Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.411
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37522516

RESUMO

During embryonic development, tissue-specific transcription factors and chromatin remodelers function together to ensure gradual, coordinated differentiation of multiple lineages. Here, we define this regulatory interplay in the developing retinal pigmented epithelium (RPE), a neuroectodermal lineage essential for the development, function and maintenance of the adjacent retina. We present a high-resolution spatial transcriptomic atlas of the developing mouse RPE and the adjacent ocular mesenchyme obtained by geographical position sequencing (Geo-seq) of a single developmental stage of the eye that encompasses young and more mature ocular progenitors. These transcriptomic data, available online, reveal the key transcription factors and their gene regulatory networks during RPE and ocular mesenchyme differentiation. Moreover, conditional inactivation followed by Geo-seq revealed that this differentiation program is dependent on the activity of SWI/SNF complexes, shown here to control the expression and activity of RPE transcription factors and, at the same time, inhibit neural progenitor and cell proliferation genes. The findings reveal the roles of the SWI/SNF complexes in controlling the intersection between RPE and neural cell fates and the coupling of cell-cycle exit and differentiation.


Assuntos
Epitélio Pigmentado da Retina , Fatores de Transcrição , Feminino , Gravidez , Camundongos , Animais , Diferenciação Celular/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Proliferação de Células/genética , Epitélio/metabolismo
2.
J Neurosci ; 44(27)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38811164

RESUMO

The canonical visual cycle employing RPE65 as the retinoid isomerase regenerates 11-cis-retinal to support both rod- and cone-mediated vision. Mutations of RPE65 are associated with Leber congenital amaurosis that results in rod and cone photoreceptor degeneration and vision loss of affected patients at an early age. Dark-reared Rpe65-/- mouse has been known to form isorhodopsin that employs 9-cis-retinal as the photosensitive chromophore. The mechanism regulating 9-cis-retinal synthesis and the role of the endogenous 9-cis-retinal in cone survival and function remain largely unknown. In this study, we found that ablation of fatty acid transport protein-4 (FATP4), a negative regulator of 11-cis-retinol synthesis catalyzed by RPE65, increased the formation of 9-cis-retinal, but not 11-cis-retinal, in a light-independent mechanism in both sexes of RPE65-null rd12 mice. Both rd12 and rd12;Fatp4-/- mice contained a massive amount of all-trans-retinyl esters in the eyes, exhibiting comparable scotopic vision and rod degeneration. However, expression levels of M- and S-opsins as well as numbers of M- and S-cones surviving in the superior retinas of rd12;Fatp4-/ - mice were at least twofold greater than those in age-matched rd12 mice. Moreover, FATP4 deficiency significantly shortened photopic b-wave implicit time, improved M-cone visual function, and substantially deaccelerated the progression of cone degeneration in rd12 mice, whereas FATP4 deficiency in mice with wild-type Rpe65 alleles neither induced 9-cis-retinal formation nor influenced cone survival and function. These results identify FATP4 as a new regulator of synthesis of 9-cis-retinal, which is a "cone-tropic" chromophore supporting cone survival and function in the retinas with defective RPE65.


Assuntos
Proteínas de Transporte de Ácido Graxo , Amaurose Congênita de Leber , Células Fotorreceptoras Retinianas Cones , Animais , Células Fotorreceptoras Retinianas Cones/metabolismo , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/metabolismo , Amaurose Congênita de Leber/patologia , Camundongos , Proteínas de Transporte de Ácido Graxo/metabolismo , Proteínas de Transporte de Ácido Graxo/genética , Masculino , Feminino , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo , cis-trans-Isomerases/deficiência , Sobrevivência Celular , Camundongos Knockout , Diterpenos , Visão Ocular/fisiologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Retinaldeído
3.
J Biol Chem ; 300(6): 107344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705389

RESUMO

MicroRNAs (miRs) are short, evolutionarily conserved noncoding RNAs that canonically downregulate expression of target genes. The miR family composed of miR-204 and miR-211 is among the most highly expressed miRs in the retinal pigment epithelium (RPE) in both mouse and human and also retains high sequence identity. To assess the role of this miR family in the developed mouse eye, we generated two floxed conditional KO mouse lines crossed to the RPE65-ERT2-Cre driver mouse line to perform an RPE-specific conditional KO of this miR family in adult mice. After Cre-mediated deletion, we observed retinal structural changes by optical coherence tomography; dysfunction and loss of photoreceptors by retinal imaging; and retinal inflammation marked by subretinal infiltration of immune cells by imaging and immunostaining. Single-cell RNA sequencing of diseased RPE and retinas showed potential miR-regulated target genes, as well as changes in noncoding RNAs in the RPE, rod photoreceptors, and Müller glia. This work thus highlights the role of miR-204 and miR-211 in maintaining RPE function and how the loss of miRs in the RPE exerts effects on the neural retina, leading to inflammation and retinal degeneration.


Assuntos
Camundongos Knockout , MicroRNAs , Degeneração Retiniana , Epitélio Pigmentado da Retina , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Degeneração Retiniana/metabolismo , Camundongos , Deleção de Genes , Tomografia de Coerência Óptica
4.
J Biol Chem ; 300(5): 107291, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636661

RESUMO

Mutations in the adiponectin receptor 1 gene (AdipoR1) lead to retinitis pigmentosa and are associated with age-related macular degeneration. This study explores the effects of AdipoR1 gene deficiency in mice, revealing a striking decline in ω3 polyunsaturated fatty acids (PUFA), an increase in ω6 fatty acids, and elevated ceramides in the retina. The AdipoR1 deficiency impairs peroxisome proliferator-activated receptor α signaling, which is crucial for FA metabolism, particularly affecting proteins associated with FA transport and oxidation in the retina and retinal pigmented epithelium. Our lipidomic and proteomic analyses indicate changes that could affect membrane composition and viscosity through altered ω3 PUFA transport and synthesis, suggesting a potential influence of AdipoR1 on these properties. Furthermore, we noted a reduction in the Bardet-Biedl syndrome proteins, which are crucial for forming and maintaining photoreceptor outer segments that are PUFA-enriched ciliary structures. Diminution in Bardet-Biedl syndrome-proteins content combined with our electron microscopic observations raises the possibility that AdipoR1 deficiency might impair ciliary function. Treatment with inhibitors of ceramide synthesis led to substantial elevation of ω3 LC-PUFAs, alleviating photoreceptor degeneration and improving retinal function. These results serve as the proof of concept for a ceramide-targeted strategy to treat retinopathies linked to PUFA deficiency, including age-related macular degeneration.


Assuntos
Ceramidas , Receptores de Adiponectina , Retina , Animais , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/genética , Camundongos , Ceramidas/metabolismo , Retina/metabolismo , Retina/patologia , Camundongos Knockout , Ácidos Graxos Insaturados/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Degeneração Macular/genética
5.
Proc Natl Acad Sci U S A ; 119(11): e2115202119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35271391

RESUMO

SignificanceIn humans, genetic mutations in the retinal pigment epithelium (RPE) 65 are associated with blinding diseases, for which there is no effective therapy alleviating progressive retinal degeneration in affected patients. Our findings uncovered that the increased free opsin caused by enhancing the ambient light intensity increased retinal activation, and when compounded with the RPE visual cycle dysfunction caused by the heterozygous D477G mutation and aggregation, led to the onset of retinal degeneration.


Assuntos
Proteínas do Olho , Genes Dominantes , Distrofias Retinianas , cis-trans-Isomerases , Animais , Proteínas do Olho/genética , Camundongos , Camundongos Knockout , Mutação , Retina/enzimologia , Retina/patologia , Distrofias Retinianas/genética , Visão Ocular , cis-trans-Isomerases/genética
6.
Proc Natl Acad Sci U S A ; 119(33): e2207489119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939707

RESUMO

The mechanistic target of rapamycin (mTOR) is assembled into signaling complexes of mTORC1 or mTORC2, and plays key roles in cell metabolism, stress response, and nutrient and growth factor sensing. Accumulating evidence from human and animal model studies has demonstrated a pathogenic role of hyperactive mTORC1 in age-related macular degeneration (AMD). The retinal pigment epithelium (RPE) is a primary injury site in AMD. In mouse models of RPE-specific deletion of Tuberous sclerosis 1 (Tsc1), which encodes an upstream suppressor of mTORC1, the hyperactivated mTORC1 metabolically reprogrammed the RPE and led to the degeneration of the outer retina and choroid (CH). In the current study, we use single-cell RNA sequencing (scRNA-seq) to identify an RPE mTORC1 downstream protein, dopamine- and cyclic AMP-regulated phosphoprotein of molecular weight 32,000 (DARPP-32). DARPP-32 was not found in healthy RPE but localized to drusen and basal linear deposits in human AMD eyes. In animal models, overexpressing DARPP-32 by adeno-associated virus (AAV) led to abnormal RPE structure and function. The data indicate that DARPP-32 is a previously unidentified signaling protein subjected to mTORC1 regulation and may contribute to RPE degeneration in AMD.


Assuntos
Fosfoproteína 32 Regulada por cAMP e Dopamina , Degeneração Macular , Alvo Mecanístico do Complexo 1 de Rapamicina , Epitélio Pigmentado da Retina , Animais , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Ativação Enzimática , Humanos , Degeneração Macular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais
7.
J Neurosci ; 43(15): 2653-2664, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36878726

RESUMO

The photoreceptor outer segment (OS) is the phototransductive organelle in the vertebrate retina. OS tips are regularly ingested and degraded by the adjacent retinal pigment epithelium (RPE), offsetting the addition of new disk membrane at the base of the OS. This catabolic role of the RPE is essential for photoreceptor health, with defects in ingestion or degradation underlying different forms of retinal degeneration and blindness. Although proteins required for OS tip ingestion have been identified, spatiotemporal analysis of the ingestion process in live RPE cells is lacking; hence, the literature reflects no common understanding of the cellular mechanisms that affect ingestion. We imaged live RPE cells from mice (both sexes) to elucidate the ingestion events in real time. Our imaging revealed roles for f-actin dynamics and specific dynamic localizations of two BAR (Bin-Amphiphysin-Rvs) proteins, FBP17 and AMPH1-BAR, in shaping the RPE apical membrane as it surrounds the OS tip. Completion of ingestion was observed to occur by scission of the OS tip from the remainder of the OS, with a transient concentration of f-actin forming around the site of imminent scission. Actin dynamics were also required for regulating the size of the ingested OS tip, and the time course of the overall ingestion process. The size of the ingested tip is consistent with the term "phagocytosis." However, phagocytosis usually refers to engulfment of an entire particle or cell, whereas our observations of OS tip scission indicate a process that is more specifically described as "trogocytosis," in which one cell "nibbles" another cell.SIGNIFICANCE STATEMENT The ingestion of the photoreceptor outer segment (OS) tips by the retinal pigment epithelium (RPE) is a dynamic cellular process that has fascinated scientists for 60 years. Yet its molecular mechanisms had not been addressed in living cells. We developed a live-cell imaging approach to investigate OS tip ingestion, and focused on the dynamic participation of actin filaments and membrane-shaping BAR proteins. We observed scission of OS tips for the first time, and were able to monitor local changes in protein concentration preceding, during, and following scission. Our approach revealed that actin filaments were concentrated at the site of OS scission and were required for regulating the size of the ingested OS tip and the time course of the ingestion process.


Assuntos
Actinas , Epitélio Pigmentado da Retina , Masculino , Feminino , Camundongos , Animais , Epitélio Pigmentado da Retina/metabolismo , Actinas/metabolismo , Fagocitose/fisiologia , Citoesqueleto de Actina/metabolismo , Ingestão de Alimentos
8.
EMBO J ; 39(8): e102468, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32154600

RESUMO

Vertebrate vision relies on the daily phagocytosis and lysosomal degradation of photoreceptor outer segments (POS) within the retinal pigment epithelium (RPE). However, how these events are controlled by light is largely unknown. Here, we show that the light-responsive miR-211 controls lysosomal biogenesis at the beginning of light-dark transitions in the RPE by targeting Ezrin, a cytoskeleton-associated protein essential for the regulation of calcium homeostasis. miR-211-mediated down-regulation of Ezrin leads to Ca2+ influx resulting in the activation of calcineurin, which in turn activates TFEB, the master regulator of lysosomal biogenesis. Light-mediated induction of lysosomal biogenesis and function is impaired in the RPE from miR-211-/- mice that show severely compromised vision. Pharmacological restoration of lysosomal biogenesis through Ezrin inhibition rescued the miR-211-/- phenotype, pointing to a new therapeutic target to counteract retinal degeneration associated with lysosomal dysfunction.


Assuntos
Cálcio/metabolismo , Proteínas do Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Lisossomos/metabolismo , MicroRNAs/metabolismo , Animais , Autofagia , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/genética , Regulação para Baixo , Luz , Lisossomos/ultraestrutura , Camundongos , Camundongos Knockout , MicroRNAs/genética , Fagocitose , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Epitélio Pigmentado da Retina/metabolismo
9.
Am J Hum Genet ; 108(5): 903-918, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33909993

RESUMO

Macular degeneration (MD) is characterized by the progressive deterioration of the macula and represents one of the most prevalent causes of blindness worldwide. Abnormal intracellular accumulation of lipid droplets and pericellular deposits of lipid-rich material in the retinal pigment epithelium (RPE) called drusen are clinical hallmarks of different forms of MD including Doyne honeycomb retinal dystrophy (DHRD) and age-related MD (AMD). However, the appropriate molecular therapeutic target underlying these disorder phenotypes remains elusive. Here, we address this knowledge gap by comparing the proteomic profiles of induced pluripotent stem cell (iPSC)-derived RPEs (iRPE) from individuals with DHRD and their isogenic controls. Our analysis and follow-up studies elucidated the mechanism of lipid accumulation in DHRD iRPE cells. Specifically, we detected significant downregulation of carboxylesterase 1 (CES1), an enzyme that converts cholesteryl ester to free cholesterol, an indispensable process in cholesterol export. CES1 knockdown or overexpression of EFEMP1R345W, a variant of EGF-containing fibulin extracellular matrix protein 1 that is associated with DHRD and attenuated cholesterol efflux and led to lipid droplet accumulation. In iRPE cells, we also found that EFEMP1R345W has a hyper-inhibitory effect on epidermal growth factor receptor (EGFR) signaling when compared to EFEMP1WT and may suppress CES1 expression via the downregulation of transcription factor SP1. Taken together, these results highlight the homeostatic role of cholesterol efflux in iRPE cells and identify CES1 as a mediator of cholesterol efflux in MD.


Assuntos
Colesterol/metabolismo , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Adolescente , Adulto , Hidrolases de Éster Carboxílico/genética , Diferenciação Celular/genética , Citocinas/metabolismo , Receptores ErbB/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Inflamação/metabolismo , Metabolismo dos Lipídeos , Degeneração Macular/patologia , Pessoa de Meia-Idade , Drusas do Disco Óptico/congênito , Drusas do Disco Óptico/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais , Fator de Transcrição Sp1/metabolismo , Transcrição Gênica , Resposta a Proteínas não Dobradas
10.
Ophthalmology ; 131(6): 682-691, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38160882

RESUMO

PURPOSE: To report long-term results from a phase 1/2a clinical trial assessment of a scaffold-based human embryonic stem cell-derived retinal pigmented epithelium (RPE) implant in patients with advanced geographic atrophy (GA). DESIGN: A single-arm, open-label phase 1/2a clinical trial approved by the United States Food and Drug Administration. PARTICIPANTS: Patients were 69-85 years of age at the time of enrollment and were legally blind in the treated eye (best-corrected visual acuity [BCVA], ≤ 20/200) as a result of GA involving the fovea. METHODS: The clinical trial enrolled 16 patients, 15 of whom underwent implantation successfully. The implant was administered to the worse-seeing eye with the use of a custom subretinal insertion device. The companion nonimplanted eye served as the control. The primary endpoint was at 1 year; thereafter, patients were followed up at least yearly. MAIN OUTCOME MEASURES: Safety was the primary endpoint of the study. The occurrence and frequency of adverse events (AEs) were determined by scheduled eye examinations, including measurement of BCVA and intraocular pressure and multimodal imaging. Serum antibody titers were collected to monitor systemic humoral immune responses to the implanted cells. RESULTS: At a median follow-up of 3 years, fundus photography revealed no migration of the implant. No unanticipated, severe, implant-related AEs occurred, and the most common anticipated severe AE (severe retinal hemorrhage) was eliminated in the second cohort (9 patients) through improved intraoperative hemostasis. Nonsevere, transient retinal hemorrhages were noted either during or after surgery in all patients as anticipated for a subretinal surgical procedure. Throughout the median 3-year follow-up, results show that implanted eyes were more likely to improve by > 5 letters of BCVA and were less likely to worsen by > 5 letters compared with nonimplanted eyes. CONCLUSIONS: This report details the long-term follow-up of patients with GA to receive a scaffold-based stem cell-derived bioengineered RPE implant. Results show that the implant, at a median 3-year follow-up, is safe and well tolerated in patients with advanced dry age-related macular degeneration. The safety profile, along with the early indication of efficacy, warrants further clinical evaluation of this novel approach for the treatment of GA. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Assuntos
Atrofia Geográfica , Epitélio Pigmentado da Retina , Acuidade Visual , Humanos , Atrofia Geográfica/cirurgia , Atrofia Geográfica/fisiopatologia , Epitélio Pigmentado da Retina/transplante , Epitélio Pigmentado da Retina/patologia , Idoso , Acuidade Visual/fisiologia , Feminino , Idoso de 80 Anos ou mais , Masculino , Seguimentos , Tomografia de Coerência Óptica , Células-Tronco Embrionárias Humanas/transplante , Células-Tronco Embrionárias Humanas/citologia , Transplante de Células-Tronco , Resultado do Tratamento
11.
Ophthalmology ; 131(2): 161-178, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37704110

RESUMO

PURPOSE: To assess the impact of baseline data on psychophysical and morphological outcomes of subretinal voretigene neparvovec (VN) (Luxturna, Spark Therapeutics, Inc.) treatment. DESIGN: Single-center, retrospective, longitudinal, consecutive case series. PARTICIPANTS: Patients with RPE65-biallelic mutation-associated inherited retinal degeneration (RPE65-IRD) treated between February 2020 and March 2022 with VN and oral immunosuppression according to the manufacturer's recommendation by one surgeon (F.G.H.). METHODS: Retrospective analysis of surgical and clinical records, ancillary testing, and retinal imaging after VN therapy for RPE65-IRD. Descriptive statistics compared data at baseline up to 32 months post-treatment. MAIN OUTCOME MEASURES: Best-corrected visual acuity (BCVA), low-luminance VA (LLVA), Goldmann visual fields (GVFs), chromatic full-field stimulus threshold (FST) testing (FST), scotopic and photopic 2-color threshold perimetry (2CTP), and multimodal retinal imaging. RESULTS: Thirty eyes of 19 patients were analyzed (10 pediatric patients < 20 years; 20 adult patients > 20 years of age; overall range: 8-40 years) with a median follow-up of 15 months (range, 1-32). The fovea was completely or partially detached in 16 eyes, attached in 12 eyes, and not assessable in 2 eyes on intraoperative imaging. Median BCVA at baseline was better in the pediatric group (P < 0.05) and did not change significantly independent of age. Meaningful loss of BCVA (≥ 0.3 logarithm of the minimal angle of resolution [logMAR]) occurred in 5 of 18 adult eyes, and a meaningful gain (≥-0.3 logMAR) occurred in 2 of 18 adult and 2 of 8 pediatric eyes. The LLVA and scotopic 2CTP improved considerably in pediatric patients. Scotopic blue FST improved at all ages but more in pediatric patients (8/8 eyes gained ≥ 10 decibels [dB]; P < 0.05). In pediatric patients, median GVF improved by 20% for target V4e and by 50% for target III4e (target I4e not detected). Novel atrophy developed in 13 of 26 eyes at the site of the bleb or peripheral of vascular arcades. Improvements in FST did not correlate with development of chorioretinal atrophy at 12 months. Mean central retinal thickness was 165.87 µm (± 26.26) at baseline (30 eyes) and 157.69 µm (± 30.3) at 12 months (26 eyes). Eight adult patients were treated unilaterally. The untreated eyes did not show meaningful changes during follow-up. CONCLUSIONS: These data in a clinical setting show the effectiveness of VN therapy with stable median BCVA and mean retinal thickness and improvements of LLVA, FST, and 2CTP up to 32 months. Treatment effects were superior in the pediatric group. We observed new chorioretinal atrophy in 50% of the treated eyes. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Assuntos
Retina , Distrofias Retinianas , Adulto , Humanos , Criança , Estudos Retrospectivos , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Distrofias Retinianas/terapia , Mutação , Atrofia
12.
Exp Eye Res ; 245: 109984, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945517

RESUMO

Aging changes the responsiveness of our immune defense, and this decline in immune reactivity plays an important role in the increased susceptibility to infections that marks progressing age. Aging is also the most pronounced risk factor for development of age-related macular degeneration (AMD), a disease that is characterized by dysfunctional retinal pigment epithelial (RPE) cells and loss of central vision. We have previously shown that acute systemic viral infection has a large impact on the retina in young mice, leading to upregulation of chemokines in the RPE/choroid (RPE/c) and influx of CD8 T cells in the neuroretina. In this study, we sought to investigate the impact of systemic infection on the RPE/c in aged mice to evaluate whether infection in old age could play a role in the pathogenesis of AMD. We found that systemic infection in mice led to upregulation of genes from the crystallin family in the RPE/c from aged mice, but not in the RPE/c from young mice. Crystallin alpha A (CRYAA) was the most upregulated gene, and increased amounts of CRYAA protein were also detected in the aged RPE/c. Increased CRYAA gene and protein expression has previously been found in drusen and choroid from AMD patients, and this protein has also been linked to neovascularization. Since both drusen and neovascularization are important hallmarks of advanced AMD, it is interesting to speculate if upregulation of crystallins in response to infection in old age could be relevant for the pathogenesis of AMD.

13.
Exp Eye Res ; 238: 109728, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972750

RESUMO

The sodium iodate (NaIO3) model of increased oxidative stress recapitulates dry AMD features such as patchy RPE loss, secondary photoreceptors, and underlying choriocapillaris death, allowing longitudinal evaluation of the retinal structure. Due to the time- and dose-dependent degeneration observed in diverse animal models, this preclinical model has become one of the most studied models. The events leading to RPE cell death post- NaIO3 injection have been extensively studied, and here we have reviewed different modalities of cell death, including apoptosis, necroptosis, ferroptosis, and pyroptosis with a particular focus on findings associated with in vivo and in vitro NaIO3 studies on RPE cell death. Because the fundamental cause of vision loss in patients with dry AMD is the death of these same cells affected by NaIO3, studies using NaIO3 can provide valuable insights into RPE and photoreceptor cell death mechanisms and can help understand mechanisms behind RPE degeneration in AMD.


Assuntos
Apoptose , Epitélio Pigmentado da Retina , Animais , Humanos , Epitélio Pigmentado da Retina/metabolismo , Retina , Morte Celular
14.
Exp Eye Res ; 239: 109778, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171475

RESUMO

Human embryonic stem cell (hESC)- and human induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) therapies are promising alternatives for the treatment of retinal degenerative diseases caused by RPE degeneration. The generation of autologous RPE cells from human adult donors, which has the advantage of avoiding immune rejection and teratoma formation, is an alternative cell resource to gain mechanistic insight into and test potential therapies for RPE degenerative diseases. Here, we found that limbal stem cells (LSCs) from hESCs and adult primary human limbus have the potential to produce RPE cells and corneal stromal stem cells (CSSCs). We showed that hESC-LSC-derived RPE cells (LSC-RPE) expressed RPE markers, had a phagocytic function, and synthesized tropical factors. Furthermore, during differentiation from LSCs to RPE cells, cells became pigmented, accompanied by a decrease in the level of LSC marker KRT15 and an increase in the level of RPE marker MITF. The Wnt signaling pathway plays a role in LSC-RPE fate transition, promotes MITF expression in the nucleus, and encourages RPE fate transition. In addition, we also showed that primary LSCs (pLSCs) from adult human limbus similar to hESC-LSC could generate RPE cells, which was supported by the co-expression of LSC and RPE cell markers (KRT15/OTX2, KRT15/MITF), suggesting the transition from pLSC to RPE cells, and typical polygonal morphology, melanization, RPE cell marker genes expression (TYR, RPE65), tight junction formation by ZO-1 expression, and the most crucial phagocytotic function. On the other hand, both hESC-LSCs and pLSCs also differentiated into CSSCs (LSC-CSSCs) that expressed stem cell markers (PAX6, NESTIN), presented MSC features, including surface marker expression and trilineage differentiation capability, like those in human CSSCs. Furthermore, the capability of pLSC-CSSC to differentiate into cells expressing keratocyte marker genes (ALDH3A1, PTGDS, PDK4) indicated the potential to induce keratocytes. These results suggest that the adult pLSC is an alternative cell resource, and its application provides a novel potential therapeutic avenue for preventing RPE dysfunction-related retinal degenerative diseases and corneal scarring.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco do Limbo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Diferenciação Celular , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo
15.
Exp Eye Res ; 243: 109899, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636802

RESUMO

Virus-like particles (VLP) are a promising tool for intracellular gene delivery, yet their potential in ocular gene therapy remains underexplored. In this study, we bridged this knowledge gap by demonstrating the successful generation and application of vesicular stomatitis virus glycoprotein (VSVG)-pseudotyped mouse PEG10 (MmPEG10)-VLP for intraocular mRNA delivery. Our findings revealed that PEG10-VLP can efficiently deliver GFP mRNA to adult retinal pigment epithelial cell line-19 (ARPE-19) cells, leading to transient expression. Moreover, we showed that MmPEG10-VLP can transfer SMAD7 to inhibit epithelial-mesenchymal transition (EMT) in RPE cells effectively. In vivo experiments further substantiated the potential of these vectors, as subretinal delivery into adult mice resulted in efficient transduction of retinal pigment epithelial (RPE) cells and GFP reporter gene expression without significant immune response. However, intravitreal injection did not yield efficient ocular expression. We also evaluated the transduction characteristics of MmPEG10-VLP following intracameral delivery, revealing transient GFP protein expression in corneal endothelial cells without significant immunotoxicities. In summary, our study established that VSVG pseudotyped MmPEG10-based VLP can transduce mitotically inactive RPE cells and corneal endothelial cells in vivo without triggering an inflammatory response, underscoring their potential utility in ocular gene therapy.


Assuntos
Técnicas de Transferência de Genes , RNA Mensageiro , Epitélio Pigmentado da Retina , Animais , Camundongos , Epitélio Pigmentado da Retina/metabolismo , RNA Mensageiro/genética , Terapia Genética/métodos , Vetores Genéticos , Camundongos Endogâmicos C57BL , Humanos , Proteínas de Fluorescência Verde/genética , Transição Epitelial-Mesenquimal , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo
16.
Exp Eye Res ; 242: 109862, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490292

RESUMO

The continual exposure of retinal tissues to oxidative stress leads to discernible anatomical and physiological alterations. Specifically, the onslaught of oxidative damage escalates the irreversible death of retinal pigmented epithelium (RPE) cells, pinpointed as the fundamental pathological event in dry age-related macular degeneration (AMD). There is a conspicuous lack of effective therapeutic strategies to counteract this degenerative process. This study screened a library of antioxidants for their ability to protect RPE cells against oxidative stress and identified L-ergothioneine (EGT) as a potent cytoprotective agent. L-ergothioneine provided efficient protection against oxidative stress-damaged RPE and maintained cell redox homeostasis and normal physiological functions. It maintained the normal structure of the retina in mice under oxidative stress conditions. Transcriptomic analysis revealed that EGT counteracted major gene expression changes induced by oxidative stress. It upregulated antioxidant gene expression and inhibited NRF2 translocation. The inhibition of NRF2 abolished EGT's protective effects, suggesting that NRF2 activation contributes to its mechanism of action. In conclusion, we identified EGT as a safe and effective small-molecule compound that is expected to be a novel antioxidative agent for treating AMD.


Assuntos
Antioxidantes , Ergotioneína , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Epitélio Pigmentado da Retina , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Animais , Ergotioneína/farmacologia , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Células Cultivadas , Humanos , Western Blotting , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
17.
Cell Commun Signal ; 22(1): 17, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183022

RESUMO

BACKGROUND: The epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells participated in the development of retinal fibrosis. SB431542 is a small molecule inhibitor with inhibitory effects on the ALK4, ALK5 and ALK7. Our study aimed to explore the effect of SB431542 on the EMT of RPE cells and to provide new ideas for the treatment of retinal fibrosis. METHODS: We performed fundus fluorescein angiography, optical coherence tomography and hematoxylin-eosin staining in vivo to observe the effect of SB431542 on choroidal neovascularization (CNV)-induced retinopathy. The proliferation, migration, cytoskeleton, adhesion, reactive oxygen species (ROS), mitochondrial morphology and membrane potential of RPE cells were observed in vitro through fluorescein diacetate staining, Cell Counting Kit-8 experiment, wound healing assay, phalloidin staining, immunofluorescence, MitoSOX, DCFH-DA, MitoTracker and JC-10 staining. Western blot, reverse transcription quantitative and immunofluorescence were used to detect the expression of EMT-related markers, pERK1/2, pGSK3ß and ß-catenin. RESULTS: SB431542 significantly alleviated retinopathy in the CNV model. The proliferation, migration and adhesion in RPE cells decreased to a certain extent in SB431542 treatment. SB431542 partially normalized the structure of RPE cells. The expression levels of E-cadherin increased, while the expression levels of laminin and N-cadherin decreased with SB431542 treatment. SB431542 reduced the production of total ROS, mitochondrial SOX and recovered the mitochondrial membrane potential to a certain degree. In addition, our study showed that SB431542 downregulated the phosphorylation of ERK1/2, GSK3ß and the expression of ß-catenin. CONCLUSION: SB431542 improved EMT in RPE cells by maintaining mitochondrial homeostasis via the ERK1/2 and GSK3ß/ß-catenin pathways. Video Abstract SB431542 inhibits EMT in RPE cells under high glucose conditions.


Assuntos
Neovascularização de Coroide , Doenças Retinianas , Humanos , beta Catenina , Glicogênio Sintase Quinase 3 beta , Espécies Reativas de Oxigênio , Homeostase , Fibrose , Glucose/toxicidade
18.
J Pineal Res ; 76(1): e12927, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38018267

RESUMO

The pineal gland has evolved from a photoreceptive organ in fish to a neuroendocrine organ in mammals. This study integrated multiple daytime single-cell RNA-seq datasets from the pineal glands of zebrafish, rats, and monkeys, providing a detailed examination of the evolutionary transition at single-cell resolution. We identified key factors responsible for the anatomical and functional transformation of the pineal gland. We retrieved and integrated daytime single-cell transcriptomic datasets from the pineal glands of zebrafish, rats, and monkeys, resulting in a total of 22 431 cells after rigorous quality filtering. Comparative analysis was then conducted to elucidate the evolution of pineal cells, their photosensitivity, their role in melatonin production, and the signaling processes within the glands of these species. Our analysis identified distinct cellular compositions of the pineal gland in zebrafish, rats, and monkeys. Zebrafish photoreceptors exhibited comprehensive phototransduction gene expression, while specific genes, including transducin (Gngt1, Gnb3, and Gngt2) and phosducin (Pdc), were consistently present in mammalian pinealocytes. We found transcriptional similarities between the pineal gland and retina, underscoring shared evolutionary and functional pathways. Zebrafish displayed unique light-responsive circadian gene activity compared to rats and monkeys. Key ligand-receptor interactions were identified, especially involving MDK and PTN, influencing melatonin synthesis across species. Furthermore, we observed species-specific GPCR (G protein-coupled receptors) expressions related to melatonin synthesis and their alignment with retinal expressions. Our findings also highlighted specific transcription factors (TFs) and regulatory networks associated with pineal gland evolution and function. Our study provides a detailed analysis of the pineal gland's evolution from fish to mammals. We identified key transcriptional changes and controls that highlight the gland's functional diversity. Notably, we found significant ligand-receptor interactions influencing melatonin synthesis and demonstrated parallels between pineal and retinal expressions. These insights enhance our understanding of the pineal gland's role in phototransduction, melatonin production, and circadian rhythms in vertebrates.


Assuntos
Melatonina , Glândula Pineal , Animais , Ratos , Glândula Pineal/metabolismo , Melatonina/metabolismo , Peixe-Zebra/genética , Ligantes , Ritmo Circadiano/genética , Mamíferos/metabolismo
19.
Mol Biol Rep ; 51(1): 477, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573426

RESUMO

BACKGROUND: The retinal pigment epithelium (RPE) is essential for retinal homeostasis. Comprehensively exploring the transcriptional patterns of diabetic human RPE promotes the understanding of diabetic retinopathy (DR). METHODS AND RESULTS: A total of 4125 differentially expressed genes (DEGs) were screened out from the human primary RPE cells subjected to prolonged high glucose (HG). The subsequent bioinformatics analysis is divided into 3 steps. In Step 1, 21 genes were revealed by intersecting the enriched genes from the KEGG, WIKI, and Reactome databases. In Step 2, WGCNA was applied and intersected with the DEGs. Further intersection based on the enrichments with the GO biological processes, GO cellular components, and GO molecular functions databases screened out 12 candidate genes. In Step 3, 13 genes were found to be simultaneously up-regulated in the DEGs and a GEO dataset involving human diabetic retinal tissues. VEGFA and ERN1 were the 2 starred genes finally screened out by overlapping the 3 Steps. CONCLUSION: In this study, multiple genes were identified as crucial in the pathological process of RPE under protracted HG, providing potential candidates for future researches on DR. The current study highlights the importance of RPE in DR pathogenesis.


Assuntos
Retinopatia Diabética , Retina , Humanos , Retinopatia Diabética/genética , Células Epiteliais , Pigmentos da Retina , Glucose
20.
Exp Cell Res ; 422(1): 113436, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435220

RESUMO

Oxidative stress-induced ferroptosis of retinal pigment epithelium (RPE) cells contributes to retinal degenerative diseases. The antioxidant molecule hydrogen sulfide (H2S) regulates oxidative stress response, but its effect on the ferroptosis of RPE cells is unclear. In this study, sodium hydrosulfide (NaHS) was used as an exogenous H2S donor to intervene tert-butyl hydroperoxide (t-BHP)-induced ferroptosis of APRE-19 cells. We found that NaHS pretreatment attenuates t-BHP-induced oxidative stress and ferroptosis. Analysis of mRNA-sequencing coupled with FerrDb database identified nuclear factor erythroid-2-related factor 2 (NRF2) as a primary target for the cytoprotective role of H2S. NRF2 inhibitor ML385 reverses the effects of H2S on ferroptosis. Biochemical analysis revealed that H2S stabilizes NRF2. H2S decreases the interaction between NRF2 and KEAP1, but enhances the interaction between KEAP1 and p62. These results suggest that H2S activates the non-canonical NRF2-KEAP1 pathway. Further study demonstrated that H2S stimulates AMPK to interact and phosphorylate p62. Additionally, inhibiting AMPK or knocking down p62 blocks the effects of H2S. We speculate that targeting the non-canonical NRF2-KEAP1 pathway by H2S-based drug may benefit the treatment of retinal degenerative diseases.


Assuntos
Ferroptose , Sulfeto de Hidrogênio , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Estresse Oxidativo , terc-Butil Hidroperóxido/farmacologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA