Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Neurosci Res ; 101(1): 3-19, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36200530

RESUMO

Primary blast injury is caused by the direct impact of an overpressurization wave on the body. Due to limitations of current models, we have developed a novel approach to study primary blast-induced traumatic brain injury. Specifically, we employ a bioengineered 3D brain-like human tissue culture system composed of collagen-infused silk protein donut-like hydrogels embedded with human IPSC-derived neurons, human astrocytes, and a human microglial cell line. We have utilized this system within an advanced blast simulator (ABS) to expose the 3D brain cultures to a blast wave that can be precisely controlled. These 3D cultures are enclosed in a 3D-printed surrogate skull-like material containing media which are then placed in a holder apparatus inside the ABS. This allows for exposure to the blast wave alone without any secondary injury occurring. We show that blast induces an increase in lactate dehydrogenase activity and glutamate release from the cultures, indicating cellular injury. Additionally, we observe a significant increase in axonal varicosities after blast. These varicosities can be stained with antibodies recognizing amyloid precursor protein. The presence of amyloid precursor protein deposits may indicate a blast-induced axonal transport deficit. After blast injury, we find a transient release of the known TBI biomarkers, UCHL1 and NF-H at 6 h and a delayed increase in S100B at 24 and 48 h. This in vitro model will enable us to gain a better understanding of clinically relevant pathological changes that occur following primary blast and can also be utilized for discovery and characterization of biomarkers.


Assuntos
Traumatismos por Explosões , Lesões Encefálicas Traumáticas , Humanos , Traumatismos por Explosões/complicações , Precursor de Proteína beta-Amiloide/metabolismo , Lesões Encefálicas Traumáticas/patologia , Encéfalo/metabolismo , Neurônios/metabolismo
2.
J Neurosci Res ; 100(2): 620-637, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34850425

RESUMO

Most studies investigating the impact of the cerebral cortex (CC) onto the cerebellum highlight the role of the pons, which provides the mossy fibers to the cerebellum. However, cerebro-cerebellar communication may also be mediated by the nuclei of the mesodiencephalic junction (MDJ) that project to the inferior olive (IO), which in turn provides the climbing fibers to the molecular layer. Here, we uncover the precise topographic relations of the inputs and outputs of the MDJ using multiple, classical, and transneuronal tracing methods as well as analyses of mesoscale cortical injections from Allen Mouse Brain. We show that the caudal parts of the CC predominantly project to the principal olive via the rostral MDJ and that the rostral parts of the CC predominantly project to the rostral medial accessory olive via the caudal MDJ. Moreover, using triple viral tracing technology, we show that the cerebellar nuclei directly innervate the neurons in the MDJ that receive input from CC and project to the IO. By unraveling these topographic and prominent, mono- and disynaptic projections through the MDJ, this work establishes that cerebro-cerebellar communication is not only mediated by the pontine mossy fiber system, but also by the climbing fiber system.


Assuntos
Cerebelo , Núcleo Olivar , Animais , Núcleos Cerebelares/fisiologia , Cerebelo/fisiologia , Bulbo , Camundongos , Vias Neurais/fisiologia , Neurônios/fisiologia , Núcleo Olivar/fisiologia
3.
J Neurosci Res ; 100(2): 461-476, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34837408

RESUMO

We examined the sensitivity of the neurons in the inferior colliculus (IC) in male and female rats to the interaural time differences (ITDs) conveyed in electrical pulse trains. Using bipolar pairs of electrodes that selectively activate the auditory nerve fibers at different intracochlear locations, we assessed whether the responses to electrical stimulation with ITDs in different frequency regions were processed differently. Most well-isolated single units responded to the electrical stimulation in only one of the apical or basal cochlear regions, and they were classified as either apical or basal units. Regardless of the cochlear stimulating location, more than 70% of both apical and basal units were sensitive to ITDs of electrical stimulation. However, the pulse rate dependence of neural ITD sensitivity differed significantly depending on the location of the stimulation. Moreover, ITD discrimination thresholds and the relative incidence of ITD tuning type markedly differed between units activated by apical and basal stimulations. With apical stimulation, IC neurons had a higher incidence of peak-type ITD function, which mostly exhibited the steepest position of the tuning curve within the rat's physiological ITD range of ±160 µs and, accordingly, had better ITD discrimination thresholds than those with basal stimulation. These results support the idea that ITD processing in the IC might be determined by functionally segregated frequency-specific pathways from the cochlea to the auditory midbrain.


Assuntos
Implantes Cocleares , Colículos Inferiores , Estimulação Acústica/métodos , Animais , Estimulação Elétrica , Feminino , Colículos Inferiores/fisiologia , Masculino , Neurônios/fisiologia , Ratos
4.
J Neurosci Res ; 100(6): 1281-1295, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35293016

RESUMO

Astrocytes are critical for healthy brain function. In Alzheimer's disease, astrocytes become reactive, which affects their signaling properties. Here, we measured spontaneous calcium transients ex vivo in hippocampal astrocytes in brain slices containing the dentate gyrus of 6- (6M) and 9-month-old (9M) APPswe/PSEN1dE9 (APP/PS1) mice. We investigated the frequency and duration of calcium transients in relation to aging, amyloid-ß (Aß) pathology, and the proximity of the astrocyte to Aß plaques. The 6M APP/PS1 astrocytes showed no change in spontaneous calcium-transient properties compared to wild-type (WT) astrocytes. 9M APP/PS1 astrocytes, however, showed more hyperactivity compared to WT, characterized by increased spontaneous calcium transients that were longer in duration. Our data also revealed an effect of aging, as 9M astrocytes overall showed an increase in calcium activity compared to 6M astrocytes. Subsequent calcium-wave analysis showed an increase in sequential calcium transients (i.e., calcium waves) in 9M astrocytes, suggesting increased network activity ex vivo. Further analysis using null models revealed that this network effect is caused by chance, due to the increased number of spontaneous transients. Our findings show that alterations in calcium signaling in individual hippocampal astrocytes of APP/PS1 mice are subject to both aging and Aß pathology but these do not lead to a change in astrocyte network activity. These alterations in calcium dynamics of astrocytes may help to understand changes in neuronal physiology leading to cognitive decline and ultimately dementia.


Assuntos
Doença de Alzheimer , Astrócitos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Giro Denteado/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Placa Amiloide
5.
Hum Brain Mapp ; 42(1): 204-219, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32996635

RESUMO

Limited statistical power due to small sample sizes is a problem in fMRI research. Most of the work to date has examined the impact of sample size on task-related activation, with less attention paid to the influence of sample size on brain-behavior correlations, especially in actual experimental fMRI data. We addressed this issue using two large data sets (a working memory task, N = 171, and a relational processing task, N = 865) and both univariate and multivariate approaches to voxel-wise correlations. We created subsamples of different sizes and calculated correlations between task-related activity at each voxel and task performance. Across both data sets the magnitude of the brain-behavior correlations decreased and similarity across spatial maps increased with larger sample sizes. The multivariate technique identified more extensive correlated areas and more similarity across spatial maps, suggesting that a multivariate approach would provide a consistent advantage over univariate approaches in the stability of brain-behavior correlations. In addition, the multivariate analyses showed that a sample size of roughly 80 or more participants would be needed for stable estimates of correlation magnitude in these data sets. Importantly, a number of additional factors would likely influence the choice of sample size for assessing such correlations in any given experiment, including the cognitive task of interest and the amount of data collected per participant. Our results provide novel experimental evidence in two independent data sets that the sample size commonly used in fMRI studies of 20-30 participants is very unlikely to be sufficient for obtaining reproducible brain-behavior correlations, regardless of analytic approach.


Assuntos
Córtex Cerebral/fisiologia , Neuroimagem Funcional/métodos , Neuroimagem Funcional/normas , Testes Neuropsicológicos , Desempenho Psicomotor/fisiologia , Adulto , Idoso , Análise de Variância , Córtex Cerebral/diagnóstico por imagem , Interpretação Estatística de Dados , Conjuntos de Dados como Assunto , Feminino , Humanos , Julgamento/fisiologia , Imageamento por Ressonância Magnética , Masculino , Memória de Curto Prazo/fisiologia , Pessoa de Meia-Idade , Reconhecimento Visual de Modelos/fisiologia , Tamanho da Amostra , Adulto Jovem
6.
J Neurosci Res ; 99(2): 446-454, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33089563

RESUMO

Soccer, as a contact sport, exposes players to repetitive head impacts, especially through heading the ball. The question of a long-term brain cumulative effect remains. Our objective was to determine whether exposure to head impacts over one soccer season was associated with changes in functional brain connectivity at rest, using magnetic resonance imaging (MRI). In this prospective cohort study, 10 semi-professional men soccer players, aged 18-25 years, and 20 age-matched men athletes without a concussion history and who do not practice any contact sport were recruited in Bordeaux (France). Exposure to head impacts per soccer player during competitive games over one season was measured using video analysis. Resting-state functional magnetic resonance imaging data were acquired for both groups at two times, before and after the season. With a seed-based analysis, resting-state networks that have been intimately associated with aspects of cognitive functioning were investigated. The results showed a mean head impacts of 42 (±33) per soccer player over the season, mainly intentional head-to-ball impacts and no concussion. No head impact was found among the other athletes. The number of head impacts between the two MRI acquisitions before and after the season was associated with increased connectivity within the default mode network and the cortico-cerebellar network. In conclusion, our findings suggest that the brain functioning changes over one soccer season in association with exposure to repetitive head impacts.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Conectoma , Rede de Modo Padrão/diagnóstico por imagem , Traumatismos Cranianos Fechados/complicações , Futebol/lesões , Adolescente , Adulto , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/etiologia , Concussão Encefálica/patologia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/etiologia , Cerebelo/diagnóstico por imagem , Cerebelo/lesões , Cerebelo/patologia , França , Traumatismos Cranianos Fechados/epidemiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Estudos Prospectivos , Recidiva , Descanso , Adulto Jovem
7.
J Neurosci Res ; 99(2): 662-678, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32954528

RESUMO

The effect of stress on animal behavior and brain activity has been attracting growing attention in the last decades. Stress dramatically affects several aspects of animal behavior, including motivation and cognitive functioning, and has been used to model human pathologies such as post-traumatic stress disorder. A key question is whether stress alters the plastic potential of synaptic circuits. In this work, we evaluated if stress affects dopamine (DA)-dependent synaptic plasticity in the medial prefrontal cortex (mPFC). On male adolescent rats, we characterized anxiety- and depressive-like behaviors using behavioral testing before and after exposure to a mild stress (elevated platform, EP). After the behavioral protocols, we investigated DA-dependent long-term potentiation (DA-LTP) and depression (DA-LTD) on acute slices of mPFC and evaluated the activation of DA-producing brain regions by western and dot blot analysis. We show that exposure to the EP stress enhances DA-LTP and that desipramine (DMI) treatment abolishes this effect. We also found that DA-LTD is not affected by EP stress unless when this is followed by DMI treatment. In addition, EP stress reduces anxiety, an effect abolished by both DMI and ketamine, while motivation is promoted by previous exposure to EP stress independently of pharmacological treatments. Finally, this form of stress reduces the expression of the early gene cFOS in the ventral tegmental area. These findings support the idea that mild stressors can promote synaptic plasticity in PFC through a dopaminergic mechanism, an effect that might increase the sensitivity of mPFC to subsequent stressful experiences.


Assuntos
Dopamina/fisiologia , Potenciação de Longa Duração , Córtex Pré-Frontal/fisiopatologia , Estresse Psicológico/fisiopatologia , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ansiedade/etiologia , Ansiedade/fisiopatologia , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/fisiopatologia , Desipramina/farmacologia , Desipramina/uso terapêutico , Teste de Labirinto em Cruz Elevado , Potenciais Pós-Sinápticos Excitadores/fisiologia , Regulação da Expressão Gênica , Genes fos , Ketamina/farmacologia , Masculino , Motivação , Teste de Campo Aberto , Ratos , Ratos Sprague-Dawley , Natação , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/fisiologia
8.
J Neurosci Res ; 99(6): 1689-1703, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33713502

RESUMO

The lateral hypothalamus (LH) plays a key role in the maintenance of cortical activation and wakefulness. In the LH, the two main neuronal cell populations consist of excitatory glutamatergic neurons and inhibitory GABAergic neurons. Recent studies have shown that inhibitory LH GABAergic neurons are wake-promoting. However, the mechanism by which excitatory LH glutamatergic neurons contribute to sleep-wake regulation remains unclear. Using fiber photometry in male mice, we demonstrated that LH glutamatergic neurons exhibited high activities during both wakefulness and rapid eye movement sleep. Chemogenetic activation of LH glutamatergic neurons induced an increase in wakefulness that lasted for 6 hr, whereas suppression of LH glutamatergic neuronal activity caused a reduction in wakefulness. Brief optogenetic activation of LH glutamatergic neurons induced an immediate transition from slow-wave sleep to wakefulness, and long-lasting optogenetic stimulation of these neurons maintained wakefulness. Moreover, we found that LH-locus coeruleus/parabrachial nucleus and LH-basal forebrain projections mediated the wake-promoting effects of LH glutamatergic neurons. Taken together, our data indicate that LH glutamatergic neurons are essential for the induction and maintenance of wakefulness. The results presented here may advance our understanding of the role of LH in the control of wakefulness.


Assuntos
Glutamatos/fisiologia , Região Hipotalâmica Lateral/fisiologia , Neurônios/fisiologia , Vigília/fisiologia , Animais , Agonistas de Aminoácidos Excitatórios/farmacologia , Neurônios GABAérgicos , Masculino , Camundongos , Optogenética , Polissonografia , Fases do Sono , Sono REM/fisiologia
9.
J Neurosci Res ; 99(10): 2721-2742, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34323312

RESUMO

Infraorbital nerve-chronic constriction injury (ION-CCI) has become the most popular chronic trigeminal neuropathic pain (TNP) injury animal model which causes prolonged mechanical allodynia. Accumulative evidence suggests that TNP interferes with cognitive functions, however the underlying mechanisms are not known. The aim of this study was to investigate decision-making performance as well as synaptic and large-scale neural synchronized alterations in the spinal trigeminal nucleus (SpV) circuitry and anterior cingulate cortex (ACC) neural circuitry in male rats with TNP. Rat gambling task showed that ION-CCI led to decrease the proportion of good decision makers and increase the proportion of poor decision makers. Electrophysiological recordings showed long-lasting synaptic potentiation of local field potential in the trigeminal ganglia-SpV caudalis (SpVc) synapses in TNP rats. In this study, TNP led to disruption of ACC spike timing and basolateral amygdala (BLA) theta oscillation associated with suppressed synchronization of theta oscillation between the BLA and ACC, indicating reduced neuronal communications. Myelination is critical for information flow between brain regions, and myelin plasticity is an important feature for learning. Neural activity in the cortical regions impacts myelination by regulating oligodendrocyte (OL) proliferation, differentiation, and myelin formation. We characterized newly formed oligodendrocyte progenitor cells, and mature OLs are reduced in TNP and are associated with reduced myelin strength in the ACC region. The functional disturbances in the BLA-ACC neural circuitry is pathologically associated with the myelin defects in the ACC region which may be relevant causes for the deficits in decision-making in chronic TNP state.


Assuntos
Tomada de Decisões/fisiologia , Doenças Desmielinizantes/patologia , Giro do Cíngulo/patologia , Rede Nervosa/patologia , Ritmo Teta/fisiologia , Doenças do Nervo Trigêmeo/patologia , Potenciais de Ação/fisiologia , Animais , Doenças Desmielinizantes/fisiopatologia , Giro do Cíngulo/fisiopatologia , Masculino , Rede Nervosa/fisiopatologia , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Doenças do Nervo Trigêmeo/fisiopatologia
10.
J Neurosci Res ; 99(6): 1515-1532, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33682204

RESUMO

Ground state depletion followed by individual molecule return microscopy (GSDIM) has been used in the past to study the nanoscale distribution of protein co-localization in living cells. We now demonstrate the successful application of GSDIM to archival human brain tissue sections including from Alzheimer's disease cases as well as experimental tissue samples from mouse and zebrafish larvae. Presynaptic terminals and microglia and their cell processes were visualized at a resolution beyond diffraction-limited light microscopy, allowing clearer insights into their interactions in situ. The procedure described here offers time and cost savings compared to electron microscopy and opens the spectrum of molecular imaging using antibodies and super-resolution microscopy to the analysis of routine formalin-fixed paraffin sections of archival human brain. The investigation of microglia-synapse interactions in dementia will be of special interest in this context.


Assuntos
Microglia/fisiologia , Microglia/ultraestrutura , Microscopia/métodos , Sinapses/fisiologia , Sinapses/ultraestrutura , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Anticorpos , Feminino , Humanos , Larva , Masculino , Camundongos , Microscopia Confocal , Pessoa de Meia-Idade , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Fixação de Tecidos , Peixe-Zebra
11.
Hum Brain Mapp ; 41(2): 561-576, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31617298

RESUMO

Traumatic brain injury (TBI) in childhood and adolescence can interrupt expected development, compromise the integrity of the social brain network (SBN) and impact social skills. Yet, no study has investigated functional alterations of the SBN following pediatric TBI. This study explored functional connectivity within the SBN following TBI in two independent adolescent samples. First, 14 adolescents with mild complex, moderate or severe TBI and 16 typically developing controls (TDC) underwent resting-state functional magnetic resonance imaging 12-24 months post-injury. Region of interest analyses were conducted to compare the groups' functional connectivity using selected SBN seeds. Then, replicative analysis was performed in an independent sample of adolescents with similar characteristics (9 TBI, 9 TDC). Results were adjusted for age, sex, socioeconomic status and total gray matter volume, and corrected for multiple comparisons. Significant between-group differences were detected for functional connectivity in the dorsomedial prefrontal cortex and left fusiform gyrus, and between the left fusiform gyrus and left superior frontal gyrus, indicating positive functional connectivity for the TBI group (negative for TDC). The replication study revealed group differences in the same direction between the left superior frontal gyrus and right fusiform gyrus. This study indicates that pediatric TBI may alter functional connectivity of the social brain. Frontal-fusiform connectivity has previously been shown to support affect recognition and changes in the function of this network could relate to more effortful processing and broad social impairments.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Conectoma , Rede Nervosa/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Comportamento Social , Habilidades Sociais , Lobo Temporal/fisiopatologia , Adolescente , Desenvolvimento do Adolescente/fisiologia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Criança , Desenvolvimento Infantil/fisiologia , Feminino , Humanos , Escala de Gravidade do Ferimento , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/crescimento & desenvolvimento , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/crescimento & desenvolvimento
12.
J Comp Neurol ; 532(4): e25612, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38591638

RESUMO

Cellular-level anatomical data from early fetal brain are sparse yet critical to the understanding of neurodevelopmental disorders. We characterize the organization of the human cerebral cortex between 13 and 15 gestational weeks using high-resolution whole-brain histological data sets complimented with multimodal imaging. We observed the heretofore underrecognized, reproducible presence of infolds on the mesial surface of the cerebral hemispheres. Of note at this stage, when most of the cerebrum is occupied by lateral ventricles and the corpus callosum is incompletely developed, we postulate that these mesial infolds represent the primordial stage of cingulate, callosal, and calcarine sulci, features of mesial cortical development. Our observations are based on the multimodal approach and further include histological three-dimensional reconstruction that highlights the importance of the plane of sectioning. We describe the laminar organization of the developing cortical mantle, including these infolds from the marginal to ventricular zone, with Nissl, hematoxylin and eosin, and glial fibrillary acidic protein (GFAP) immunohistochemistry. Despite the absence of major sulci on the dorsal surface, the boundaries among the orbital, frontal, parietal, and occipital cortex were very well demarcated, primarily by the cytoarchitecture differences in the organization of the subplate (SP) and intermediate zone (IZ) in these locations. The parietal region has the thickest cortical plate (CP), SP, and IZ, whereas the orbital region shows the thinnest CP and reveals an extra cell-sparse layer above the bilaminar SP. The subcortical structures show intensely GFAP-immunolabeled soma, absent in the cerebral mantle. Our findings establish a normative neurodevelopment baseline at the early stage.


Assuntos
Encéfalo , Córtex Cerebral , Humanos , Corpo Caloso , Neurônios , Cabeça
13.
J Comp Neurol ; 529(11): 3098-3111, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33843050

RESUMO

In primates, broad thorny retinal ganglion cells are highly sensitive to small, moving stimuli. They have tortuous, fine dendrites with many short, spine-like branches that occupy three contiguous strata in the middle of the inner plexiform layer. The neural circuits that generate their responses to moving stimuli are not well-understood, and that was the goal of this study. A connectome from central macaque retina was generated by serial block-face scanning electron microscopy, a broad thorny cell was reconstructed, and its synaptic inputs were analyzed. It received fewer than 2% of its inputs from both ON and OFF types of bipolar cells; the vast majority of its inputs were from amacrine cells. The presynaptic amacrine cells were reconstructed, and seven types were identified based on their characteristic morphology. Two types of narrow-field cells, knotty bistratified Type 1 and wavy multistratified Type 2, were identified. Two types of medium-field amacrine cells, ON starburst and spiny, were also presynaptic to the broad thorny cell. Three types of wide-field amacrine cells, wiry Type 2, stellate wavy, and semilunar Type 2, also made synapses onto the broad thorny cell. Physiological experiments using a macaque retinal preparation in vitro confirmed that broad thorny cells received robust excitatory input from both the ON and the OFF pathways. Given the paucity of bipolar cell inputs, it is likely that amacrine cells provided much of the excitatory input, in addition to inhibitory input.


Assuntos
Células Amácrinas/fisiologia , Conectoma/métodos , Retina/citologia , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Sinapses/fisiologia , Células Amácrinas/ultraestrutura , Animais , Macaca , Macaca nemestrina , Masculino , Retina/ultraestrutura , Células Ganglionares da Retina/ultraestrutura , Sinapses/ultraestrutura
14.
J Comp Neurol ; 529(4): 905-925, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678470

RESUMO

Sensory systems provide input to motor networks on the state of the body and environment. One such sensory system in insects is the campaniform sensilla (CS), which detect deformations of the exoskeleton arising from resisted movements or external perturbations. When physical strain is applied to the cuticle, CS external structures are compressed, leading to transduction in an internal sensory neuron. In Drosophila melanogaster, the distribution of CS on the exoskeleton has not been comprehensively described. To investigate CS number, location, spatial arrangement, and potential differences between individuals, we compared the front, middle, and hind legs of multiple flies using scanning electron microscopy. Additionally, we imaged the entire body surface to confirm known CS locations. On the legs, the number and relative arrangement of CS varied between individuals, and single CS of corresponding segments showed characteristic differences between legs. This knowledge is fundamental for studying the relevance of cuticular strain information within the complex neuromuscular networks controlling posture and movement. This comprehensive account of all D. melanogaster CS helps set the stage for experimental investigations into their responsivity, sensitivity, and roles in sensory acquisition and motor control in a light-weight model organism.


Assuntos
Sensilas/anatomia & histologia , Sensilas/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Animais , Drosophila melanogaster , Feminino , Sensilas/química
15.
J Comp Neurol ; 529(9): 2265-2282, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33336375

RESUMO

Lampreys are extant members of the agnathan (jawless) vertebrates that diverged ~500 million years ago, during a critical stage of vertebrate evolution when image-forming eyes first emerged. Among lamprey species assessed thus far, the retina of the southern hemisphere pouched lamprey, Geotria australis, is unique, in that it possesses morphologically distinct photoreceptors and expresses five visual photopigments. This study focused on determining the number of different photoreceptors present in the retina of G. australis and whether each cell type expresses a single opsin class. Five photoreceptor subtypes were identified based on ultrastructure and differential expression of one of each of the five different visual opsin classes (lws, sws1, sws2, rh1, and rh2) known to be expressed in the retina. This suggests, therefore, that the retina of G. australis possesses five spectrally and morphologically distinct photoreceptors, with the potential for complex color vision. Each photoreceptor subtype was shown to have a specific spatial distribution in the retina, which is potentially associated with changes in spectral radiance across different lines of sight. These results suggest that there have been strong selection pressures for G. australis to maintain broad spectral sensitivity for the brightly lit surface waters that this species inhabits during its marine phase. These findings provide important insights into the functional anatomy of the early vertebrate retina and the selection pressures that may have led to the evolution of complex color vision.


Assuntos
Opsinas dos Cones/biossíntese , Opsinas dos Cones/ultraestrutura , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/ultraestrutura , Opsinas de Bastonetes/biossíntese , Opsinas de Bastonetes/ultraestrutura , Animais , Opsinas dos Cones/análise , Corantes Fluorescentes/análise , Lampreias , Células Fotorreceptoras de Vertebrados/química , Opsinas de Bastonetes/análise
16.
J Comp Neurol ; 529(4): 885-904, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32677044

RESUMO

The anterior cingulate cortex (ACC) is important for decision-making as it integrates motor plans with affective and contextual limbic information. Disruptions in these networks have been observed in depression, bipolar disorder, and post-traumatic stress disorder. Yet, overlap of limbic and motor connections within subdivisions of the ACC is not well understood. Hence, we administered a combination of retrograde and anterograde tracers into structures important for contextual memories (entorhinal cortex), affective processing (amygdala), and motor planning (dorsal premotor cortex) to assess overlap of labeled projection neurons from (outputs) and axon terminals to (inputs) the ACC of adult rhesus monkeys (Macaca mulatta). Our data show that entorhinal and dorsal premotor cortical (dPMC) connections are segregated across ventral (A25, A24a) and dorsal (A24b,c) subregions of the ACC, while amygdalar connections are more evenly distributed across subregions. Among all areas, the rostral ACC (A32) had the lowest relative density of connections with all three regions. In the ventral ACC, entorhinal and amygdalar connections strongly overlap across all layers, especially in A25. In the dorsal ACC, outputs to dPMC and the amygdala strongly overlap in deep layers. However, dPMC input to the dorsal ACC was densest in deep layers, while amygdalar inputs predominantly localized in upper layers. These connection patterns are consistent with diverse roles of the dorsal ACC in motor evaluation and the ventral ACC in affective and contextual memory. Further, distinct laminar circuits suggest unique interactions within specific ACC compartments that are likely important for the temporal integration of motor and limbic information during flexible goal-directed behavior.


Assuntos
Tonsila do Cerebelo/anatomia & histologia , Córtex Entorrinal/anatomia & histologia , Giro do Cíngulo/anatomia & histologia , Córtex Pré-Frontal/anatomia & histologia , Tonsila do Cerebelo/química , Tonsila do Cerebelo/citologia , Animais , Córtex Entorrinal/química , Córtex Entorrinal/citologia , Feminino , Giro do Cíngulo/química , Giro do Cíngulo/citologia , Macaca mulatta , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/química , Vias Neurais/citologia , Córtex Pré-Frontal/química , Córtex Pré-Frontal/citologia
17.
J Comp Neurol ; 528(17): 3108-3122, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32080849

RESUMO

Goal-directed movements involve a series of neural computations that compare the sensory representations of goal location and effector position, and transform these into motor commands. Neurons in posterior parietal cortex (PPC) control several effectors (e.g., eye, hand, foot) and encode goal location in a variety of spatial coordinate systems, including those anchored to gaze direction, and to the positions of the head, shoulder, or hand. However, there is little evidence on whether reference frames depend also on the effector and/or type of motor response. We addressed this issue in macaque PPC area V6A, where previous reports using a fixate-to-reach in depth task, from different starting arm positions, indicated that most units use mixed body/hand-centered coordinates. Here, we applied singular value decomposition and gradient analyses to characterize the reference frames in V6A while the animals, instead of arm reaching, performed a nonspatial motor response (hand lift). We found that most neurons used mixed body/hand coordinates, instead of "pure" body-, or hand-centered coordinates. During the task progress the effect of hand position on activity became stronger compared to target location. Activity consistent with body-centered coding was present only in a subset of neurons active early in the task. Applying the same analyses to a population of V6A neurons recorded during the fixate-to-reach task yielded similar results. These findings suggest that V6A neurons use consistent reference frames between spatial and nonspatial motor responses, a functional property that may allow the integration of spatial awareness and movement control.


Assuntos
Movimento/fisiologia , Neurônios/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Percepção Espacial/fisiologia , Animais , Macaca fascicularis , Masculino , Lobo Parietal/citologia , Estimulação Luminosa/métodos , Distribuição Aleatória
18.
J Comp Neurol ; 528(8): 1367-1391, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31785155

RESUMO

The pathogenesis of fibromyalgia is still unknown. Core symptoms include pain, depression, and sleep disturbances with high comorbidity, suggesting alterations in the monoaminergic system as a common origin of this disease. The reserpine-induced myalgia (RIM) model lowers pain thresholds and produces depressive-like symptoms. The present work aims to evaluate temporal dynamics in the oscillatory profiles and motor activity during sleep in this model and to evaluate if the model mimics the sleep disorders that occur in fibromyalgia patients. Hippocampal and electromyogram activity were recorded in chronically implanted rats. Following 3 days of basal recordings, reserpine was administered on three consecutive days to achieve the RIM. Postreserpine recordings were taken on alternate days for 21 days. Reserpine induced changes in the sleep architecture with more transitions between states, and a different pattern between the administration period and postreserpine weeks. Administration days were characterized by a larger amount of rapid eyes movement sleep with dominant theta waves without atonia. Following the reserpinization, theta oscillations were always more fragmented and with lower frequency. On the postreserpine days, sleep was dominated by slow-wave sleep with fast intrusions and reduced hierarchical coupling with spindles and ripples. Simultaneous electromyography recordings also showed muscle twitches during sleep and the dissociation of theta activity and muscle atonia. Abnormally high slow waves, alpha/delta intrusions, frequent transitions, and muscle twitches are common traits in fibromyalgia. Therefore, our analyses support the validity of the RIM model to study sleep disorders in fibromyalgia, and provide new insights into the research of oscillographic biomarkers.


Assuntos
Ondas Encefálicas/fisiologia , Fibromialgia/fisiopatologia , Hipocampo/fisiopatologia , Reserpina/toxicidade , Transtornos do Sono-Vigília/fisiopatologia , Animais , Antipsicóticos/toxicidade , Ondas Encefálicas/efeitos dos fármacos , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Fibromialgia/induzido quimicamente , Hipocampo/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Sono/efeitos dos fármacos , Sono/fisiologia , Transtornos do Sono-Vigília/induzido quimicamente
19.
J Comp Neurol ; 528(8): 1257-1264, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31769022

RESUMO

Seizures are induced when subjects are exposed to severe hypoxia. It is followed by ventilatory fall-off and eventual respiratory arrest, which may underlie the pathophysiology of death in patients with epilepsy and severe respiratory disorders. However, the mechanisms of hypoxia-induced seizures have not been fully understood. Because astrocytes are involved in various neurological disorders, we aimed to investigate whether astrocytes are operational in seizure generation and respiratory arrest in a severe hypoxic condition. We examined the effects of astrocytic activation blockade on responses of EEG and ventilation to severe hypoxia. Adult mice were divided into two groups; in one group (n = 24) only vehicle was injected, and in the other group (n = 24) arundic acid, an inhibitory modulator of astrocytic activation, was administered before initiation of recording. After recording EEG and ventilation by whole body plethysmography in room air, the gas in the recording chamber was switched to 5% oxygen (nitrogen balanced) until a seizure and ventilatory depression occurred, followed by prompt switch back to room air. Severe hypoxia initially increased ventilation, followed by a seizure and ventilatory suppression in all mice examined. Fourteen mice without arundic acid showed respiratory arrest during loading of hypoxia. However, 22 mice pretreated with arundic acid did not suffer from respiratory arrest. Time from the onset of hypoxia to the occurrence of seizures was significantly longer in the group with arundic acid than that in the group without arundic acid. We suggest that blockade of astrocytic activation delays the occurrence of seizures and prevents respiratory arrest.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Hipóxia/metabolismo , Transtornos Respiratórios/metabolismo , Convulsões/metabolismo , Índice de Gravidade de Doença , Administração por Inalação , Animais , Caprilatos/administração & dosagem , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Hipóxia/complicações , Hipóxia/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Respiratórios/prevenção & controle , Convulsões/etiologia , Convulsões/prevenção & controle
20.
J Comp Neurol ; 528(4): 542-558, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31576574

RESUMO

The well-studied phylogeny and ecology of dragon lizards and their range of visually mediated behaviors provide an opportunity to examine the factors that shape retinal organization. Dragon lizards consist of three evolutionarily stable groups based on their shelter type, including burrows, shrubs, and rocks. This allows us to test whether microhabitat changes are reflected in their retinal organization. We examined the retinae of three burrowing species (Ctenophorus pictus, C. gibba, and C. nuchalis), and three species that shelter in rock crevices (C. ornatus, C. decresii, and C. vadnappa). We used design-based stereology to sample both the photoreceptor array and neurons within the retinal ganglion cell layer to estimate areas specialized for acute vision. All species had two retinal specializations mediating enhanced spatial acuity: a fovea in the retinal center and a visual streak across the retinal equator. Furthermore, all species featured a dorsoventrally asymmetric photoreceptor distribution with higher photoreceptor densities in the ventral retina. This dorsoventral asymmetry may provide greater spatial summation of visual information in the dorsal visual field. Burrow-dwelling species had significantly larger eyes, higher total numbers of retinal cells, higher photoreceptor densities in the ventral retina, and higher spatial resolving power than rock-dwelling species. C. pictus, a secondary burrow-dwelling species, was the only species that changed burrow usage over evolutionary time, and its retinal organization revealed features more similar to rock-dwelling species than other burrow-dwelling species. This suggests that phylogeny may play a substantial role in shaping retinal organization in Ctenophorus species compared to microhabitat occupation.


Assuntos
Biodiversidade , Ecossistema , Lagartos/fisiologia , Células Fotorreceptoras/fisiologia , Retina/fisiologia , Animais , Topografia da Córnea/métodos , Lagartos/anatomia & histologia , Células Fotorreceptoras/química , Retina/anatomia & histologia , Retina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA