Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Methods ; 218: 158-166, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37611837

RESUMO

Proteins are expressed from genes via sequential biological processes of transcription, mRNA processing, export and translation, and play their roles in maintaining cellular functions via interactions with proteins, DNAs or RNAs. Thus, it is important to study the protein interactions during biological processes in living cells towards understanding their mechanisms-of-action in real time. Methodologies have been developed over the years to study protein interactions in vivo. One state-of-the-art approach is formaldehyde crosslinking-based immuno- or chemi-precipitation to analyze selective as well as genome/proteome-wide interactions in living cells. It is a popular and widely used methodology for cellular analysis of the protein-protein and protein-nucleic acid interactions. Here, we describe this approach to analyze protein-protein/nucleic acid interactions in vivo.


Assuntos
Cromatina , Ácidos Nucleicos , Cromatina/genética , RNA/genética , Proteoma , Imunoprecipitação
2.
Adv Exp Med Biol ; 3234: 1-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507196

RESUMO

Throughout their life cycle, messenger RNAs (mRNAs) associate with proteins to form ribonucleoproteins (mRNPs). Each mRNA is part of multiple successive mRNP complexes that participate in their biogenesis, cellular localization, translation and decay. The dynamic composition of mRNP complexes and their structural remodelling play crucial roles in the control of gene expression. Studying the endogenous composition of different mRNP complexes is a major challenge. In this chapter, we describe the variety of protein-centric immunoprecipitation methods available for the identification of mRNP complexes and the requirements for their experimental settings.


Assuntos
Ribonucleoproteínas , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Imunoprecipitação
3.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34750254

RESUMO

The commitment of hematopoietic multipotent progenitors (MPPs) toward a particular lineage involves activation of cell type-specific genes and silencing of genes that promote alternate cell fates. Although the gene expression programs of early-B and early-T lymphocyte development are mutually exclusive, we show that these cell types exhibit significantly correlated microRNA (miRNA) profiles. However, their corresponding miRNA targetomes are distinct and predominated by transcripts associated with natural killer, dendritic cell, and myeloid lineages, suggesting that miRNAs function in a cell-autonomous manner. The combinatorial expression of miRNAs miR-186-5p, miR-128-3p, and miR-330-5p in MPPs significantly attenuates their myeloid differentiation potential due to repression of myeloid-associated transcripts. Depletion of these miRNAs caused a pronounced de-repression of myeloid lineage targets in differentiating early-B and early-T cells, resulting in a mixed-lineage gene expression pattern. De novo motif analysis combined with an assay of promoter activities indicates that B as well as T lineage determinants drive the expression of these miRNAs in lymphoid lineages. Collectively, we present a paradigm that miRNAs are conserved between developing B and T lymphocytes, yet they target distinct sets of promiscuously expressed lineage-inappropriate genes to suppress the alternate cell-fate options. Thus, our studies provide a comprehensive compendium of miRNAs with functional implications for B and T lymphocyte development.


Assuntos
Linfócitos B/fisiologia , Linhagem da Célula/genética , Expressão Gênica/genética , Redes Reguladoras de Genes/genética , MicroRNAs/genética , Linfócitos T/fisiologia , Animais , Diferenciação Celular/genética , Perfilação da Expressão Gênica/métodos , Células-Tronco Hematopoéticas/fisiologia , Camundongos , Células Mieloides/fisiologia
4.
BMC Genomics ; 24(1): 316, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308824

RESUMO

BACKGROUND: In recent years, accumulating evidences have revealed that influenza A virus (IAV) infections induce significant differential expression of host long noncoding RNAs (lncRNAs), some of which play important roles in the regulation of virus-host interactions and determining the virus pathogenesis. However, whether these lncRNAs bear post-translational modifications and how their differential expression is regulated remain largely unknown. In this study, the transcriptome-wide 5-methylcytosine (m5C) modification of lncRNAs in A549 cells infected with an H1N1 influenza A virus was analyzed and compared with uninfected cells by Methylated RNA immunoprecipitation sequencing (MeRIP-Seq). RESULTS: Our data identified 1317 upregulated m5C peaks and 1667 downregulated peaks in the H1N1 infected group. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the differentially modified lncRNAs were associated with protein modification, organelle localization, nuclear export and other biological processes. Furthermore, conjoint analysis of the differentially modified (DM) and differentially expressed (DE) lncRNAs identified 143 'hyper-up', 81 'hypo-up', 6 'hypo-down' and 4 'hyper-down' lncRNAs. GO and KEGG analyses revealed that these DM and DE lncRNAs were predominantly associated with pathogen recognition and disease pathogenesis pathways, indicating that m5C modifications could play an important role in the regulation of host response to IAV replication by modulating the expression and/or stability of lncRNAs. CONCLUSION: This study presented the first m5C modification profile of lncRNAs in A549 cells infected with IAV and demonstrated a significant alteration of m5C modifications on host lncRNAs upon IAV infection. These data could give a reference to future researches on the roles of m5C methylation in virus infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , RNA Longo não Codificante , Humanos , Células A549 , Transcriptoma , 5-Metilcitosina
5.
J Cell Biochem ; 124(11): 1720-1733, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37796115

RESUMO

5-Methylcytosine (m5 C) is a prevalent RNA modification in messenger RNAs (mRNAs). Despite its abundance, its role in the decidua of pre-eclampsia (PE) remains elusive. In this study, we utilized methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-sequencing (RNA-seq) to map m5 C peaks and mRNA expression profile in the decidua of human early-onset PE (EPE), late-onset PE (LPE), and normal pregnancy (NP). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses elucidated potential roles of the differentially methylated mRNAs (DMGs) and differentially expressed mRNAs in decidualization pathways. Integrative analysis of MeRIP-seq and RNA-seq data pinpointed 50 candidate genes linked to PE, marked by both differentially methylated m5 C peaks and congruent expression changes. To validate these observations, we selected nine genes for verification via quantitative PCR. Our results underscore the precision and reproducibility of our bioinformatics approach. Importantly, we propose that changes in m5 C modification and expression of relevant mRNA might influence the pathogenesis of PE by hampering decidualization. This work shines light on the distinct mRNA m5 C modification patterns and expression profiles in the decidua of PE, implicating pivotal signaling disruptions and decidualization impediments in the onset of PE.


Assuntos
5-Metilcitosina , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , RNA Mensageiro/genética , 5-Metilcitosina/metabolismo , Pré-Eclâmpsia/patologia , Reprodutibilidade dos Testes , Transdução de Sinais
6.
Biochem Biophys Res Commun ; 684: 149113, 2023 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-37866243

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is a significant public health concern globally. Evidence suggests that Salt-inducible kinase 2 (SIK2) is differentially expressed across various cancers and is also implicated in cancer progression. Despite this, the precise function of SIK2 in NSCLC is yet to be elucidated and requires further investigation. METHODS: SIK2 expression was evaluated in both HBEC and NSCLC cells, utilizing quantitative real-time PCR (qRT-PCR) and Western blot (WB) analyses. Furthermore, to identify the influence of SIK2 on cell proliferation, migration, invasion, and apoptosis, a range of techniques were employed. To evaluate N6-methyladenosine (m6A) modification levels of total RNA and SIK2 within cells, RNA m6A colorimetry and methylated RNA immunoprecipitation (MeRIP) techniques were employed. Additionally, to confirm the interaction between SIK2 and insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), bioinformatics analysis was executed, and the results were validated through RIP. The stability of SIK2 mRNA was determined using actinomycin D experiment. Furthermore, to validate the in vivo functionality of SIK2, a subcutaneous transplantation tumor model was established in nude mice. RESULTS: In this study, upregulation of SIK2 in NSCLC cells was observed. Overexpression of SIK2 was found to lead to promotion of cell proliferation, migration, invasion, and suppression of the Hippo/yes-associated protein (YAP) pathway, while inhibiting apoptosis. RIP analysis showed that IGF2BP1 protein interacted with SIK2 mRNA. Knockdown of IGF2BP1 decreased mRNA stability and m6A modification levels of SIK2. Additionally, knockdown of IGF2BP1 resulted in inhibition of cell proliferation, migration, invasion, suppression of the Hippo/YAP pathway, and promoting apoptosis. Overexpression of SIK2 overturned the impact of IGF2BP1 on NSCLC cells, which was then confirmed through in vivo experiments. CONCLUSION: IGF2BP1 stabilized SIK2 mRNA through m6A modification to promote NSCLC progression, potentially offering new diagnostic and therapeutic insights for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , MicroRNAs/genética , RNA Mensageiro/genética , Camundongos Nus , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas/metabolismo , Regulação Neoplásica da Expressão Gênica
7.
J Biomed Sci ; 30(1): 18, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918845

RESUMO

BACKGROUND: Reactivation of Epstein Barr virus (EBV) leads to modulation of the viral and cellular epitranscriptome. N6-methyladenosine (m6A) modification is a type of RNA modification that regulates metabolism of mRNAs. Previous reports demonstrated that m6A modification affects the stability and metabolism of EBV encoded mRNAs. However, the effect of reactivation on reprograming of the cellular mRNAs, and how this contributes to successful induction of lytic reactivation is not known. METHODS: Methylated RNA immunoprecipitation sequencing (MeRIP-seq), transcriptomic RNA sequencing (RNA-seq) and RNA pull-down PCR were used to screen and validate differentially methylated targets. Western blotting, quantitative real-time PCR (RT-qPCR) and immunocytochemistry were used to investigate the expression and localization of different proteins. RNA stability and polysome analysis assays were used to detect the half-lives and translation efficiencies of downstream genes. Insertion of point mutation to disrupt the m6A methylation sites was used to verify the effect of m6A methylation on its stability and expression levels. RESULTS: We report that during EBV reactivation the m6A eraser ALKBH5 is significantly downregulated leading to enhanced methylation of the cellular transcripts DTX4 and TYK2, that results in degradation of TYK2 mRNAs and higher efficiency of translation of DTX4 mRNAs. This resulted in attenuation of IFN signaling that promoted progression of viral lytic replication. Furthermore, inhibition of m6A methylation of these transcripts led to increased production of IFN, and a substantial reduction in viral copy number, which suggests abrogation of lytic viral replication. CONCLUSION: Our findings illuminate the significance of m6A modification in overcoming the innate immune response during EBV reactivation. We now report that during lytic reactivation EBV targets the RNA methylation system of the host to attenuate the innate immune response by suppressing the interferon signaling which facilitates successful lytic replication of the virus.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/genética , Ativação Viral/genética , Replicação Viral/genética , RNA
8.
Mol Biol Rep ; 50(8): 6703-6715, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37378749

RESUMO

BACKGROUND: Abnormal methylation of N6-methyladenosine (m6A) is reportedly associated with central nervous system disorders. However, the role of m6A mRNA methylation in unconjugated bilirubin (UCB) neurotoxicity requires further research. METHODS: Rat pheochromocytoma PC12 cells treated with UCB were used as in vitro models. After the PC12 cells were treated with UCB (0, 12, 18, and 24 µM) for 24 h, the total RNA m6A levels were measured using an m6A RNA methylation quantification kit. The expression of m6A demethylases and methyltransferases was detected through western blotting. We determined the m6A mRNA methylation profile in PC12 cells exposed to UCB (0 and 18 µM) for 24 h using methylated RNA immunoprecipitation sequencing (MeRIP-seq). RESULTS: Compared with the control group, UCB (18 and 24 µM) treatment decreased the expression of the m6A demethylase ALKBH5 and increased the expression of the methyltransferases METTL3 and METTL14, which resulted in an increase in the total m6A levels in PC12 cells. Furthermore, 1533 m6A peaks were significantly elevated and 1331 peaks were reduced in the UCB (18 µM)-treated groups compared with those in the control group. Genes with differential m6A peaks were mainly enriched in protein processing in the endoplasmic reticulum, ubiquitin-mediated proteolysis, cell cycle, and endocytosis. Through combined analysis of the MeRIP-seq and RNA sequencing data, 129 genes with differentially methylated m6A peaks and differentially expressed mRNA levels were identified. CONCLUSION: Our study suggests that the modulation of m6A methylation modifications plays a significant role in UCB neurotoxicity.


Assuntos
Metiltransferases , RNA , Ratos , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células PC12 , Metiltransferases/genética , Metiltransferases/metabolismo , RNA/metabolismo , Adenosina/metabolismo
9.
Methods ; 203: 242-248, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34624505

RESUMO

Reversible and dynamic RNA modifications play important roles in fine-tuning gene expression. N6, 2'-O-dimethyladenosine (m6Am), a terminal modification at mRNA cap, mediates various biological effects. However, limitations of the current m6Am detection methods lead to a lack of potential applications. Here, we describe a specific and sensitive method, termed m6Am-seq, that can detect m6Am at single-base resolution. m6Am-seq is based on optimized in-vitro demethylation assay and RNA immunoprecipitation, which can distinguish m6Am from 5'-UTR m6A. We provide a step by step protocol to perform m6Am-seq, including experimental procedures and sequencing data analysis. Collectively, we describe m6Am-seq, a robust tool to reveal both m6Am and 5'-UTR m6A methylome, enabling further functional and mechanistic study of m6Am modification.


Assuntos
Adenosina , RNA , Adenosina/metabolismo , Imunoprecipitação , Metilação , RNA/genética , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003223

RESUMO

For several histone lysine methyltransferases (HKMTs), RNA binding has been already shown to be a functionally relevant feature, but detailed information on the RNA interactome of these proteins is not always known. Of the six human KMT2 proteins responsible for the methylation of the H3K4 residue, two-SETD1A and SETD1B-contain RNA recognition domains (RRMs). Here we investigated the RNA binding capacity of SETD1A and identified a broad range of interacting RNAs within HEK293T cells. Our analysis revealed that similar to yeast Set1, SETD1A is also capable of binding several coding and non-coding RNAs, including RNA species related to RNA processing. We also show direct RNA binding activity of the individual RRM domain in vitro, which is in contrast with the RRM domain found in yeast Set1. Structural modeling revealed important details on the possible RNA recognition mode of SETD1A and highlighted some fundamental differences between SETD1A and Set1, explaining the differences in the RNA binding capacity of their respective RRMs.


Assuntos
RNA , Proteínas de Saccharomyces cerevisiae , Humanos , Células HEK293 , Metilação , RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563325

RESUMO

Like many other insects in temperate regions, Drosophila melanogaster exploits the photoperiod shortening that occurs during the autumn as an important cue to trigger a seasonal response. Flies survive the winter by entering a state of reproductive arrest (diapause), which drives the relocation of resources from reproduction to survival. Here, we profiled the expression of microRNA (miRNA) in long and short photoperiods and identified seven differentially expressed miRNAs (dme-mir-2b, dme-mir-11, dme-mir-34, dme-mir-274, dme-mir-184, dme-mir-184*, and dme-mir-285). Misexpression of dme-mir-2b, dme-mir-184, and dme-mir-274 in pigment-dispersing, factor-expressing neurons largely disrupted the normal photoperiodic response, suggesting that these miRNAs play functional roles in photoperiodic timing. We also analyzed the targets of photoperiodic miRNA by both computational predication and by Argonaute-1-mediated immunoprecipitation of long- and short-day RNA samples. Together with global transcriptome profiling, our results expand existing data on other Drosophila species, identifying genes and pathways that are differentially regulated in different photoperiods and reproductive status. Our data suggest that post-transcriptional regulation by miRNA is an important facet of photoperiodic timing.


Assuntos
Diapausa , MicroRNAs , Animais , Drosophila/genética , Drosophila melanogaster/genética , MicroRNAs/genética , Fotoperíodo
12.
J Biol Chem ; 295(4): 905-913, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31843970

RESUMO

An R-loop is a three-stranded nucleic acid structure that consists of a DNA:RNA hybrid and a displaced strand of DNA. R-loops occur frequently in genomes and have significant physiological importance. They play vital roles in regulating gene expression, DNA replication, and DNA and histone modifications. Several studies have uncovered that R-loops contribute to fundamental biological processes in various organisms. Paradoxically, although they do play essential positive functions required for important biological processes, they can also contribute to DNA damage and genome instability. Recent evidence suggests that R-loops are involved in a number of human diseases, including neurological disorders, cancer, and autoimmune diseases. This review focuses on the molecular basis for R-loop-mediated gene regulation and genomic instability and briefly discusses methods for identifying R-loops in vivo It also highlights recent studies indicating the role of R-loops in DNA double-strand break repair with an updated view of much-needed future goals in R-loop biology.


Assuntos
Estruturas R-Loop , Reparo do DNA , Técnicas Genéticas , Instabilidade Genômica , Modelos Moleculares
13.
J Neuroinflammation ; 18(1): 149, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225746

RESUMO

BACKGROUND: Microglia are key regulators of the inflammatory response in the brain. Adenosine in RNAs can be converted to m6A (N6-methyladenosine), which regulates RNA metabolism and functions as a key epitranscriptomic modification. The m6A modification pattern and m6A-related signatures under pro-inflammatory and anti-inflammatory conditions of microglia remain unclear. METHODS: Primary rat microglia were differentiated into pro-inflammatory M1-like (M1-L), anti-inflammatory M2-like (M2-L), and resting, unstimulated (M0-L) phenotypes. m6A mRNA and lncRNA epitranscriptomic microarray analyses were performed, and pathway analysis was conducted to understand the functional implications of m6A methylation in mRNAs and lncRNAs. The m6A methylation level and gene expression of mRNAs and lncRNAs were subsequently verified by m6A Me-RIP and qRT-PCR. RESULTS: A total of 1588 mRNAs and 340 lncRNAs, 315 mRNAs and 38 lncRNAs, and 521 mRNAs and 244 lncRNAs were differentially m6A methylated between M1-L and M0-L (M1-L/M0-L), M2-L and M0-L (M2-L/M0-L), M2-L and M1-L (M2-L/M1-L), respectively. Furthermore, 4902 mRNAs, 4676 mRNAs, and 5095 mRNAs were identified distinctively expressed in M1-L/M0-L, M2-L/M0-L, and M2-L/M1-L, respectively. Pathway analysis of differentially m6A methylated mRNAs and lncRNAs in M1-L/M0-L identified immune system, signal transduction, and protein degradation processes. In contrast, the distinct m6A methylated mRNAs in M2-L/M0-L were involved in genetic information processing, metabolism, cellular processes, and neurodegenerative disease-related pathways. We validated m6A methylation and the expression levels of five mRNAs and five lncRNAs, which were involved in upregulated pathways in M1-L/M0-L, and five mRNAs involved in upregulated pathways in M2-L/M0-L. CONCLUSIONS: These findings identify a distinct m6A epitranscriptome in microglia, and which may serve as novel and useful regulator during pro-inflammatory and anti-inflammatory response of microglia.


Assuntos
Adenosina/análogos & derivados , Mediadores da Inflamação/metabolismo , Microglia/metabolismo , Adenosina/genética , Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transcriptoma/fisiologia
14.
Biol Reprod ; 104(4): 861-874, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33394034

RESUMO

In vertebrates, the RNA-binding protein (RBP) dead end 1 (DND1) is essential for primordial germ cell (PGC) survival and maintenance of cell identity. In multiple species, Dnd1 loss or mutation leads to severe PGC loss soon after specification or, in some species, germ cell transformation to somatic lineages. Our investigations into the role of DND1 in PGC specification and differentiation have been limited by the absence of an available antibody. To address this problem, we used CRISPR/Cas9 gene editing to establish a transgenic mouse line carrying a DND1GFP fusion allele. We present imaging analysis of DND1GFP expression showing that DND1GFP expression is heterogeneous among male germ cells (MGCs) and female germ cells (FGCs). DND1GFP was detected in MGCs throughout fetal life but lost from FGCs at meiotic entry. In postnatal and adult testes, DND1GFP expression correlated with classic markers for the premeiotic spermatogonial population. Utilizing the GFP tag for RNA immunoprecipitation (RIP) analysis in MGCs validated this transgenic as a tool for identifying in vivo transcript targets of DND1. The DND1GFP mouse line is a novel tool for isolation and analysis of embryonic and fetal germ cells, and the spermatogonial population of the postnatal and adult testis.


Assuntos
Células Germinativas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Neoplasias/genética , Alelos , Animais , Diferenciação Celular/genética , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Células Germinativas/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/genética
15.
Methods ; 183: 38-42, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31654749

RESUMO

During infection, RNA viruses can produce two types of virus-derived small RNAs (vsRNAs), small interfering RNA (siRNA) and microRNA (miRNA), that play a key role in RNA silencing-mediated antiviral mechanisms in various hosts by associating with different Argonaute (Ago) proteins. Ago1 has been widely identified as an essential part of the miRNA pathway, while Ago2 is required for the siRNA pathway. Thus, analysis of the interaction between vsRNAs and Ago proteins can provide a clue about which pathway the vsRNA may be involved in. In this study, using rice stripe virus (RSV)-small brown planthoppers (Laodelphax striatellus, Fallen) as an infection model, the interactions of eight vsRNAs derived from four viral genomic RNA fragments and Ago1 or Ago2 were detected via the RNA immunoprecipitation (RIP) method. vsRNA4-1 and vsRNA4-2 derived from RSV RNA4 were significantly enriched in Ago1-immunoprecipitated complexes, whereas vsRNA2-1 and vsRNA3-2 seemed enriched in Ago2-immunoprecipitated complexes. vsRNA1-2 and vsRNA2-2 were detected in both of the two Ago-immunoprecipitated complexes. In contrast, vsRNA1-1 and vsRNA3-1 did not accumulate in either Ago1- or Ago2-immunoprecipitated complexes, indicating that regulatory pathways other than miRNA or siRNA pathways might be employed. In addition, two conserved L. striatellus miRNAs were analysed via the RIP method. Both miRNAs accumulated in Ago1-immunoprecipitated complexes, which was consistent with previous studies, suggesting that our experimental system can be widely used. In conclusion, our study provides an accurate and convenient detection system to determine the potential pathway of vsRNAs, and this method may also be suitable for studying other sRNAs.


Assuntos
Proteínas Argonautas/isolamento & purificação , Hemípteros/genética , Imunoprecipitação/métodos , Insetos Vetores/genética , RNA Viral/isolamento & purificação , Animais , Proteínas Argonautas/imunologia , Proteínas Argonautas/metabolismo , Hemípteros/imunologia , Hemípteros/metabolismo , Hemípteros/virologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Insetos Vetores/imunologia , Insetos Vetores/metabolismo , Insetos Vetores/virologia , MicroRNAs/genética , MicroRNAs/imunologia , MicroRNAs/metabolismo , Oryza , Doenças das Plantas/genética , Doenças das Plantas/virologia , RNA Interferente Pequeno/imunologia , RNA Interferente Pequeno/isolamento & purificação , RNA Interferente Pequeno/metabolismo , RNA Viral/imunologia , RNA Viral/metabolismo , Tenuivirus/genética , Tenuivirus/imunologia , Tenuivirus/patogenicidade
16.
Int J Mol Sci ; 22(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072567

RESUMO

In recent years, much progress has been made in elucidating the functional roles of plant glycine-rich RNA-binding proteins (GR-RBPs) during development and stress responses. Canonical GR-RBPs contain an RNA recognition motif (RRM) or a cold-shock domain (CSD) at the N-terminus and a glycine-rich domain at the C-terminus, which have been associated with several different RNA processes, such as alternative splicing, mRNA export and RNA editing. However, many aspects of GR-RBP function, the targeting of their RNAs, interacting proteins and the consequences of the RNA target process are not well understood. Here, we discuss recent findings in the field, newly defined roles for GR-RBPs and the actions of GR-RBPs on target RNA metabolism.


Assuntos
Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico , Germinação/genética , Filogenia , Processamento Pós-Transcricional do RNA , Sementes/genética , Sementes/metabolismo
17.
Dev Biol ; 455(2): 420-433, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31330130

RESUMO

Temporally-regulated maternal RNA translation is essential for embryonic development, with defective degradation resulting in stalled 2-cell embryos. We show that DDX1, a DEAD box protein implicated in RNA transport, may be a key regulator of maternal RNA utilization. DDX1 protein localizes exclusively to cytoplasmic granules in both oocytes and early stage mouse embryos, with DDX1 requiring RNA for retention at these sites. Homozygous knockout of Ddx1 causes stalling of mouse embryos at the 2-4 cell stages. These results suggest a maternal RNA-dependent role for DDX1 in the progression of embryos past the 2-4 cell stage. The change in appearance of DDX1-containing granules in developing embryos further supports a role in temporally-regulated degradation of RNAs. We carried out RNA-immunoprecipitations (RNA-IPs) to identify mRNAs bound to DDX1 in 2-cell embryos, focusing on 16 maternal genes previously shown to be essential for embryonic development past the 1- to 2-cell stages. Five of these RNAs were preferentially bound by DDX1: Ago2, Zar1, Tle6, Floped and Tif1α. We propose that DDX1 controls access to subsets of key maternal RNAs required for early embryonic development.


Assuntos
RNA Helicases DEAD-box/metabolismo , Desenvolvimento Embrionário/fisiologia , Animais , Grânulos Citoplasmáticos/metabolismo , RNA Helicases DEAD-box/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovário , RNA/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Técnicas de Cultura de Tecidos
18.
J Virol ; 93(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31554690

RESUMO

DDX21 regulates the biogenesis of rRNA and transcription of ribonucleoprotein genes. Recently, it has been reported that DDX21 regulates the growth of some RNA viruses through various mechanisms, such as inhibiting viral genome replication, suppressing virion assembly and release, and modulating antiviral immune responses (Chen et al., Cell Host Microbe 15:484-493, 2014, https://doi.org/10.1016/j.chom.2014.03.002; Dong et al., Biophys Res Commun, 473:648-653, 2016, https://doi.org/10.1016/j.bbrc.2016.03.120; and Watanabe et al., PLoS Pathog 5:e1000654, 2009, https://doi.org/10.1371/journal.ppat.1000654). The relationship between DDX21 and DNA viruses has not yet been explored. In this study, we used human cytomegalovirus (HCMV), a large human DNA virus, to investigate the potential role of DDX21 in DNA virus replication. We found that HCMV infection prevented the repression of DDX21 at protein and mRNA levels. Knockdown of DDX21 inhibited HCMV growth in human fibroblast cells (MRC5). Immunofluorescence and quantitative PCR (qPCR) results showed that knockdown of DDX21 did not affect viral DNA replication or the formation of the viral replication compartment but did significantly inhibit viral late gene transcription. Some studies have reported that DDX21 knockdown promotes the accumulation of R-loops that could restrain RNA polymerase II elongation and inhibit the transcription of certain genes. Thus, we used the DNA-RNA hybrid-specific S9.6 antibody to stain R-loops and observed that more R-loops formed in DDX21-knockdown cells than in control cells. Moreover, an DNA-RNA immunoprecipitation assay showed that more R-loops accumulated on a viral late gene in DDX21-knockdown cells. Altogether, these results suggest that DDX21 knockdown promotes the accumulation of R-loops, which prevents viral late gene transcription and consequently results in the suppression of HCMV growth. This finding provides new insight into the relationship between DDX21 and DNA virus replication.IMPORTANCE Previous studies have confirmed that DDX21 is vital for the regulation of various aspects of RNA virus replication. Our research is the first report on the role of DDX21 in HCMV DNA virus replication. We identified that DDX21 knockdown affected HCMV growth and viral late gene transcription. In order to elucidate how DDX21 regulated this transcription, we applied DNA-RNA immunoprecipitation by using the DNA-RNA hybrid-specific S9.6 antibody to test whether more R-loops accumulated on the viral late gene. Consistent with our expectation, more R-loops were detected on the viral late gene at late HCMV infection time points, which demonstrated that the accumulation of R-loops caused by DDX21 knockdown prevented viral late gene transcription and consequently impaired HCMV replication. These results reveal that DDX21 plays an important role in regulating HCMV replication and also provide a basis for investigating the role of DDX21 in regulating other DNA viruses.


Assuntos
Citomegalovirus/fisiologia , RNA Helicases DEAD-box/fisiologia , Replicação Viral/fisiologia , Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Viral/metabolismo , Fibroblastos/virologia , Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Virais , Células HEK293 , Humanos , Imunoprecipitação , RNA Polimerase II/metabolismo , Transcrição Gênica , Montagem de Vírus
19.
Exp Cell Res ; 381(1): 129-138, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31077711

RESUMO

Sox2 is a master transcriptional regulator of embryonic development. In this study, we determined the protein interactome of Sox2 in the chromatin and nucleoplasm of mouse embryonic stem (mES) cells. Apart from canonical interactions with pluripotency-regulating transcription factors, we identified interactions with several chromatin modulators, including members of the heterochromatin protein 1 (HP1) family, suggesting a role for Sox2 in chromatin-mediated transcriptional repression. Sox2 was also found to interact with RNA binding proteins (RBPs), including proteins involved in RNA processing. RNA immunoprecipitation followed by sequencing revealed that Sox2 associates with different messenger RNAs, as well as small nucleolar RNA Snord34 and the non-coding RNA 7SK. 7SK has been shown to regulate transcription at gene regulatory regions, which could suggest a functional interaction with Sox2 for chromatin recruitment. Nevertheless, we found no evidence of Sox2 modulating recruitment of 7SK to chromatin when examining 7SK chromatin occupancy by Chromatin Isolation by RNA Purification (ChIRP) in Sox2 depleted mES cells. In addition, knockdown of 7SK in mES cells did not lead to any change in Sox2 occupancy at 7SK-regulated genes. Thus, our results show that Sox2 extensively interacts with RBPs, and suggest that Sox2 and 7SK co-exist in a ribonucleoprotein complex whose function is not to regulate chromatin recruitment, but could rather regulate other processes in the nucleoplasm.


Assuntos
Células-Tronco Embrionárias Murinas/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Linhagem Celular , Cromatina/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição SOXB1/genética
20.
Int J Mol Sci ; 21(24)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371452

RESUMO

Because of their intrinsic characteristics, telomeres are genomic loci that pose significant problems during the replication of the genome. In particular, it has been observed that telomeres that are maintained in cancer cells by the alternative mechanism of the lengthening of telomeres (ALT) harbor higher levels of replicative stress compared with telomerase-positive cancer cells. R-loops are three-stranded structures formed by a DNA:RNA hybrid and a displaced ssDNA. Emerging evidence suggests that controlling the levels of R-loops at ALT telomeres is critical for telomere maintenance. In fact, on the one hand, they favor telomere recombination, but on the other, they are a source of detrimental replicative stress. DRIP (DNA:RNA immunoprecipitation) is the main technique used for the detection of R-loops, and it is based on the use of the S9.6 antibody, which recognizes preferentially DNA:RNA hybrids in a sequence-independent manner. The detection of DNA:RNA hybrids in repetitive sequences such as telomeres requires some additional precautions as a result of their repetitive nature. Here, we share an optimized protocol for the detection of telomeric DNA:RNA hybrids, and we demonstrate its application in an ALT and in a telomerase-positive cell line. We demonstrate that ALT telomeres bear higher levels of DNA:RNA hybrids, and we propose this method as a reliable way to detect them in telomeres.


Assuntos
DNA/análise , Reação em Cadeia da Polimerase/métodos , RNA/análise , Telômero/genética , DNA/genética , Células HeLa , Humanos , RNA/genética , Telomerase/metabolismo , Homeostase do Telômero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA