Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Perfusion ; 38(7): 1418-1427, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35849687

RESUMO

BACKGROUND: We have previously shown that remote ischemic preconditioning (RIP), which utilizes in part the extracellular RNA (eRNA)/RNase1 pathway, can induce ischemic tolerance in humans. Because RIP has thus far been tested only with four cycles of extremity ischemia/reperfusion, we investigated the influence of six cycles of ischemia on the eRNA/RNase1 pathway in cardiac patients. METHODS: Six cycles of RIP were carried out in 14 patients undergoing cardiac surgery. Blood samples were taken at 13 timepoints during surgery and at three timepoints after surgery for determining serum levels of RNase1, eRNA, and TNF-α. Trans-cardiac gradients between the myocardial blood inflow and outflow were calculated. RESULTS: Between the fourth and the sixth RIP cycles, a noticeable increase in the levels of eRNA (fourth: 151.6 (SD: 44.2) ng/ml vs sixth: 181.8 (SD: 87.5) ng/ml, p = .071), and a significant increase in RNase1 (fourth: 151.1 (SD: 42.6) U/ml vs sixth: 175.3 (SD: 41.2) U/ml, p = .001), were noted. The trans-cardiac gradients of RNase1 and eRNA before and after ischemia were not significantly different (p = .158 and p = .221; p = .397 and p = .683, respectively). Likewise, the trans-cardiac gradient of TNF-α was similar before and after ischemia. During the first 48 h after the surgery, RNase1 activity rose significantly and exceeded baseline values (135.7 (SD: 40.6) U/ml before and 279.2 (SD: 85.6) U/ml after surgery, p = .001) as did eRNA levels (148,6 (SD: 35.4) ng/ml before and 396.5 (SD: 154.5) ng/ml after surgery, p = .005), whereas TNF-α levels decreased significantly (91.7 (SD: 47.7) pg/ml before and 35.7 (SD: 36.9) pg/ml after surgery, p = .001). CONCLUSION: Six RIP cycles increased the RNase1 levels significantly above those observed with four cycles. More clinical data are required to show whether this translates into a benefit for patients.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Precondicionamento Isquêmico , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Isquemia , Miocárdio/metabolismo
2.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569802

RESUMO

The COVID-19 pandemic caused by the new SARS-CoV-2 coronavirus is the most recent and well-known outbreak of a coronavirus. RNase 1 is a small endogenous antimicrobial polypeptide that possesses antiviral activity against viral diseases. In this study, we investigated a potential association between ribonuclease 1 and the outcome in COVID-19 patients and the impact of increased and decreased RNase 1 levels serum during the course of the disease. Therefore, two patient populations, Cohort A (n = 35) and B (n = 80), were subclassified into two groups, in which the RNase 1 concentration increased or decreased from time point one to time point two. We show that the RNase 1 serum levels significantly increased in the increasing group of both cohorts (p = 0.0171; p < 0.0001). We detect that patients in the increasing group who died had significantly higher RNase 1 serum levels at both time points in Cohort A (p = 0.0170; p = 0.0393) and Cohort B (p = 0.0253; p = 0.0034) than patients who survived. Additionally, we measured a significant correlation of RNase 1 serum levels with serum creatinine as well as creatinine clearance in the increasing and decreasing group at both time points of Cohort A. Based on these results, there is now good evidence that RNase 1 may play a role in renal dysfunction associated with ICU COVID-19 patients and that increasing RNase 1 serum level may be a potential biomarker to predict outcome in COVID-19 patients.

3.
Proteins ; 88(7): 874-888, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31999374

RESUMO

The 3D structure of a protein is essential to understand protein dynamics. If experimentally determined structure is unavailable, comparative models could be used to infer dynamics. However, the effectiveness of comparative models, compared to experimental structures, in inferring dynamics is not clear. To address this, we compared dynamics features of ~800 comparative models with their crystal structures using normal mode analysis. Average similarity in magnitude, direction, and correlation of residue motions is >0.8 (where value 1 is identical) indicating that the dynamics of models and crystal structures are highly similar. Accuracy of 3D structure and dynamics is significantly higher for models built on multiple and/or high sequence identity templates (>40%). Three-dimensional (3D) structure and residue fluctuations of models are closer to that of crystal structures than to templates (TM score 0.9 vs 0.7 and square inner product 0.92 vs 0.88). Furthermore, long-range molecular dynamics simulations on comparative models of RNase 1 and Angiogenin showed significant differences in the conformational sampling of conserved active-site residues that characterize differences in their activity levels. Similar analyses on two EGFR kinase variant models highlight the effect of mutations on the functional state-specific αC helix motions and these results corroborate with the previous experimental observations. Thus, our study adds confidence to the use of comparative models in understanding protein dynamics.


Assuntos
Receptores ErbB/química , Simulação de Dinâmica Molecular , Ribonuclease Pancreático/química , Ribonucleases/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Receptores ErbB/metabolismo , Humanos , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Ribonuclease Pancreático/metabolismo , Ribonucleases/metabolismo , Homologia Estrutural de Proteína , Termodinâmica
4.
Acta Vet Hung ; 67(3): 385-400, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31549540

RESUMO

The relationship between PcR-restriction fragment length polymorphism in RNASE1 (296 A/G), ANG (149 G/T) and RNASE6 (389 C/T) genes and the values of haematological and biochemical blood indices was analysed in crossbred suckling piglets (n = 473), aged 21 ± 3 days (younger, n = 274) and 35 ± 3 days (older, n = 199), descending from Polish Large White × Polish Landrace sows and Duroc × Pietrain boars. The observed distribution of all genotypes was consistent with the Hardy-Weinberg equilibrium. Anaemia was more common in younger piglets with RNASE1 GA genotype but in the blood of older GA piglets a higher count and percentage of granulocytes were noted. This could be related to the destruction of erythrocytes in younger piglets and enhanced host defence in older ones. ANG gene polymorphism was associated with the severity of iron deficiency in younger piglets. This is supposed to be linked with the different ability to protect immune cells against suppression and degradation during iron deficiency. in older piglets, this mutation differentiated the reactivity of the immune system. Varying levels of iron status and red blood cell indices in RNASE6 genotypes presumably resulted from the coupling of genes involved in iron metabolism and expressed in an age-dependent manner.


Assuntos
Endorribonucleases/genética , Polimorfismo Genético , Ribonuclease Pancreático/genética , Sus scrofa/sangue , Sus scrofa/genética , Fatores Etários , Animais , Análise Química do Sangue/veterinária , Endorribonucleases/metabolismo , Ribonuclease Pancreático/metabolismo
5.
Mol Biol Evol ; 33(12): 3144-3157, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27651393

RESUMO

Although cetaceans (whales, porpoises, and dolphins) have multi-chambered stomachs, feeding habits of modern cetaceans have dramatically changed from herbivorous to carnivorous. However, the genetic basis underlying this dietary switch remains unexplored. Here, we present the first systematic investigation of 10 digestive enzymes genes (i.e., CYP7A1, CTRC, LIPC, LIPF, PNLIP, PGC, PRSS1, SI, SLC5A1, and TMPRSS15) of representative cetaceans, and the evolutionary trajectory of RNASE1 in cetartiodactylans. Positive selections were detected with proteinases (i.e., CTRC, PRSS1, and TMPRSS15) and lipases (i.e., CYP7A1, LIPF, and PNLIP) suggesting that cetaceans have evolved an enhanced digestion capacity for proteins and lipids, the major nutritional components of their prey (fishes and invertebrates). In addition, it was found that RNASE1 gene duplicated after the cetartiodactylan speciation and two independent gene duplication events took place in Camelidae and Ruminantia. Positive selection was detected with RNASE1 of Camelidae and Bovidae, suggesting enhanced digestive efficiency in the ruminants. Remarkably, even though the ancestors of cetaceans were terrestrial artiodactyls that are herbivorous, modern cetaceans lost the pancreatic RNASE1 copy with digestive function, which is in accordance with the dietary change from herbivorous to carnivorous. In sum, this is the first study that provides new insights into the evolutionary mechanism of dietary switch in cetaceans.


Assuntos
Cetáceos/genética , Cetáceos/metabolismo , Ribonuclease Pancreático/genética , Ribonuclease Pancreático/metabolismo , Animais , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Quimotripsina/genética , Quimotripsina/metabolismo , Golfinhos/genética , Golfinhos/metabolismo , Evolução Molecular , Comportamento Alimentar/fisiologia , Duplicação Gênica , Lipase/genética , Filogenia , Receptores Odorantes/genética , Seleção Genética , Transportador 1 de Glucose-Sódio/genética , Tripsina/genética , Baleias/genética , Baleias/metabolismo
6.
Int J Mol Sci ; 17(5)2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27213364

RESUMO

Ribonuclease 1 (RNase1) is an important digestive enzyme that has been used to study the molecular evolutionary and plant-feeding adaptation of mammals. However, the expression patterns and potential biological function of RNase1 in herbivorous fish is not known. Here, we identified RNase1 from five fish species and illuminated the functional diversification and expression of RNase1 in herbivorous Megalobrama amblycephala. The five identified fish RNase1 genes all have the signature motifs of the RNase A superfamily. No expression of Ma-RNase1 was detected in early developmental stages but a weak expression was detected at 120 and 144 hours post-fertilization (hpf). Ma-RNase1 was only expressed in the liver and heart of one-year-old fish but strongly expressed in the liver, spleen, gut, kidney and testis of two-year-old fish. Moreover, the immunostaining localized RNase1 production to multiple tissues of two-year-old fish. A biological functional analysis of the recombinant protein demonstrated that M. amblycephala RNase1 had a relatively strong ribonuclease activity at its optimal pH 6.1, which is consistent with the pH of its intestinal microenvironment. Collectively, these results clearly show that Ma-RNase1 protein has ribonuclease activity and the expression patterns of Ma-RNase1 are dramatically different in one year and two-year-old fish, suggesting the functional differentiation during fish growing.


Assuntos
Cyprinidae/metabolismo , Proteínas de Peixes/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Fígado/enzimologia , Miocárdio/enzimologia , Ribonucleases/biossíntese , Animais , Cyprinidae/genética , Proteínas de Peixes/genética , Especificidade de Órgãos/fisiologia , Ribonucleases/genética
7.
Discov Oncol ; 15(1): 301, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044041

RESUMO

Gastric cancer is a significant global health concern with complex molecular underpinnings influencing disease progression and patient outcomes. Various molecular drivers were reported, and these studies offered potential avenues for targeted therapies, biomarker discovery, and the development of precision medicine strategies. However, it was posed that the heterogeneity of the disease and the complexity of the molecular interactions are still challenging. By seamlessly integrating data from single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (bulk RNA-seq), we embarked on characterizing molecular signatures and establishing a prognostic signature for this complex malignancy. We offered a holistic view of gene expression landscapes in gastric cancer, identified 226 candidate marker genes from 3 different dimensions, and unraveled key players' risk stratification and treatment decision-making. The convergence of molecular insights in gastric cancer progression occurs at multiple biological scales simultaneously. The focal point of this study lies in developing a prognostic model, and we amalgamated four molecular signatures (COL4A1, FKBP10, RNASE1, SNCG) and three clinical parameters using advanced machine-learning techniques. The model showed high predictive accuracy, with the potential to revolutionize patient care by using clinical variables. This will strengthen the reliability of the model and enable personalized therapeutic strategies based on each patient's unique molecular profile. In summary, our research sheds light on the molecular underpinnings of gastric cancer, culminating in a powerful prognostic tool for gastric cancer. With a firm foundation in biological insights and clinical implications, our study paves the way for future validations and underscores the potential of integrated molecular analysis in advancing precision oncology.

8.
Protein J ; 43(2): 316-332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38145445

RESUMO

Most plant and bacterial toxins are highly immunogenic with non-specific toxic effects. Human ribonucleases are thought to provide a promising basis for reducing the toxic agent's immunogenic properties, which are candidates for cancer therapy. In the cell, the ribonuclease inhibitor (RI) protein binds to the ribonuclease enzyme and forms a tight complex. This study aimed to engineer and provide a gene construct encoding an improved version of Human Pancreatic RNase 1 (HP-RNase 1) to reduce connection to RI and modulate the immunogenic effects of immunotoxins. To further characterize the interaction complex of HP-RNase 1 and RI, we established various in silico and in vitro approaches. These methods allowed us to specifically monitor interactions within native and engineered HP-RNase 1/RI complexes. In silico research involved molecular dynamics (MD) simulations of native and mutant HP-RNase 1 in their free form and when bound to RI. For HP-RNase 1 engineering, we designed five mutations (K8A/N72A/N89A/R92D/E112/A) based on literature studies, as this combination proved effective for the intended investigation. Then, the cDNA encoding HP-RNase 1 was generated by RT-PCR from blood and cloned into the pSYN2 expression vector. Consequently, wild-type and the engineered HP-RNase 1 were over-expressed in E. coli TG1 and purified using an IMAC column directed against a poly-his tag. The protein products were detected by SDS-PAGE and Western blot analysis. HP-RNase 1 catalytic activity, in the presence of various concentrations of RI, demonstrated that the mutated version of the protein is able to escape the ribonuclease inhibitor and target the RNA substrate 2.5 folds more than that of the wild type. From these data, we tend to suggest the engineered recombinant HP-RNase 1 potentially as a new immunotherapeutic agent for application in human cancer therapy.


Assuntos
Proteínas de Transporte , Simulação de Dinâmica Molecular , Engenharia de Proteínas , Ribonuclease Pancreático , Humanos , Engenharia de Proteínas/métodos , Ribonuclease Pancreático/química , Ribonuclease Pancreático/genética , Ribonuclease Pancreático/metabolismo , Neoplasias/terapia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Imunotoxinas/química , Imunotoxinas/genética , Imunotoxinas/farmacologia , Mutação
9.
Biochim Biophys Acta Mol Cell Res ; 1870(2): 119408, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36503009

RESUMO

Upon microbial infections with the subsequent host response of innate immunity, a variety of fragmented RNA- and DNA-based "Pathogen-associated molecular patterns" (PAMPs) are recognized mainly by endosomal or cytoplasmic host cell "Pattern recognition receptors" (PRRs), particularly "Toll-like receptors" (TLRs). Concomitantly, various self-extracellular RNA species (exRNAs) are present in extracellular body fluids where they contribute to diverse physiological and homeostatic processes. In principle, such exRNAs, including the most abundant one, ribosomal exRNA (rexRNA), are designated as "Danger-associated molecular patterns" (DAMPs) and are prevented by e.g. natural modifications from uncontrolled signaling via TLRs to avoid hyper-inflammatory responses or autoimmunity. Upon cellular stress or tissue damage/necrosis, the levels and composition of released self-exRNA species, either in free form, in complex with proteins or in association with extracellular vesicles (EVs), can change considerably. Among the self-exRNAs, rexRNA is considered as a non-typical DAMP, since it may induce inflammatory responses by cell membrane receptors, both in the absence or presence of PAMPs. Yet, its mode of receptor activation to mount inflammatory responses remains obscure. RexRNA also serves as a universal damaging factor in cardiovascular and other diseases independent of PRRs. In general, RNase1 provides a profound antagonist in these pathologies and in rexRNA-mediated inflammatory cell responses. Based on the extrapolation of the here described aspects of rexRNA-biology, further activities of this molecular entity are hypothesized that may stimulate additional research in this area.


Assuntos
Moléculas com Motivos Associados a Patógenos , RNA Ribossômico , RNA Ribossômico/genética , Imunidade Inata , Receptores de Reconhecimento de Padrão/metabolismo , RNA/genética , Alarminas/genética
10.
Am J Cancer Res ; 12(10): 4865-4878, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36381327

RESUMO

It has been shown that several ribonuclease (RNase) A superfamily proteins serve as ligands of receptor tyrosine kinases (RTKs), representing a new concept for ligand/receptor interaction. Moreover, recent studies indicate high clinical values for this type of ligand/RTK interactions. However, there is no structural report for this new family of ligand/receptor. In an attempt to understand how RNase and RTK may interact, we focused on the RNase1/ephrin type-A receptor 4 (EphA4) complex and predicted their structure by using the state-of-the-art machine learning method, AlphaFold and its derivative method, AF2Complex. In this model, electrostatic force plays an essential role for the specific ligand/receptor interaction. We found the R39 of RNase1 is the key residue for EphA4-binding and activation. Mutation on this residue causes disruption of an essential basic patch, resulting in weaker ligand-receptor association and leading to the loss of activation. By comparing the surface charge distribution of the RNase A superfamily, we found the positively charged residues on the RNase1 surface is more accessible for EphA4 forming salt bridges than other RNases. Furthermore, RNase1 binds to the ligand-binding domain (LBD) of EphA4, which is responsible for the traditional ligand ephrin-binding. Our model reveals the location of RNase1 on EphA4 partially overlaps with that of ephrin-A5, a traditional ligand of EphA4, suggesting steric hindrance as the basis by which the ephrin-A5 precludes interactions of RNase1 with EphA4. Together, our discovery of RNase1/EphA4 interface provides a potential treatment strategy by blocking the RNase1-EphA4 axis.

11.
Front Mol Biosci ; 9: 964717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188223

RESUMO

Design of novel antibiotics to fight antimicrobial resistance is one of the first global health priorities. Novel protein-based strategies come out as alternative therapies. Based on the structure-function knowledge of the RNase A superfamily we have engineered a chimera that combines RNase 1 highest catalytic activity with RNase 3 unique antipathogen properties. A first construct (RNase 3/1-v1) was successfully designed with a catalytic activity 40-fold higher than RNase 3, but alas in detriment of its anti-pathogenic activity. Next, two new versions of the original chimeric protein were created showing improvement in the antimicrobial activity. Both second generation versions (RNases 3/1-v2 and -v3) incorporated a loop characteristic of RNase 3 (L7), associated to antimicrobial activity. Last, removal of an RNase 1 flexible loop (L1) in the third version enhanced its antimicrobial properties and catalytic efficiency. Here we solved the 3D structures of the three chimeras at atomic resolution by X-ray crystallography. Structural analysis outlined the key functional regions. Prediction by molecular docking of the protein chimera in complex with dinucleotides highlighted the contribution of the C-terminal region to shape the substrate binding cavity and determine the base selectivity and catalytic efficiency. Nonetheless, the structures that incorporated the key features related to RNase 3 antimicrobial activity retained the overall RNase 1 active site conformation together with the essential structural elements for binding to the human ribonuclease inhibitor (RNHI), ensuring non-cytotoxicity. Results will guide us in the design of the best RNase pharmacophore for anti-infective therapies.

12.
Int J Biol Macromol ; 172: 309-320, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33454323

RESUMO

Ribonuclease 1 (RNase1) is a vertebrate-specific enzyme that mainly performs digestive activity in herbivorous mammals. Here we used bacterial viability assays to explore its antimicrobial activity in blunt snout bream (Megalobrama amblycephala). The results showed that Ma-RNase1 rapidly killed Gram-negative and Gram-positive bacteria at micromolar concentrations. Ma-RNase1 increased the permeability of bacterial outer and inner membranes, thus reducing the integrity of bacterial cell wall and membrane. Moreover, Ma-RNase1 effectively counteracted the tissue damage and apoptosis caused by Aeromonas hydrophila infection. Quantitative real-time PCR and immunoblot analysis indicated that RNase1 mRNA and protein were up-regulated in the kidney and gut during infection. Furthermore, A. hydrophila infection significantly induced Tnf-α and Il-1ß mRNA expression in liver, but not in the RNase1 pre-treatment group. In addition, a significant increase in the expression of immune-related genes (Nf-κb and Tlr4) was found in liver, kidney and gut of A. hydrophila-infected fish, while a decrease in Myd88 and Tlr4 levels was found in liver, spleen, kidney and gut in the group pre-treated with RNase1. Collectively, these data suggest that Ma-RNase1 has antimicrobial function both in vitro and in vivo, and contributes to the protective effect and immune defense of blunt snout bream.


Assuntos
Aeromonas hydrophila/imunologia , Cyprinidae/genética , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Infecções por Bactérias Gram-Negativas/genética , Ribonucleases/genética , Aeromonas hydrophila/crescimento & desenvolvimento , Aeromonas hydrophila/patogenicidade , Animais , Membrana Celular/imunologia , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Cyprinidae/imunologia , Cyprinidae/microbiologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Doenças dos Peixes/enzimologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/patologia , Proteínas de Peixes/imunologia , Regulação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/enzimologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/patologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Rim/imunologia , Rim/microbiologia , Fígado/imunologia , Fígado/microbiologia , Viabilidade Microbiana , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Ribonucleases/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
13.
Front Cell Dev Biol ; 8: 619221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392206

RESUMO

Upon vascular injury, tissue damage, ischemia, or microbial infection, intracellular material such as nucleic acids and histones is liberated and comes into contact with the vessel wall and circulating blood cells. Such "Danger-associated molecular patterns" (DAMPs) may thus have an enduring influence on the inflammatory defense process that involves leukocyte recruitment and wound healing reactions. While different species of extracellular RNA (exRNA), including microRNAs and long non-coding RNAs, have been implicated to influence inflammatory processes at different levels, recent in vitro and in vivo work has demonstrated a major impact of ribosomal exRNA as a prominent DAMP on various steps of leukocyte recruitment within the innate immune response. This includes the induction of vascular hyper-permeability and vasogenic edema by exRNA via the activation of the "vascular endothelial growth factor" (VEGF) receptor-2 system, as well as the recruitment of leukocytes to the inflamed endothelium, the M1-type polarization of inflammatory macrophages, or the role of exRNA as a pro-thrombotic cofactor to promote thrombosis. Beyond sterile inflammation, exRNA also augments the docking of bacteria to host cells and the subsequent microbial invasion. Moreover, upon vessel occlusion and ischemia, the shear stress-induced release of exRNA initiates arteriogenesis (i.e., formation of natural vessel bypasses) in a multistep process that resembles leukocyte recruitment. Although exRNA can be counteracted for by natural circulating RNase1, under the conditions mentioned, only the administration of exogenous, thermostable, non-toxic RNase1 provides an effective and safe therapeutic regimen for treating the damaging activities of exRNA. It remains to be investigated whether exRNA may also influence viral infections (including COVID-19), e.g., by supporting the interaction of host cells with viral particles and their subsequent invasion. In fact, as a consequence of the viral infection cycle, massive amounts of exRNA are liberated, which can provoke further tissue damage and enhance virus dissemination. Whether the application of RNase1 in this scenario may help to limit the extent of viral infections like COVID-19 and impact on leukocyte recruitment and emigration steps in immune defense in order to limit the extent of associated cardiovascular diseases remains to be studied.

14.
Dev Comp Immunol ; 91: 8-16, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30267738

RESUMO

RNase1 is an enzyme important in host defense in vertebrates where it degrades the RNA of bacteria and viruses. We evaluated the effect of RNase1 on the resistance to Aeromonas hydrophila infection in Megalobrama amblycephala. The fish were randomly divided into four groups: a blank group (none-treated M. amblycephala), a control group (injected PBS), a challenge group (A. hydrophila-injected) and a treatment group (pre-treated with RNase1 24 h before the A. hydrophila injection), and we collected five tissues of each group. Then we recorded changes in the levels of glutathione (GSH), oxidized glutathione (GSSG), hepatic catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA) and lysozyme; and the relative mRNA expression of catalase (CAT), selenium-dependent glutathione peroxidase (GPx), Cu/Superoxide dismutase (Cu/Zn-SOD), glutamate-cysteine ligase (GCLC), glutathione reductase (GR) and nuclear factor erythroid 2-related factor 2 (Nrf2) for four groups. The expression of six genes was highest in liver and blood of the blank group. It was significantly higher in the gut of the treatment group (compared to control and challenge groups) 12 h after the infection. The treatment group exhibited a significant increase in GSH, SOD and CAT activity, and a decrease in GSSG, MDA and lysozyme content (compared to the control and challenge groups) 6 and 12 h after infection. These results suggest that supplementation with RNase1 protein can enhance resistance against A. hydrophila infections in M. amblycephala.


Assuntos
Aeromonas hydrophila/imunologia , Cyprinidae/imunologia , Doenças dos Peixes/terapia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Ribonucleases/uso terapêutico , Animais , Catalase/metabolismo , Suplementos Nutricionais , Doenças dos Peixes/imunologia , Proteínas de Peixes/metabolismo , Glutationa/metabolismo , Infecções por Bactérias Gram-Negativas/imunologia , Imunidade Inata , Superóxido Dismutase/metabolismo
15.
J Am Heart Assoc ; 6(6)2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28637776

RESUMO

BACKGROUND: Following myocardial infarction (MI), peri-infarct myocardial edema formation further impairs cardiac function. Extracellular RNA (eRNA) released from injured cells strongly increases vascular permeability. This study aimed to assess the role of eRNA in MI-induced cardiac edema formation, infarct size, cardiac function, and survival after acute MI and to evaluate the therapeutic potential of ribonuclease 1 (RNase-1) treatment as an eRNA-degrading intervention. METHODS AND RESULTS: C57BL/6J mice were subjected to MI by permanent ligation of the left anterior descending coronary artery. Plasma eRNA levels were significantly increased compared with those in controls starting from 30 minutes after ligation. Systemic application of RNase-1, but not DNase, significantly reduced myocardial edema formation 24 hours after ligation compared with controls. Consequently, eRNA degradation by RNase-1 significantly improved the perfusion of collateral arteries in the border zone of the infarcted myocardium 24 hours after ligation of the left anterior descending coronary artery, as detected by micro-computed tomography imaging. Although there was no significant difference in the area at risk, the area of vital myocardium was markedly larger in mice treated with RNase-1 compared with controls, as detected by Evans blue and 2,3,5-triphenyltetrazolium chloride staining. The increase in viable myocardium was associated with significantly preserved left ventricular function, as assessed by echocardiography. Moreover, RNase-1 significantly improved 8-week survival following MI. CONCLUSIONS: eRNA is an unrecognized permeability factor in vivo, associated with myocardial edema formation after acute MI. RNase-1 counteracts eRNA-induced edema formation and preserves perfusion of the infarction border zone, reducing infarct size and protecting cardiac function after MI.


Assuntos
Fármacos Cardiovasculares/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/metabolismo , Estabilidade de RNA , RNA/metabolismo , Ribonuclease Pancreático/farmacologia , Animais , Apoptose/efeitos dos fármacos , Circulação Coronária/efeitos dos fármacos , Modelos Animais de Doenças , Edema Cardíaco/genética , Edema Cardíaco/metabolismo , Edema Cardíaco/patologia , Edema Cardíaco/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , RNA/genética , Fatores de Tempo , Sobrevivência de Tecidos/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos
16.
Eur J Cardiothorac Surg ; 48(5): 732-7; discussion 737, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25564211

RESUMO

OBJECTIVES: Remote ischaemic preconditioning (RIPC) is a non-invasive and virtually cost-free strategy for protecting the heart against acute ischaemia-reperfusion injury (IRI). We have recently shown that the inhibition of extracellular RNA (eRNA) using non-toxic RNase1 protected the heart against acute IRI, reduced myocardial infarct (MI) size and preserved left ventricular systolic function in rodent animal MI models. Based on this previous work in animals, the role of the eRNA/RNase1 system in cardiac RIPC in humans should be defined. METHODS: Fourteen patients underwent cardiac surgery without RIPC; from each patient, six separate 5 ml blood specimens from radial artery and two blood specimens from coronary sinus at different time points during heart surgery were taken. Six healthy donors received RIPC (4 × 5 min upper limb ischaemia); blood parameters were quantified before and after RIPC. Twelve patients underwent cardiac surgery of which 6 received RIPC, whereas the remaining 6 were exposed to sham procedure. Circulating eRNA was quantified in plasma from arterial and coronary sinus blood obtained from patients undergoing cardiac by standard procedures. Tumour necrosis factor-α (TNF-α) production by heart tissue was assessed by enzyme-linked immuno-sorbent assay; RNase activity was quantified by an enzymatic assay. RESULTS: Before surgery, eRNA levels were similar in both groups (14 ± 6 vs 13 ± 5 ng/ml; P = 0.9967). In patients without RIPC, arterial eRNA levels rose during surgery (87 ± 12 ng/ml) and peaked after (127 ± 11 ng/ml) aortic declamping; accordingly, eRNA levels in coronary sinus blood were significantly higher (206 ± 32 ng/ml; P = 0.0129) than that in radial artery. Moreover, significant elevation of TNF-α (36 ± 6 ng/ml; P = 0.0059) particularly in coronary sinus blood after opening of the aortic clamping was observed. Interestingly, applying a RIPC protocol significantly increased levels of plasma endogenous vascular RNase1 by >7-fold, and the levels of arterial (31 ± 7 ng/ml; P = 0.0024) and coronary sinus (37 ± 9 ng/ml; P < 0.0001) circulating eRNA, as well as circulating TNF-α (20 ± 4 ng/ml; P = 0.0050) levels were significantly reduced. CONCLUSIONS: Upon RIPC, the level of cardioprotective RNase1 increased, while the concentration of damaging eRNA and TNF-α decreased. The present findings imply a significant contribution of the RIPC-dependent (endothelial) RNase1 for improving the outcome of cardiac surgery. However, the exact mechanism of RNase1-induced cardioprotection still remains to be explored.


Assuntos
Cardiotônicos/uso terapêutico , Precondicionamento Isquêmico Miocárdico/métodos , Traumatismo por Reperfusão/prevenção & controle , Ribonucleases/uso terapêutico , Idoso , Espaço Extracelular/química , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , RNA/sangue , Traumatismo por Reperfusão/tratamento farmacológico
17.
Gene ; 526(2): 112-7, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23644026

RESUMO

Pancreatic ribonuclease gene (RNASE1) was previously shown to have undergone duplication and adaptive evolution related to digestive efficiency in several mammalian groups that have evolved foregut fermentation, including ruminants and some primates. RNASE1 gene duplications thought to be linked to diet have also been recorded in some carnivores. Of all mammals, bats have evolved the most diverse dietary specializations, mainly including frugivory and insectivory. Here we cloned, sequenced and analyzed RNASE1 gene sequences from a range of bat species to determine whether their dietary adaptation is mirrored by molecular adaptation. We found that seven insect-eating members of the families Vespertilionidae and Molossidae possessed two or more duplicates, and we also detected three pseudogenes. Reconstructed RNASE1 gene trees based on both Bayesian and maximum likelihood methods supported independent duplication events in these two families. Selection tests revealed that RNASE1 gene duplicates have undergone episodes of positive selection indicative of functional modification, and lineage-specific tests revealed strong adaptive evolution in the Tadarida ß clade. However, unlike the RNASE1 duplicates that function in digestion in some mammals, the bat RNASE1 sequences were found to be characterized by relatively high isoelectric points, a feature previously suggested to promote defense against viruses via the breakdown of double-stranded RNA. Taken together, our findings point to an adaptive diversification of RNASE1 in these two bat families, although we find no clear evidence that this was driven by diet. Future experimental assays are needed to resolve the functions of these enzymes in bats.


Assuntos
Quirópteros/genética , Duplicação Gênica , Ribonuclease Pancreático/genética , Adaptação Biológica/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Comportamento Alimentar , Dados de Sequência Molecular , Filogenia , Pseudogenes , Ribonuclease Pancreático/química , Seleção Genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA