanism provide a platform for the rational design of novel prophylactic and therapeutic strategies against ZIKV infection.

6.
Front Pharmacol ; 13: 915565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847031

RESUMO

The innate immune system is the first line of host's defense against invading pathogens. Multiple cellular sensors that detect viral components can induce innate antiviral immune responses. As a result, interferons and pro-inflammatory cytokines are produced which help in the elimination of invading viruses. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to Coronaviridae family, and has a single-stranded, positive-sense RNA genome. It can infect multiple hosts; in humans, it is responsible for the novel coronavirus disease 2019 (COVID-19). Successful, timely, and appropriate detection of SARS-CoV-2 can be very important for the early generation of the immune response. Several drugs that target the innate immune receptors as well as other signaling molecules generated during the innate immune response are currently being investigated in clinical trials. In this review, we summarized the current knowledge of the mechanisms underlying host sensing and innate immune responses against SARS-CoV-2 infection, as well as the role of innate immune receptors in terms of their therapeutic potential against SARS-CoV-2. Moreover, we discussed the drugs undergoing clinical trials and the FDA approved drugs against SARS-CoV-2. This review will help in understanding the interactions between SARS-CoV-2 and innate immune receptors and thus will point towards new dimensions for the development of new therapeutics, which can be beneficial in the current pandemic.

7.
Front Immunol ; 11: 1809, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922394

RESUMO

The burden of disease is a major challenge in aquaculture production. The fish gill characterized with a large surface area and short route to the bloodstream is a major environmental interface and a significant portal of entry for pathogens. To investigate gill responses to viral infection the salmonid gill cell line RTgill-W1 was stimulated with synthetic dsRNA and the salmonid alphavirus subtype 2 (SAV-2). Epithelial integrity in polarized cells can be measured as transepithelial electrical resistance (TEER) which is defined as the electrical resistance across a cell monolayer. TEER is a widely accepted quantitative measure of cellular integrity of a cell monolayer. TEER increased immediately after stimulation with the synthetic dsRNA, polyinosinic:polycytidylic acid (poly(I:C)). In parallel, tight junction and gene expression of innate immune activation markers was modulated in response to poly(I:C). The SAV-2 virus was found to replicate at a low level in RTgill-W1 cells where TEER was disturbed at an early stage of infection, however, gene expression related to tight junction regulation was not modulated. A strong poly(I:C)-driven antiviral response was observed including increases of Rig-like receptors (RLRs) and interferon stimulating genes (ISGs) mRNAs. At the level of signal transduction, poly(I:C) stimulation was accompanied by the phosphorylation of 671 proteins, of which 390 were activated solely in response to the presence of poly(I:C). According to motif analysis, kinases in this group included MAPKs, Ca2+/calmodulin-dependent kinase (CaMK) and cAMP-dependent protein kinase (PKA), all reported to be activated in response to viral infection in mammals. Results also highlighted an activation of the cytoskeletal organization that could be mediated by members of the integrin family. While further work is needed to validate these results, our data indicate that salmonid gill epithelia has the ability to mount a significant response to viral infection which might be important in disease progression. In vitro cell culture can facilitate both a deeper understanding of the anti-viral response in fish and open novel therapeutic avenues for fish health management in aquaculture.


Assuntos
Células Epiteliais/imunologia , Doenças dos Peixes/imunologia , Brânquias/imunologia , Viroses/veterinária , Animais , Linhagem Celular , Impedância Elétrica , Expressão Gênica , Regulação da Expressão Gênica , Oncorhynchus mykiss , Poli I-C/imunologia , Proteoma , Viroses/imunologia
8.
Immunobiology ; 218(11): 1312-21, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23962476

RESUMO

The detection of intracellular DNA has emerged to be a key event in the innate immune response to viruses and intracellular bacteria, and during conditions of sterile inflammation and autoimmunity. One of the consequences of the detection of DNA as a 'stranger' and a 'danger' signal is the production of type I interferons and pro-inflammatory cytokines. Much work has been dedicated to the elucidation of the signalling cascades that activate this DNA-induced gene expression programme. However, while many proteins have been proposed to act as sensors for intracellular DNA in recent years, none has been met with universal acceptance, and a theory linking all the recent observations is, as yet, lacking. This review presents the evidence for the various interferon-inducing DNA receptors proposed to date, and examines the hypotheses that might explain why so many different receptors appear to be involved in the innate immune recognition of intracellular DNA.


Assuntos
DNA/imunologia , Interferon Tipo I/imunologia , Receptores de Superfície Celular/imunologia , Animais , Autoimunidade/imunologia , Expressão Gênica/imunologia , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Inflamação/imunologia , Viroses/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA