Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33608294

RESUMO

Depressurization and sample processing delays may impact the outcome of shipboard microbial incubations of samples collected from the deep sea. To address this knowledge gap, we developed a remotely operated vehicle (ROV)-powered incubator instrument to carry out and compare results from in situ and shipboard RNA stable isotope probing (RNA-SIP) experiments to identify the key chemolithoautotrophic microbes and metabolisms in diffuse, low-temperature venting fluids from Axial Seamount. All the incubations showed microbial uptake of labeled bicarbonate primarily by thermophilic autotrophic Epsilonbacteraeota that oxidized hydrogen coupled with nitrate reduction. However, the in situ seafloor incubations showed higher abundances of transcripts annotated for aerobic processes, suggesting that oxygen was lost from the hydrothermal fluid samples prior to shipboard analysis. Furthermore, transcripts for thermal stress proteins such as heat shock chaperones and proteases were significantly more abundant in the shipboard incubations, suggesting that depressurization induced thermal stress in the metabolically active microbes in these incubations. Together, the results indicate that while the autotrophic microbial communities in the shipboard and seafloor experiments behaved similarly, there were distinct differences that provide new insight into the activities of natural microbial assemblages under nearly native conditions in the ocean.IMPORTANCE Diverse microbial communities drive biogeochemical cycles in Earth's ocean, yet studying these organisms and processes is often limited by technological capabilities, especially in the deep ocean. In this study, we used a novel marine microbial incubator instrument capable of in situ experimentation to investigate microbial primary producers at deep-sea hydrothermal vents. We carried out identical stable isotope probing experiments coupled to RNA sequencing both on the seafloor and on the ship to examine thermophilic, microbial autotrophs in venting fluids from an active submarine volcano. Our results indicate that microbial communities were significantly impacted by the effects of depressurization and sample processing delays, with shipboard microbial communities being more stressed than seafloor incubations. Differences in metabolism were also apparent and are likely linked to the chemistry of the fluid at the beginning of the experiment. Microbial experimentation in the natural habitat provides new insights into understanding microbial activities in the ocean.


Assuntos
Técnicas Bacteriológicas/métodos , Fontes Hidrotermais/microbiologia , Microbiota/genética , Processos Autotróficos , Bactérias/genética , Sequência de Bases , Metagenoma , Pressão , RNA Ribossômico 16S/genética , Água do Mar , Navios , Fatores de Tempo
2.
Appl Microbiol Biotechnol ; 104(4): 1809-1820, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31867694

RESUMO

Constructed wetlands (CWs) are effective ecological remediation technologies for various contaminated water bodies. Here, we queried for benzene-degrading microbes in a horizontal subsurface flow CW with reducing conditions in the pore water and fed with benzene-contaminated groundwater. For identification of relevant microbes, we employed in situ microcosms (BACTRAPs, which are made from granulated activated carbon) coupled with 13C-stable isotope probing and Illumina sequencing of 16S rRNA amplicons. A significant incorporation of 13C was detected in RNA isolated from BACTRAPs loaded with 13C-benzene and exposed in the CW for 28 days. A shorter incubation time did not result in detectable 13C incorporation. After 28 days, members from four genera, namely Dechloromonas, Hydrogenophaga, and Zoogloea from the Betaproteobacteria and Arcobacter from the Epsilonproteobacteria were significantly labeled with 13C and were abundant in the bacterial community on the BACTRAPs. Sequences affiliated to Geobacter were also numerous on the BACTRAPs but apparently those microbes did not metabolize benzene as no 13C label incorporation was detected. Instead, they may have metabolized plant-derived organic compounds while using the BACTRAPs as electron sink. In representative wetland samples, sequences affiliated with Dechloromonas, Zoogloea, and Hydrogenophaga were present at relative proportions of up to a few percent. Sequences affiliated with Arcobacter were present at < 0.01% in wetland samples. In conclusion, we identified microbes of likely significance for benzene degradation in a CW used for remediation of contaminated water.


Assuntos
Benzeno/metabolismo , Proteobactérias/classificação , Proteobactérias/metabolismo , Áreas Alagadas , Isótopos de Carbono , Proteobactérias/isolamento & purificação , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
3.
Can J Microbiol ; 66(8): 491-494, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32134703

RESUMO

RNA-based stable isotope probing (RNA-SIP) is used in molecular microbial ecology to link the identity of microorganisms in a complex community with the assimilation of a distinct substrate. The technique is highly dependent on a reliable separation of isotopic-labeled RNA from unlabeled RNA by isopycnic density gradient ultracentrifugation. Here we show that 13C-labeled and unlabeled Escherichia coli RNA can be sufficiently separated by isopycnic ultracentrifugation even in the absence of formamide. However, a slightly lower starting density is needed to obtain a distribution pattern similar to that obtained when formamide was used. Hence, the commonly used addition of formamide to the centrifugation solution might not be needed to separate 13C-labeled RNA from unlabeled RNA, but this must be verified for more complex environmental mixtures of RNA. Clearly, an omission of formamide would increase the safety of RNA-SIP analyses.


Assuntos
Escherichia coli/genética , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , Isótopos de Carbono/química , Centrifugação com Gradiente de Concentração/métodos , Escherichia coli/química , Formamidas/química , Marcação por Isótopo/métodos , RNA Bacteriano/química , Ultracentrifugação/métodos
4.
Methods ; 149: 25-30, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29857194

RESUMO

The RNA-SIP technology, introduced into molecular microbial ecology in 2002, is an elegant technique to link the structure and function of complex microbial communities, i.e. to identify microbial key-players involved in distinct degradation and assimilation processes under in-situ conditions. Due to its dependence of microbial RNA, this technique is particularly suited for environments with high numbers of very active, i.e. significantly RNA-expressing, bacteria. So far, it was mainly used in environmental studies using microbiotas from soil or water habitats. Here we outline and summarize our application of RNA-SIP for the identification of bacteria involved in the degradation and assimilation of prebiotic carbohydrates in intestinal samples of human and animal origin. Following an isotope label from a prebiotic substrate into the RNA of distinct bacterial taxa will help to better understand the functionality of these medically and economically important nutrients in an intestinal environment.


Assuntos
Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Marcação por Isótopo/métodos , Microbiota/fisiologia , Sondas RNA/metabolismo , Humanos , Marcação por Isótopo/instrumentação , Sondas RNA/análise , Ultracentrifugação/métodos
5.
Can J Microbiol ; 63(1): 83-87, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27919161

RESUMO

Separation of differentially isotope-labeled bacterial RNA by isopycnic density gradient centrifugation is a critical step in RNA-based stable isotope probing analyses, which help to link the structure and function of complex microbial communities. Using isotope-labeled Escherichia coli RNA, we showed that an 8 mL near-vertical rotor performed better than a 2 mL fixed-angle rotor, thereby corroborating current recommendations. Neither increased concentrations of formamide nor urea in the medium improved the separation results using the fixed-angle rotor.


Assuntos
Centrifugação com Gradiente de Concentração/métodos , Centrifugação Isopícnica/métodos , Escherichia coli/química , RNA Bacteriano/isolamento & purificação , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Centrifugação com Gradiente de Concentração/instrumentação , Centrifugação Isopícnica/instrumentação , Escherichia coli/genética , Escherichia coli/metabolismo , Marcação por Isótopo , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
6.
Chemosphere ; 346: 140528, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37907168

RESUMO

A microaerobic (2% O2 v/v) biotrickle bed reactor supplied continuously with 2% methane to drive nitrate removal (MAME-D) was investigated using 16S rDNA and rRNA amplicon sequencing in combination with RNA-stable isotope probing (RNA-SIP) to identify the active microorganisms. Methane removal rates varied from 500 to 1000 mmol m-3h-1 and nitrate removal rates from 25 to 58 mmol m-3h-1 over 55 days of operation. Biofilm samples from the column were incubated in serum bottles supplemented with 13CH4. 16S rDNA analysis indicated a simple community structure in which four taxa accounted for 45% of the total relative abundance (RA). Dominant genera included the methanotroph Methylosinus and known denitrifiers Nubsella and Pseudoxanthomonas; along with a probable denitrifier assigned to the order Obscuribacterales. The 16S rRNA results revealed the methanotrophs Methylocystis (15% RA) and Methylosinus (10% RA) and the denitrifiers Arenimonas (10% RA) and Pseudoxanthomonas (7% RA) were the most active genera. Obscuribacterales was the most active taxa in the community at 22% RA. Activity was confirmed by the Δ buoyant density changes with time for the taxa, indicating most of the community activity was associated with methane oxidation and subsequent consumption of methanotrophic metabolic intermediates by the denitrifiers. This is the first report of RNA stable isotope probing within a microaerobic methane driven denitrification system and the active community was markedly different from the full community identified via 16S-rDNA analysis.


Assuntos
Metano , Nitratos , Metano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Nitratos/metabolismo , Desnitrificação , Isótopos , Oxirredução , Bactérias/metabolismo , Biofilmes , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Filogenia
7.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365251

RESUMO

Significant amounts of organic carbon in marine sediments are degraded, coupled with sulfate reduction. However, the actual carbon and energy sources used in situ have not been assigned to each group of diverse sulfate-reducing microorganisms (SRM) owing to the microbial and environmental complexity in sediments. Here, we probed microbial activity in temperate and permanently cold marine sediments by using potential SRM substrates, organic fermentation products at very low concentrations (15-30 µM), with RNA-based stable isotope probing. Unexpectedly, SRM were involved only to a minor degree in organic fermentation product mineralization, whereas metal-reducing microbes were dominant. Contrastingly, distinct SRM strongly assimilated 13C-DIC (dissolved inorganic carbon) with H2 as the electron donor. Our study suggests that canonical SRM prefer autotrophic lifestyle, with hydrogen as the electron donor, while metal-reducing microorganisms are involved in heterotrophic organic matter turnover, and thus regulate carbon fluxes in an unexpected way in marine sediments.


Assuntos
Sedimentos Geológicos , Sulfatos , Sedimentos Geológicos/química , Sulfatos/metabolismo , Carbono/metabolismo , Processos Heterotróficos , Fermentação
8.
Environ Pollut ; 313: 120192, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36126767

RESUMO

Bioaugmentation is an effective approach for removing pyrene from contaminated sites, and its performance is enhanced by a biosurfactant. To reveal the mechanisms of biosurfactant-assisted bioaugmentation, we introduced RNA stable isotope probing (RNA-SIP) in the pyrene-contaminated soils and explored the impacts of rhamnolipid on the pyrene degradation process. After 12-day degradation, residual pyrene was the lowest in the bioaugmentation treatment (7.76 ± 1.57%), followed by biosurfactant-assisted bioaugmentation (9.86 ± 2.58%) and enhanced natural attenuation (23.97 ± 1.05%). Thirteen well-known and two novel pyrene-degrading bacteria were confirmed to participate in the pyrene degradation. Pyrene degradation was accelerated in the biosurfactant-assisted bioaugmentation, manifested by the high diversity of active pyrene degraders. Our findings expand the knowledge on pyrene degrading bacteria and the mechanisms of pyrene degradation in a bioaugmentation process.


Assuntos
Microbiologia do Solo , Poluentes do Solo , Bactérias/metabolismo , Biodegradação Ambiental , Isótopos/metabolismo , Pirenos/metabolismo , RNA/metabolismo , Sondas RNA/metabolismo , Solo , Poluentes do Solo/análise
9.
Methods Mol Biol ; 2046: 1-15, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31407292

RESUMO

Careful and thoughtful experimental design is crucial to the success of any SIP experiment. This chapter discusses the essential aspects of designing a SIP experiment, focusing primarily on DNA- and RNA-SIP. The design aspects discussed here begin with considerations for carrying out the incubation, such as, the effect of choosing different stable isotopes and target biomolecules, to what degree should a labeled substrate be enriched, what concentration to use, and how long should the incubation take. Then tips and pitfalls in the technical execution of SIP are listed, including how much nucleic acids should be loaded, how many fractions to collect, and what centrifuge rotor to use. Lastly, a brief overview of the current methods for analyzing SIP data is presented, focusing on high-throughput amplicon sequencing, together with a discussion on how the choice of analysis method might affect the experimental design.


Assuntos
DNA/metabolismo , Marcação por Isótopo/métodos , RNA/metabolismo , Isótopos de Carbono/análise , DNA Bacteriano/química , Análise de Dados , Deutério/análise , Sequenciamento de Nucleotídeos em Larga Escala , Isótopos de Nitrogênio/análise , Isótopos de Oxigênio/análise , RNA Bacteriano/química , Projetos de Pesquisa
10.
Methods Mol Biol ; 2046: 221-231, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31407308

RESUMO

The RNA-SIP technology allows for linking the structure and function of complex microbial communities, that is, the identification of microbial key players involved in distinct degradation and assimilation processes under in situ conditions. Being dependent on RNA, this technique is particularly suited for environments with high numbers of very active, that is, significantly RNA-expressing microorganisms, such as intestinal tract samples. We use RNA-SIP for the identification of bacteria involved in the degradation and assimilation of prebiotic carbohydrates in order to better understand the functionality of these medically and economically important nutrients in human and animal intestinal environments.


Assuntos
Isótopos de Carbono/metabolismo , Intestinos/microbiologia , Marcação por Isótopo/métodos , RNA Bacteriano/metabolismo , Animais , Bactérias/genética , Bactérias/metabolismo , Centrifugação com Gradiente de Concentração , Glucose/metabolismo , Humanos , Microbiota/genética , Microbiota/fisiologia , Prebióticos/microbiologia , Sondas RNA/metabolismo , RNA Bacteriano/isolamento & purificação , Amido/metabolismo
11.
Methods Mol Biol ; 2046: 31-44, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31407294

RESUMO

Stable isotope probing is a combined molecular and isotopic technique used to probe the identity and function of uncultivated microorganisms within environmental samples. Employing stable isotopes of common elements such as carbon and nitrogen, RNA-SIP exploits an increase in the buoyant density of RNA caused by the active metabolism and incorporation of heavier mass isotopes into the RNA after cellular utilization of labeled substrates pulsed into the community. Labeled RNAs are subsequently separated from unlabeled RNAs by density gradient centrifugation followed by identification of the RNAs by sequencing. Therefore, RNA stable isotope probing is a culture-independent technique that provides simultaneous information about microbiome community, composition and function. This chapter presents the detailed protocol for performing an RNA-SIP experiment, including the formation, ultracentrifugation, and fractional analyses of stable isotope-labeled RNAs extracted from environmental samples.


Assuntos
Marcação por Isótopo/métodos , Sondas RNA/metabolismo , Isótopos de Carbono/química , Centrifugação com Gradiente de Concentração/instrumentação , Centrifugação com Gradiente de Concentração/métodos , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Microbiota/genética , RNA/isolamento & purificação , RNA/metabolismo , Sondas RNA/genética , RNA Ribossômico 16S/metabolismo , Análise Espectral Raman , Fluxo de Trabalho
12.
Methods Mol Biol ; 2046: 175-187, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31407305

RESUMO

Nitrogen fixation and assimilation processes are vital to the functioning of any ecosystem. Nevertheless, studying these processes using 15N-based stable isotope probing was so far limited because of technical challenges related to the relative rarity of nitrogen in nucleic acids and proteins compared to carbon, and because of its absence in lipids. However, the recent adoption of high-throughput sequencing and statistical modelling methods to SIP studies increased the sensitivity of the method and enabled overcoming some of the challenges. This chapter describes in detail how to perform DNA- and RNA-SIP using 15N.


Assuntos
DNA Bacteriano/metabolismo , Marcação por Isótopo/métodos , Isótopos de Nitrogênio/metabolismo , Bactérias Fixadoras de Nitrogênio/genética , RNA Bacteriano/metabolismo , Centrifugação com Gradiente de Concentração , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Fixação de Nitrogênio/genética , Fixação de Nitrogênio/fisiologia , Bactérias Fixadoras de Nitrogênio/metabolismo , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação
13.
mBio ; 10(6)2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690672

RESUMO

Nitrification, the oxidative process converting ammonia to nitrite and nitrate, is driven by microbes and plays a central role in the global nitrogen cycle. Our earlier investigations based on 16S rRNA and amoA amplicon analysis, amoA quantitative PCR and metagenomics of groundwater-fed biofilters indicated a consistently high abundance of comammox Nitrospira Here, we hypothesized that these nonclassical nitrifiers drive ammonia-N oxidation. Hence, we used DNA and RNA stable isotope probing (SIP) coupled with 16S rRNA amplicon sequencing to identify the active members in the biofilter community when subjected to a continuous supply of NH4+ or NO2- in the presence of 13C-HCO3- (labeled) or 12C-HCO3- (unlabeled). Allylthiourea (ATU) and sodium chlorate were added to inhibit autotrophic ammonia- and nitrite-oxidizing bacteria, respectively. Our results confirmed that lineage II Nitrospira dominated ammonia oxidation in the biofilter community. A total of 78 (8 by RNA-SIP and 70 by DNA-SIP) and 96 (25 by RNA-SIP and 71 by DNA-SIP) Nitrospira phylotypes (at 99% 16S rRNA sequence similarity) were identified as complete ammonia- and nitrite-oxidizing, respectively. We also detected significant HCO3- uptake by Acidobacteria subgroup10, Pedomicrobium, Rhizobacter, and Acidovorax under conditions that favored ammonia oxidation. Canonical Nitrospira alone drove nitrite oxidation in the biofilter community, and activity of archaeal ammonia-oxidizing taxa was not detected in the SIP fractions. This study provides the first in situ evidence of ammonia oxidation by comammox Nitrospira in an ecologically relevant complex microbiome.IMPORTANCE With this study we provide the first in situ evidence of ecologically relevant ammonia oxidation by comammox Nitrospira in a complex microbiome and document an unexpectedly high H13CO3- uptake and growth of proteobacterial and acidobacterial taxa under ammonia selectivity. This finding raises the question of whether comammox Nitrospira is an equally important ammonia oxidizer in other environments.


Assuntos
Bactérias/genética , DNA/genética , Água Subterrânea/microbiologia , Nitrificação/genética , RNA Ribossômico 16S/genética , Amônia/metabolismo , Archaea/genética , Processos Autotróficos/genética , Isótopos , Nitratos/metabolismo , Nitritos/metabolismo , Ciclo do Nitrogênio/genética , Oxirredução
14.
Front Microbiol ; 9: 2696, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483229

RESUMO

While most studies using RNA-stable isotope probing (SIP) to date have focused on ribosomal RNA, the detection of 13C-labeled mRNA has rarely been demonstrated. This approach could alleviate some of the major caveats of current non-target environmental "omics." Here, we demonstrate the feasibility of total RNA-SIP in an experiment where hydrocarbon-degrading microbes from a BTEX-contaminated aquifer were studied in microcosms with 13C-labeled toluene under microoxic conditions. From the total sequencing reads (∼30 mio. reads per density-resolved RNA fraction), an average of 1.2% of reads per sample were identified as non-rRNA, including mRNA. Members of the Rhodocyclaceae (including those related to Quatrionicoccus spp.) were most abundant and enriched in 13C-rRNA, while well-known aerobic degraders such as Pseudomonas spp. remained unlabeled. Transcripts related to cell motility, secondary metabolite formation and xenobiotics degradation were highly labeled with 13C. mRNA of phenol hydroxylase genes were highly labeled and abundant, while other transcripts of toluene-activation were not detected. Clear labeling of catechol 2,3-dioxygenase transcripts supported previous findings that some of these extradiol dioxygenases were adapted to low oxygen concentrations. We introduce a novel combination of total RNA-SIP with calculation of transcript-specific enrichment factors (EFs) in 13C-RNA, enabling a targeted approach to process-relevant gene expression in complex microbiomes.

15.
Nutrients ; 10(2)2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29415499

RESUMO

Resistant starch (RS) is the digestion resistant fraction of complex polysaccharide starch. By reaching the large bowel, RS can function as a prebiotic carbohydrate, i.e., it can shape the structure and activity of bowel bacterial communities towards a profile that confers health benefits. However, knowledge about the fate of RS in complex intestinal communities and the microbial members involved in its degradation is limited. In this study, 16S ribosomal RNA (rRNA)-based stable isotope probing (RNA-SIP) was used to identify mouse bowel bacteria involved in the assimilation of RS or its derivatives directly in their natural gut habitat. Stable-isotope [U13C]-labeled native potato starch was administrated to mice, and caecal contents were collected before 0 h and 2 h and 4 h after administration. 'Heavy', isotope-labeled [13C]RNA species, presumably derived from bacteria that have metabolized the labeled starch, were separated from 'light', unlabeled [12C]RNA species by fractionation of isolated total RNA in isopycnic-density gradients. Inspection of different density gradients showed a continuous increase in 'heavy' 16S rRNA in caecal samples over the course of the experiment. Sequencing analyses of unlabeled and labeled 16S amplicons particularly suggested a group of unclassified Clostridiales, Dorea, and a few other taxa (Bacteroides, Turicibacter) to be most actively involved in starch assimilation in vivo. In addition, metabolic product analyses revealed that the predominant 13C-labeled short chain fatty acid (SCFA) in caecal contents produced from the [U13C] starch was butyrate. For the first time, this study provides insights into the metabolic transformation of RS by intestinal bacterial communities directly within a gut ecosystem, which will finally help to better understand its prebiotic potential and possible applications in human health.


Assuntos
Bactérias/metabolismo , Ceco/microbiologia , Microbioma Gastrointestinal/fisiologia , RNA Bacteriano/genética , Amido/metabolismo , Animais , Bactérias/genética , Feminino , Masculino , Camundongos , RNA Ribossômico 16S/genética , Distribuição Aleatória , Organismos Livres de Patógenos Específicos
16.
Trends Microbiol ; 26(12): 999-1007, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30001854

RESUMO

Humans and animals host diverse communities of microorganisms important to their physiology and health. Despite extensive sequencing-based characterization of host-associated microbiomes, there remains a dramatic lack of understanding of microbial functions. Stable-isotope probing (SIP) is a powerful strategy to elucidate the ecophysiology of microorganisms in complex host-associated microbiotas. Here, we suggest that SIP methodologies should be more frequently exploited as part of a holistic functional microbiomics approach. We provide examples of how SIP has been used to study host-associated microbes in vivo and ex vivo. We highlight recent developments in SIP technologies and discuss future directions that will facilitate deeper insights into the function of human and animal microbiomes.


Assuntos
Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Marcação por Isótopo/métodos , Isótopos , Animais , Fenômenos Fisiológicos Bacterianos , DNA/química , Humanos , Metagenoma , Metagenômica/métodos , Sondas Moleculares , RNA/química , Análise Espectral Raman/métodos
17.
Front Microbiol ; 8: 1331, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28790981

RESUMO

The impact of the intestinal microbiota on human health is becoming increasingly appreciated in recent years. In consequence, and fueled by major technological advances, the composition of the intestinal microbiota in health and disease has been intensively studied by high throughput sequencing approaches. Observations linking dysbiosis of the intestinal microbiota with a number of serious medical conditions including chronic inflammatory disorders and allergic diseases suggest that restoration of the composition and activity of the intestinal microbiota may be a treatment option at least for some of these diseases. One possibility to shape the intestinal microbiota is the administration of prebiotic carbohydrates such as resistant starch (RS). In the present study, we aim at establishing RNA-based stable isotope probing (RNA-SIP) to identify bacterial populations that are involved in the assimilation of RS using anaerobic in vitro fermentation of murine fecal material with stable [U13C] isotope-labeled potato starch. Total RNA from these incubations was extracted, processed by gradient ultracentrifugation and fractionated by density. 16S rRNA gene sequences were amplified from reverse transcribed RNA of high and low density fractions suspected to contain labeled and unlabeled RNA, respectively. Phylogenetic analysis of the obtained sequences revealed a distinct subset of the intestinal microbiota involved in starch metabolism. The results suggest Bacteroidetes, in particular genera affiliated with Prevotellaceae, as well as members of the Ruminococcacea family to be primary assimilators of resistant starch due to a significantly higher relative abundance in higher density fractions in RNA samples isolated after 2 h of incubation. Using high performance liquid chromatography coupled to isotope ratio mass spectrometry (HPLC-IRMS) analysis, some stable isotope label was recovered from acetate, propionate and butyrate. Here, we demonstrate the suitability of RNA-SIP to link specific groups of microorganisms with fermentation of a specific substrate. The application of RNA-SIP in future in vivo studies will help to better understand the mechanisms behind functionality of a prebiotic carbohydrate and its impact on an intestinal ecosystem with potential implications for human health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA