Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Environ Geochem Health ; 45(8): 5727-5759, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36646974

RESUMO

It is well known that exposure to a high concentration of radon-222 causes severe health effects, including cancer. The present article includes a survey on radon-222 in the water bodies of the city Durgapur [non-geothermal area] and nearby Bakreswar hot spring [geothermal province], India. The possible sources of radon from natural radionuclides and industries have been discussed in the article. Durgapur is a densely populated [~ 3680 persons/km2] industrial city with a population of 0.57 million. On the other hand, many tourists and pilgrims usually visit Bakreswar throughout the year. Age-dependent potential health risk assessments of the dwellers at Durgapur and Bakreswar due to radon exposure were performed for the first time. The present work is the first attempt to estimate the mean ingestion /and inhalation dose per annum, total effective dose [TED] per annum and the health risk assessment for cancer in adults, children and infants due to radon exposure at Durgapur and Bakreswar. In some cases, the values of TED exceed the permissible limit of 100 micro Sievert per year [µSv/y] as recommended by EUC and WHO. The radiation profile maps relating to radon concentration and associated contour maps of health risk factors [HRF] for the adults, children and infants were also prepared for the first time. Some areas were identified as high-risk zones, and the dwellers are prone to a high risk of cancer. The article also proposed several techniques to reduce radon in water and buildings. The authors also recommended banning some water sources to protect people from radon risk. This study will help scientists, policymakers, industrialists, farmers, government agencies and public health departments.


Assuntos
Água Potável , Fontes Termais , Monitoramento de Radiação , Radônio , Poluentes Radioativos da Água , Criança , Lactente , Adulto , Humanos , Água Potável/análise , Radônio/análise , Medição de Risco , Índia , Poluentes Radioativos da Água/análise
2.
Environ Geochem Health ; 45(7): 4311-4325, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36763213

RESUMO

Natural radioactive isotopes occur in various components of the natural environment, including groundwater. The general population, not always aware of possible threats, can use its resources. The activity concentration of some of the radioactive isotopes should be monitored, especially in those intakes from which it is possible to obtain water for human consumption, e.g. in domestic wells. The conducted research was innovative due to the fact that in many countries, including Poland, there are no regulations on waters exploited from home wells using as a drinking water source. As the groundwaters from this area have not been examined for radon (222Rn) and radium (226Ra) occurrence yet, the goal of this research was to perform screening tests in this part of the Fore-Sudetic Monocline. For this purpose, the authors have measured the concentration of 222Rn and 226Ra activity in groundwater collected from this geological unit located in south-western Poland. 222Rn and 226Ra occurrence was researched, and specific electrolytic conductivity, redox potential, pH and temperature were measured in 52 groundwater samples. 222Rn activity concentration ranged from 0.18 to 19.78 Bq/dm3. Only in three cases, 226Ra activity concentration reached a value above the lower detection limit of the applied method, i.e. 0.05 Bq/dm3 (max. 0.77 Bq/dm3). The authors present completely new data on the occurrence of these radioactive isotopes in the waters of the first aquifer in the Fore-Sudetic Monocline, which is not without significance for the health of consumers of these waters.


Assuntos
Água Subterrânea , Monitoramento de Radiação , Rádio (Elemento) , Radônio , Poluentes Radioativos da Água , Humanos , Poluentes Radioativos da Água/análise , Radônio/análise , Poços de Água , Meio Ambiente , Rádio (Elemento)/análise
3.
Environ Res ; 212(Pt D): 113437, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35594963

RESUMO

During the ongoing global COVID-19 pandemic disease, like several countries, Romania experienced a multiwaves pattern over more than two years. The spreading pattern of SARS-CoV-2 pathogens in the Bucharest, capital of Romania is a multi-factorial process involving among other factors outdoor environmental variables and viral inactivation. Through descriptive statistics and cross-correlation analysis applied to daily time series of observational and geospatial data, this study aims to evaluate the synergy of COVID-19 incidence and lethality with air pollution and radon under different climate conditions, which may exacerbate the coronavirus' effect on human health. During the entire analyzed period 1 January 2020-21 December 2021, for each of the four COVID-19 waves were recorded different anomalous anticyclonic synoptic meteorological patterns in the mid-troposphere, and favorable stability conditions during fall-early winter seasons for COVID-19 disease fast-spreading, mostly during the second, and the fourth waves. As the temporal pattern of airborne SARS-CoV-2 and its mutagen variants is affected by seasonal variability of the main air pollutants and climate parameters, this paper found: 1) the daily outdoor exposures to air pollutants (particulate matter PM2.5 and PM10, nitrogen dioxide-NO2, sulfur dioxide-SO2, carbon monoxide-CO) and radon - 222Rn, are directly correlated with the daily COVID-19 incidence and mortality, and may contribute to the spread and the severity of the pandemic; 2) the daily ground ozone-O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance are anticorrelated with the daily new COVID-19 incidence and deaths, averageingful for spring-summer periods. Outdoor exposure to ambient air pollution associated with radon is a non-negligible driver of COVID-19 transmission in large metropolitan areas, and climate variables are risk factors in spreading the viral infection. The findings of this study provide useful information for public health authorities and decision-makers to develop future pandemic diseases strategies in high polluted metropolitan environments.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Radônio , Poluentes Atmosféricos/análise , COVID-19/epidemiologia , Humanos , Pandemias , Material Particulado/análise , Radônio/análise , Romênia/epidemiologia , SARS-CoV-2 , Fatores de Tempo
4.
J Radiol Prot ; 42(4)2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36541479

RESUMO

In this work, the radon emanation coefficients for selected building materials that are most often used in Serbia for covering floor surfaces (concrete, concrete screed, granite, glazed ceramic tiles, marble, roofing tile, and terrazzo tile) were determined, and the influence of the material structure on their values. The concentration of226Ra activity in the samples was determined using the gamma spectrometry method. Radon emanation was measured with the RAD7 device. The porosity of the samples was tested using mercury intrusion porosimetry and water absorption methods, and the structural analysis was performed using x-ray diffraction analysis and x-ray fluorescence analysis. The measured values of226Ra activity concentrations were in the range (4.93-298) Bq kg-1, and the estimated values of the radon emanation coefficients were in the range (0.55-6.05) %. The obtained results indicate that the chemical and mineralogical composition, method of production, and the226Ra activity concentration have an influence on the emanation of radon from the material. No significant correlation was found between the radon emanation coefficient and the open porosity of the material, most likely due to the inhomogeneous presence of pores of different dimensions in the materials. It was established that the total value of the emanation coefficient depends on the emanation coefficient for pores ⩽100µm in size.


Assuntos
Monitoramento de Radiação , Radônio , Poluentes Radioativos do Solo , Radônio/análise , Materiais de Construção/análise , Poluentes Radioativos do Solo/análise , Água/análise
5.
Radiat Environ Biophys ; 60(1): 1-7, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33030687

RESUMO

Epidemiological evidence of lung cancer risk from radon is based mainly on studies of underground miners where occupational exposures were, historically, relatively high in comparison to residential indoor exposure. However, radiation protection measures have caused radon levels in uranium mines to decrease significantly in more recent periods. Miners' occupational exposure is limited to their working years while they are exposed to environmental radon at home over their entire lifetime. Even during their limited working years, workers spend much more time at home than in workplaces. The biological effect of radon in mines cannot be distinguished from the biological effect of residential radon. Therefore, for an exposure-risk relationship study of former uranium miners, excess radon-induced lung cancer cases should be related to the combined radon exposure cumulated in workplaces and at homes in excess of the radon exposure of the reference population. This is especially important when residential radon levels differ or vary significantly between miners and the reference population over the course of extended follow-up years. This paper reviews some recent studies on former uranium miners, shares what seems controversial to the author and wonders whether lifetime exposure at home to widely varying radon concentrations can actually impact the quality of exposure assessment, and hence impact the results of the exposure-risk relationship.


Assuntos
Poluentes Radioativos do Ar , Mineração , Neoplasias Induzidas por Radiação/epidemiologia , Doenças Profissionais/epidemiologia , Exposição Ocupacional , Radônio , Urânio , Adulto , Idoso , Idoso de 80 Anos ou mais , Poluição do Ar em Ambientes Fechados , República Tcheca/epidemiologia , França/epidemiologia , Habitação , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco
6.
Artigo em Inglês | MEDLINE | ID: mdl-29321446

RESUMO

Vertical profiles of potential temperature, salinity, and some chemical components were obtained at a trench station (29°05'N, 142°51'E; depth = 9768 m) in the Izu-Ogasawara (Bonin) Trench in 1984 and 1994 to characterize the hadal waters below ∼6000 m depth. We compared portions of both the 1984 and 1994 profiles with nearby data obtained between 1976 and 2013. Results demonstrated that the hadal waters had slightly higher potential temperature and nitrate and lower dissolved oxygen than waters at sill depths (∼6000 m) outside the trench, probably due to the effective accumulation of geothermal heat and active biological processes inside the trench. The silicate, iron, and manganese profiles in 1984 showed slight but significant increases below ∼6000 m depth, suggesting that these components may have been intermittently supplied from the trench bottom. Significant amounts of 222Rn in excess over 226Ra were detected in the hadal waters up to 2675 m from the bottom, reflecting laterally supplied 222Rn from the trench walls.


Assuntos
Água do Mar/química , Ecossistema , Ferro/química , Japão , Manganês/química , Nitratos/química , Oxigênio/química , Oceano Pacífico , Silicatos/química , Temperatura
7.
Ecotoxicol Environ Saf ; 141: 148-153, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28340370

RESUMO

Natural radiation of geological origin is a common phenomenon in Brazil, a country where radioactive agents such as uranium may be often found. As an unstable atom, uranium undergoes radioactive decay with the generation of a series of decay by-products, including radon, which may be highly genotoxic and trigger several pathological processes, among which cancer. Because it is a gas, radon may move freely between cracks and gaps in the ground, seeping upwards into the buildings and in the environment. In this study, two Drosophila melanogaster Meigen (Diptera, Drosophilidae) strains called Oregon-R and Wild (collected in a non-radioactive environment) were exposed to atmospheric radiation in the Lajes Pintadas city, in the semiarid zone of northeastern Brazil. After six days of environmental exposure, the organisms presented genetic damage significantly higher than that of the negative control group. The genotoxic effects observed reinforce the findings of other studies carried out in the same region, which warn about the environmental risks related to natural radioactivity occurrence. The results also validate the use of the Comet assay in hemocytes of D. melanogaster as a sensitive test to detect genotoxicity caused by natural radiation, and the use of a recently collected D. melanogaster strain in the environmental of radon.


Assuntos
Radiação de Fundo/efeitos adversos , Ensaio Cometa/métodos , Dano ao DNA , Drosophila melanogaster/efeitos da radiação , Exposição Ambiental , Radônio/toxicidade , Animais , Brasil , Clima Desértico , Drosophila melanogaster/genética , Hemócitos/química , Sensibilidade e Especificidade , Urânio/toxicidade
8.
Isotopes Environ Health Stud ; 60(1): 74-89, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37975234

RESUMO

Advanced computational fluid dynamics (CFD) simulations are essential for predicting airflow in ventilated spaces and assessing indoor air quality. In this study, a focus was set on techniques for the reduction of indoor radon-222 activity concentration [Rn], and it is demonstrated how true-to-scale 3D CFD models can predict the evolution of complex ventilation experiments. A series of ventilation experiments in an unoccupied flat on the ground floor of a residential block in Bad Schlema (Saxony, Germany) were performed. Specifically, the 'Cross-ventilation 100 %' experiment resulted in room-specific [Rn] reductions from ∼3000 to ∼300 Bq m-3. We quantitatively interpreted the results of the ventilation experiment using a CFD model with a k-ϵ turbulent stationary flow model characterised by the used decentralised ventilation system. The model was coupled with a transient transport model simulating indoor [Rn]. In a first approach, the model overestimated the decrease in the starting of the experiment and the steady state. Adjusting the model parameters inflowing radon and inlet velocity the model results are in a good agreement with the experimental values. In conclusion, this paper demonstrates the potential of CFD modelling as a suitable tool in evaluating and optimising ventilation systems for an effective reduction of elevated [Rn].


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Hidrodinâmica , Modelos Teóricos , Radônio/análise , Poluição do Ar em Ambientes Fechados/análise , Poluentes Radioativos do Ar/análise , Habitação
9.
Sci Total Environ ; 949: 174648, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39009146

RESUMO

Radon-222, a radioactive noble gas with a half-life of 3.8 days produced by radium-226, is a health hazard in caves, but also a powerful tracer of atmospheric dynamics. Here we show how airborne radon-222 can be analysed in a cave with multiple openings, the Pech Merle Cave in South-West France. This two-level cave hosts prehistoric remains and Gravettian paintings in its lower level. Radon concentration, monitored at 15 points with one-hour sampling intervals for more than one year, including two points for more than three years, showed mean values from 1274 ± 11 to 5281 ± 20 Bq m-3, with transient values above 15,000 Bq m-3. Seasonal variations were observed, with a weak normal cycle (low in winter) at two points in the upper level and a pronounced inverse seasonal cycle (low in summer) at the other points in the cave. The radon-222 source (effective radium-226 concentration, ECRa) was measured in the laboratory for floor deposits, soil and rock samples. While ECRa values obtained for rocks and speleothems are smaller than 1 Bq kg-1, most ECRa values for soils are larger than 10 Bq kg-1. Quantitative modelling confirms that the floor fillings inside the cave are responsible for the stationary lower concentrations, while the higher concentrations observed in winter are explained by percolation of outside air, which collects radon-222 as it passes through the soil layers. In addition, Stored Available Radon (SAR) is sufficient to account for transient variations. While air currents occur when visitors enter the cave or when the cave is deliberately ventilated, the climatic processes revealed by their radon-222 signatures appear to be essentially natural. These processes, enhanced by global climate change, could cause or accelerate the deterioration of prehistoric paintings. Radon-222 source analysis using ECRa-based modelling and SAR appears essential for the preservation of underground heritage.

10.
J Environ Radioact ; 272: 107368, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183868

RESUMO

This paper provides an in-depth discussion of the CFD implications to the design/study of interior environments and an overview of the most widely used CFD model for indoor radon and thoron dispersion study. For the design and analysis of indoor environments, CFD is a powerful tool that enables simulation and measurement-based validation. Simulating an indoor environment involves deliberate thought and skilful management of complicated boundary conditions. User and CFD programs can develop results through gradual effort that can be relied upon and applied to the design and study of indoor environments. Radon and thoron are natural radioactive gases and play a crucial role in accurately assessing the radioactive hazard within an indoor environment. This review comprise the work related to measurement and CFD modeling on these radioactive pollutant for indoors.Highlighting the current state of environmental radioactive pollutants and potentially identified areas that require further attention or research regarding investigating factors affecting indoor radioactive pollutants.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Poluentes Ambientais , Monitoramento de Radiação , Poluentes Radioativos , Radônio , Radônio/análise , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento de Radiação/métodos , Produtos de Decaimento de Radônio/análise , Habitação
11.
J Environ Radioact ; 262: 107140, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36947907

RESUMO

Field measurements of Rn-222 fluxes from the tops and bottoms of compacted clay radon barriers were used to calculate effective Rn diffusion coefficients (DRn) at four uranium waste disposal sites in the western United States to assess cover performance after more than 20 years of service. Values of DRn ranged from 7.4 × 10-7 to 6.0 × 10-9 m2/s, averaging 1.42 × 10-7. Water saturation (SW) from soil cores indicated that there was relatively little control of DRn by SW, especially at higher moisture levels, in contrast to estimates from most steady-state diffusion models. This is attributed to preferential pathways intrinsic to construction of the barriers or to natural process that have developed over time including desiccation cracks, root channels, and insect burrows in the engineered earthen barriers. A modification to some models in which fast and slow pathway DRn values are partitioned appears to give a good representation of the data; 4% of the fast pathway was needed to fit the data regression. For locations with high Sw and highest DRn (and fluxes) at each site, the proportion of fast pathway ranged from 1.7% to 34%, but for many locations with lower fluxes, little if any fast pathway was needed.


Assuntos
Monitoramento de Radiação , Radônio , Urânio , Radônio/análise , Difusão , Instalações de Eliminação de Resíduos
12.
Isotopes Environ Health Stud ; 59(3): 269-289, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37327136

RESUMO

ABSTRACTCharacterization of the groundwater flow systems is important for sustainable water resource management decision-making. We have used vertical profiles of electrical conductivity (EC) and water temperature taken at 2 m intervals during drilling of 109 boreholes, and samples for stable isotope analysis (δ18O, δ2H) taken from 47 boreholes to characterize groundwater recharge, flow and discharge. 222Rn measurements and piezometric evidence were used to complement results from the EC and stable isotopes. The converging evidence shows that groundwater in the study area is characterized by a mix of two different groundwater flow systems: i) the deep groundwater systems are connected to the regional groundwater flow originating from the highlands, outside the surface water basin, ii) the shallow groundwater systems get recharge from local rains. The local recharge zones are located in highly urbanized and industrialized zones posing risk to recharge reduction and pollution. Therefore, attention should be given to protect groundwater resources from contamination and increase groundwater resilience to climate change.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Etiópia , Monitoramento Ambiental/métodos , Água Subterrânea/análise , Isótopos/análise , Água/análise
13.
Isotopes Environ Health Stud ; 59(4-6): 539-553, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920884

RESUMO

This study assessed radon (222Rn) levels in drinking water sources in the Nizampur basin and their potential health risks for the local community. We analyzed 48 water samples on-site using RAD7. Additionally, we measured pH, temperature (T), total dissolved solids (TDS), redox potential (ORP), and electrical conductivity (EC) with a multiparameter analyzer. Results showed pH, T, TDS, ORP, and EC ranging from 7.2 to 8, 17 to 26 °C, 333 to 1130 mg/l, -56 to 284 mV, and 469 to 2370 µS/cm. 222Rn levels varied significantly (0.7-107 Bq/l, mean 23 ± 21, median = 17 Bq/l), with about 65 % exceeding the EPA's limit of 11.1 Bq/l, indicating health risks likely due to local geological conditions. The annual effective doses for ingestion (EwIng) were 0.87 ± 0.01, 0.35 ± 0.006, and 0.13 ± 0.002 µSv/a for adults, infants, and children, respectively. Exposure risk via the inhalation (EwInh) route ranged from 1.75 to 270 µSv/a, with the highest risk in infants, followed by children and adults. Inhalation was the primary exposure route for all age groups. Further, spatial distribution maps and hotspot analysis suggested that the central region characterized by high structural deformation and favorable geology for radon emanation was the area of concern in terms of health risks.


Assuntos
Água Potável , Água Subterrânea , Monitoramento de Radiação , Radônio , Poluentes Radioativos da Água , Criança , Lactente , Adulto , Humanos , Água Potável/análise , Radônio/análise , Paquistão , Água Subterrânea/química , Poluentes Radioativos da Água/análise , Monitoramento de Radiação/métodos
14.
Isotopes Environ Health Stud ; 59(2): 202-215, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37029986

RESUMO

The authors studied the atmospheric radon concentration with associated meteorological parameters variation during the dust events from July to November 2017. We obtained the meteorological parameters data in weather station of Sulaymaniyah city, Iraq. In the environmental monitoring plan, the atmospheric radon fluctuated from 15 to 48 Bq m-3 around the mean value of 31.5 ± 7 Bq m-3 within the summer. In autumn, varied from 22 to 46 Bq m-3 with a mean value of 34 ± 12 Bq m-3. We employed this to determine the radon level anomalously. Using the modified statistical coefficients, such as the residual deviation (RD), residual fluctuation ratio (RFR), F-test, and p-value coefficients. Among the atmospheric radon fluctuation values, particularly one anomalous (42 Bq m-3) on 25 July was determined because the excessive value of the RD was 1.9 σ, and the RFR value was 66 %. Corresponding to our coefficients criteria, the minimum level of atmospheric radon (22 Bq m-3) does not consider anomalous because of increasing wind speed. Based on this, our method for determining the atmospheric radon anomalies that are influenced by the missed factors beyond the mentioned meteorological parameters is accurate.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radônio , Iraque , Monitoramento Ambiental , Meteorologia , Estações do Ano
15.
Isotopes Environ Health Stud ; 59(4-6): 529-538, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37565800

RESUMO

Radium-226 detection in sediment samples is generally executed by means of gamma-ray spectrometry. Data evaluation relies (besides the 186.2 keV 226Ra gamma peak) on the combined analysis of major gamma peaks that are produced by the short-lived radon (222Rn) daughters 214Pb and 214Bi. Precondition for this detection approach is equilibrium decay of all members of the decay chain between 226Ra and 214Bi. In closed systems, this equilibrium is reached after about five half-lives of 222Rn (19 days). However, a closed system can only be guaranteed if the capsule which contains the sample prevents diffusive escape of radon. Such radon-tightness cannot be guaranteed for a wide range of plastic materials. Due to its polymer structure, plastic material generally tends to allow radon diffusion and hence radon loss from the sample resulting in a disturbance of the required decay equilibrium. The paper introduces an approach that allows quantifying radon loss from sample capsules by direct radon measurements using mobile radon detection equipment. The experimental findings are supported by theoretical considerations. An examined alternative approach based on the offset of the 186.2 keV data point from an efficiency function that is calculated exclusively from short-lived radon progeny peaks in the gamma-ray spectrum did not prove to be applicable due to a lack of supporting peaks in the low-energy section of the spectrum.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Rádio (Elemento) , Radônio , Radônio/análise , Poluentes Radioativos do Ar/análise , Produtos de Decaimento de Radônio/análise , Espectrometria gama/métodos , Rádio (Elemento)/análise , Monitoramento de Radiação/métodos
16.
Isotopes Environ Health Stud ; 59(1): 100-111, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36328597

RESUMO

Indoor radon and thoron survey has been carried out in 50 dwellings under Kohima district, Nagaland, India, using the latest measurement technology. The survey has been carried out for a one-year period in 3 different seasons, and the dwellings were selected according to the building materials used for construction. Indoor radon and thoron concentrations, as well as their progeny, followed a predictable pattern with greater levels in the winter and lower levels in the summer. Concrete housing had greater radon and thoron concentrations than bamboo and semi-wood/bamboo homes. The equilibrium factor (E.F.) and inhalation dose due to radon, thoron, and their corresponding progeny were also studied in the present study.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Radônio/análise , Estações do Ano , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Índia , Habitação
17.
Appl Radiat Isot ; 202: 111076, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871399

RESUMO

Standardization of the concentration of gaseous 222Rn based on a multi-electrode proportional counter (MEPC) is under development as a primary standard in Japan. In this study, the concept and evaluation of its performance are reported. The latter consists of a preliminary result for the uncertainty budget associated with the measurement of the MEPC and compensation of the electric field distortion in the MEPC. Moreover, an ionization-chamber-based gas circulation system was added for the calibration of radon monitors in the air.

18.
Isotopes Environ Health Stud ; 59(2): 192-201, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36966417

RESUMO

For the first time, a map of the 222Rn gas has been produced in the Campania region, the southern part of Italy, based on the activity concentration measured in indoor environments. This work is part of the radon mitigation policy and complies with the recent Italian Legislative Decree 101/2020, which implements the European Basic Safety Standards, Euratom Directive 59/2013, where Member States must declare areas with elevated levels of indoor radon concentration. The obtained map, divided by Campania municipalities, identifies priority areas with activity concentration values exceeding the reference level of 300 Bq m-3. In addition, an effective statistical analysis of the dataset has been carried out.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Radônio/análise , Poluição do Ar em Ambientes Fechados/análise , Poluentes Radioativos do Ar/análise , Itália , Habitação
19.
Water Res ; 222: 118900, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932703

RESUMO

Coastal Escherichia coli (E. coli) significantly influence ocean safety and public health, thus requiring an effective E. coli pollution monitoring. However conventional detection relying on manual field sampling is time-consuming. Here, this study established an E. coli estimation model based on thermal remote sensing of unmanned aerial vehicles (UAV). This model was developed against one-year comprehensive field work in a representative sandy beach and further validated against 50 beaches in Hong Kong to evaluate its applicability. The estimated E. coli concentrations were in a reliable agreement with direct measurements. For this model, this study deployed the radon-222 (222Rn) as a bridging tracer to couple UAV thermal images and coastal E. coli concentrations. Coastal 222Rn can be reflected on the UAV thermal images, and there was a good positive correlation between the 222Rn activity and coastal E. coli concentration via one-year field data. Hence, coupling the 222Rn activity estimated from UAV thermal images and the relationship between 222Rn and E. coli, this study can readily monitor coastal E. coli by UAV. These findings highlighted that UAV technology is an effective approach to measure the E. coli concentrations and can further pave the way for an efficient coastal E. coli monitoring and public health risk warning.


Assuntos
Escherichia coli , Tecnologia de Sensoriamento Remoto , Dispositivos Aéreos não Tripulados , Poluição Ambiental , Hong Kong , Tecnologia de Sensoriamento Remoto/métodos
20.
Isotopes Environ Health Stud ; 58(2): 195-213, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35266853

RESUMO

ABSTRACTRadon-222 contributes to half of the natural radiation exposure of humans and is one of the main causes of lung cancer. Of particular importance for humans is the exposure to radon-222 indoors, which enters living and working areas from the soil air, e.g. through cracks in the foundations of buildings. An easy and efficient way to minimise indoor radon in dwellings can be achieved through ventilation. How meteorological parameters and the geological background can influence ventilation efficiency in reducing indoor radon has not yet been fully investigated. Therefore, a decentralised ventilation system was installed in an unoccupied flat located in a former uranium mining region to analyse the effect of already existing ventilation modes on indoor radon activity concentration. It is aimed to assess 22 different ventilation experiments that were performed within the time period of one year. Even with a strong seasonal trend with significantly lower indoor radon activity concentrations in summer compared to winter, the decentralised ventilation system was able to reduce indoor radon by up to 83 %. Thereby, strong dependencies on the experimental parameters such as ventilation type or performance level of the fans were found.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Habitação , Humanos , Radônio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA