Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Genes Dev ; 36(5-6): 313-330, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35210222

RESUMO

In mammals, the conserved telomere binding protein Rap1 serves a diverse set of nontelomeric functions, including activation of the NF-kB signaling pathway, maintenance of metabolic function in vivo, and transcriptional regulation. Here, we uncover the mechanism by which Rap1 modulates gene expression. Using a separation-of-function allele, we show that Rap1 transcriptional regulation is largely independent of TRF2-mediated binding to telomeres and does not involve direct binding to genomic loci. Instead, Rap1 interacts with the TIP60/p400 complex and modulates its histone acetyltransferase activity. Notably, we show that deletion of Rap1 in mouse embryonic stem cells increases the fraction of two-cell-like cells. Specifically, Rap1 enhances the repressive activity of Tip60/p400 across a subset of two-cell-stage genes, including Zscan4 and the endogenous retrovirus MERVL. Preferential up-regulation of genes proximal to MERVL elements in Rap1-deficient settings implicates these endogenous retroviral elements in the derepression of proximal genes. Altogether, our study reveals an unprecedented link between Rap1 and the TIP60/p400 complex in the regulation of pluripotency.


Assuntos
Proteínas de Ligação a Telômeros , Telômero , Animais , Regulação da Expressão Gênica , Genoma , Mamíferos/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
2.
Genes Dev ; 35(23-24): 1625-1641, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34764137

RESUMO

The mammalian telomeric shelterin complex-comprised of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1-blocks the DNA damage response at chromosome ends and interacts with telomerase and the CST complex to regulate telomere length. The evolutionary origins of shelterin are unclear, partly because unicellular organisms have distinct telomeric proteins. Here, we describe the evolution of metazoan shelterin, showing that TRF1 emerged in vertebrates upon duplication of a TRF2-like ancestor. TRF1 and TRF2 diverged rapidly during vertebrate evolution through the acquisition of new domains and interacting factors. Vertebrate shelterin is also distinguished by the presence of an HJRL domain in the split C-terminal OB fold of POT1, whereas invertebrate POT1s carry inserts of variable nature. Importantly, the data reveal that, apart from the primate and rodent POT1 orthologs, all metazoan POT1s are predicted to have a fourth OB fold at their N termini. Therefore, we propose that POT1 arose from a four-OB-fold ancestor, most likely an RPA70-like protein. This analysis provides insights into the biology of shelterin and its evolution from ancestral telomeric DNA-binding proteins.


Assuntos
Proteína 2 de Ligação a Repetições Teloméricas , Tripeptidil-Peptidase 1 , Animais , Mamíferos/genética , Complexo Shelterina , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
3.
Mol Cell ; 77(3): 488-500.e9, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31761495

RESUMO

Pioneer transcription factors (pTFs) bind to target sites within compact chromatin, initiating chromatin remodeling and controlling the recruitment of downstream factors. The mechanisms by which pTFs overcome the chromatin barrier are not well understood. Here, we reveal, using single-molecule fluorescence, how the yeast transcription factor Rap1 invades and remodels chromatin. Using a reconstituted chromatin system replicating yeast promoter architecture, we demonstrate that Rap1 can bind nucleosomal DNA within a chromatin fiber but with shortened dwell times compared to naked DNA. Moreover, we show that Rap1 binding opens chromatin fiber structure by inhibiting inter-nucleosome contacts. Finally, we reveal that Rap1 collaborates with the chromatin remodeler RSC to displace promoter nucleosomes, paving the way for long-lived bound states on newly exposed DNA. Together, our results provide a mechanistic view of how Rap1 gains access and opens chromatin, thereby establishing an active promoter architecture and controlling gene expression.


Assuntos
Cromatina/metabolismo , Nucleossomos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/metabolismo , Cromatina/genética , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/genética , Nucleossomos/metabolismo , Nucleossomos/fisiologia , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética
4.
EMBO J ; 41(20): e110458, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36059259

RESUMO

The conserved Rap1 protein is part of the shelterin complex that plays critical roles in chromosome end protection and telomere length regulation. Previous studies have addressed how fission yeast Rap1 contributes to telomere length maintenance, but the mechanism by which the protein inhibits end fusions has remained elusive. Here, we use a mutagenesis screen in combination with high-throughput sequencing to identify several amino acid positions in Rap1 that have key roles in end protection. Interestingly, mutations at these sites render cells susceptible to genome instability in a conditional manner, whereby longer telomeres are prone to undergoing end fusions, while telomeres within the normal length range are sufficiently protected. The protection of long telomeres is in part dependent on their nuclear envelope attachment mediated by the Rap1-Bqt4 interaction. Our data demonstrate that long telomeres represent a challenge for the maintenance of genome integrity, thereby providing an explanation for species-specific upper limits on telomere length.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Aminoácidos/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Complexo Shelterina , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
5.
Trends Immunol ; 44(11): 917-931, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37858490

RESUMO

Following stimulation, the T cell receptor (TCR) and its coreceptors integrate multiple intracellular signals to initiate T cell proliferation, migration, gene expression, and metabolism. Among these signaling molecules are the small GTPases RAS and RAP1, which induce MAPK pathways and cellular adhesion to activate downstream effector functions. Although many studies have helped to elucidate the signaling intermediates that mediate T cell activation, the molecules and pathways that keep naive T cells in check are less understood. Several recent studies provide evidence that RASA2 and RASA3, which are GAP1-family GTPase-activating proteins (GAPs) that inactivate RAS and RAP1, respectively, are crucial molecules that limit T cell activation and adhesion. In this review we describe recent data on the roles of RASA2 and RASA3 as gatekeepers of T cell activation and migration.


Assuntos
Proteínas Ativadoras de GTPase , Transdução de Sinais , Humanos , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Transdução de Sinais/fisiologia , Adesão Celular/fisiologia , Linfócitos T/metabolismo , Proteínas Ativadoras de ras GTPase
6.
Mol Cell ; 72(6): 942-954.e7, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30576656

RESUMO

Many active eukaryotic gene promoters exhibit divergent noncoding transcription, but the mechanisms restricting expression of these transcripts are not well understood. Here, we demonstrate how a sequence-specific transcription factor represses divergent noncoding transcription at highly expressed genes in yeast. We find that depletion of the transcription factor Rap1 induces noncoding transcription in a large fraction of Rap1-regulated gene promoters. Specifically, Rap1 prevents transcription initiation at cryptic promoters near its binding sites, which is uncoupled from transcription regulation in the protein-coding direction. We further provide evidence that Rap1 acts independently of previously described chromatin-based mechanisms to repress cryptic or divergent transcription. Finally, we show that divergent transcription in the absence of Rap1 is elicited by the RSC chromatin remodeler. We propose that a sequence-specific transcription factor limits access of basal transcription machinery to regulatory elements and adjacent sequences that act as divergent cryptic promoters, thereby providing directionality toward productive transcription.


Assuntos
Regulação Fúngica da Expressão Gênica , RNA Fúngico/metabolismo , RNA não Traduzido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sítios de Ligação , Montagem e Desmontagem da Cromatina , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Fúngico/genética , RNA não Traduzido/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética
7.
Mol Cell ; 72(6): 955-969.e7, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30576657

RESUMO

The fidelity of transcription initiation is essential for accurate gene expression, but the determinants of start site selection are not fully understood. Rap1 and other general regulatory factors (GRFs) control the expression of many genes in yeast. We show that depletion of these factors induces widespread ectopic transcription initiation within promoters. This generates many novel non-coding RNAs and transcript isoforms with diverse stability, drastically altering the coding potential of the transcriptome. Ectopic transcription initiation strongly correlates with altered nucleosome positioning. We provide evidence that Rap1 can suppress ectopic initiation by a "place-holder" mechanism whereby it physically occludes inappropriate sites for pre-initiation complex formation. These results reveal an essential role for GRFs in the fidelity of transcription initiation and in the suppression of pervasive transcription, profoundly redefining current models for their function. They have important implications for the mechanism of transcription initiation and the control of gene expression.


Assuntos
Regulação Fúngica da Expressão Gênica , RNA Fúngico/biossíntese , RNA Mensageiro/biossíntese , RNA não Traduzido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sítios de Ligação , Montagem e Desmontagem da Cromatina , Nucleossomos/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Fúngico/genética , RNA Mensageiro/genética , RNA não Traduzido/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética , Sítio de Iniciação de Transcrição , Iniciação da Transcrição Genética
8.
J Cell Sci ; 136(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37078342

RESUMO

Talin (herein referring to the talin-1 form), is a cytoskeletal adapter protein that binds integrin receptors and F-actin, and is a key factor in the formation and regulation of integrin-dependent cell-matrix adhesions. Talin forms the mechanical link between the cytoplasmic domain of integrins and the actin cytoskeleton. Through this linkage, talin is at the origin of mechanosignaling occurring at the plasma membrane-cytoskeleton interface. Despite its central position, talin is not able to fulfill its tasks alone, but requires help from kindlin and paxillin to detect and transform the mechanical tension along the integrin-talin-F-actin axis into intracellular signaling. The talin head forms a classical FERM domain, which is required to bind and regulate the conformation of the integrin receptor, as well as to induce intracellular force sensing. The FERM domain allows the strategic positioning of protein-protein and protein-lipid interfaces, including the membrane-binding and integrin affinity-regulating F1 loop, as well as the interaction with lipid-anchored Rap1 (Rap1a and Rap1b in mammals) GTPase. Here, we summarize the structural and regulatory features of talin and explain how it regulates cell adhesion and force transmission, as well as intracellular signaling at integrin-containing cell-matrix attachment sites.


Assuntos
Actinas , Talina , Animais , Talina/metabolismo , Integrinas/metabolismo , Adesão Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Lipídeos , Mamíferos/metabolismo
9.
J Cell Sci ; 136(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37772773

RESUMO

Centrosome amplification (CA) is a prominent feature of human cancers linked to tumorigenesis in vivo. Here, we report mechanistic contributions of CA induction alone to tumour architecture and extracellular matrix (ECM) remodelling. CA induction in non-tumorigenic breast cells MCF10A causes cell migration and invasion, with underlying disruption of epithelial cell-cell junction integrity and dysregulation of expression and subcellular localisation of cell junction proteins. CA also elevates expression of integrin ß-3, its binding partner fibronectin-1 and matrix metalloproteinase enzymes, promoting cell-ECM attachment, ECM degradation, and a migratory and invasive cell phenotype. Using a chicken embryo xenograft model for in vivo validation, we show that CA-induced (+CA) MCF10A cells invade into the chick mesodermal layer, with inflammatory cell infiltration and marked focal reactions between chorioallantoic membrane and cell graft. We also demonstrate a key role of small GTPase Rap-1 signalling through inhibition using GGTI-298, which blocked various CA-induced effects. These insights reveal that in normal cells, CA induction alone (without additional oncogenic alterations) is sufficient to confer early pro-tumorigenic changes within days, acting through Rap-1-dependent signalling to alter cell-cell contacts and ECM disruption.


Assuntos
Neoplasias da Mama , Neoplasias , Embrião de Galinha , Humanos , Animais , Feminino , Galinhas , Neoplasias/metabolismo , Transdução de Sinais , Movimento Celular , Centrossomo/metabolismo , Linhagem Celular Tumoral , Neoplasias da Mama/genética
10.
Mol Ther ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256999

RESUMO

Cerebral reperfusion injury in stroke, stemming from interconnected thrombotic and inflammatory signatures, often involves platelet activation, aggregation and its interaction with various immune cells, contributing to microvascular dysfunction. However, the regulatory mechanisms behind this platelet activation and the resulting inflammation are not well understood, complicating the development of effective stroke therapies. Utilizing animal models and platelets from hemorrhagic stroke patients, our research demonstrates that human cerebral dopamine neurotrophic factor (CDNF) acts as an endogenous antagonist, mitigating platelet aggregation and associated neuroinflammation. CDNF moderates mitochondrial membrane potential, reactive oxygen species production, and intracellular calcium in activated platelets by interfering with GTP binding to Rap1b, thereby reducing Rap1b activation and downregulating the Rap1b-MAPK-PLA2 signaling pathway, which decreases release of the pro-inflammatory mediator thromboxane A2. In addition, CDNF reduces the inflammatory response in BV2 microglial cells co-cultured with activated platelets. Consistent with ex vivo findings, subcutaneous administration of CDNF in a rat model of ischemic stroke significantly reduces platelet activation, aggregation, lipid mediator production, infarct volume, and neurological deficits. In summary, our study highlights CDNF as a promising therapeutic target for mitigating platelet-induced inflammation and enhancing recovery in stroke. Harnessing the CDNF pathway may offer a novel therapeutic strategy for stroke intervention.

11.
J Lipid Res ; 65(3): 100515, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38309417

RESUMO

LDL-C lowering is the main goal of atherosclerotic cardiovascular disease prevention, and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is now a validated therapeutic strategy that lowers serum LDL-C and reduces coronary events. Ironically, the most widely used medicine to lower cholesterol, statins, has been shown to increase circulating PCSK9 levels, which limits their efficacy. Here, we show that geranylgeranyl isoprenoids and hepatic Rap1a regulate both basal and statin-induced expression of PCSK9 and contribute to LDL-C homeostasis. Rap1a prenylation and activity is inhibited upon statin treatment, and statin-mediated PCSK9 induction is dependent on geranylgeranyl synthesis and hepatic Rap1a. Accordingly, treatment of mice with a small-molecule activator of Rap1a lowered PCSK9 protein and plasma cholesterol and inhibited statin-mediated PCSK9 induction in hepatocytes. The mechanism involves inhibition of the downstream RhoA-ROCK pathway and regulation of PCSK9 at the post-transcriptional level. These data further identify Rap1a as a novel regulator of PCSK9 protein and show that blocking Rap1a prenylation through lowering geranylgeranyl levels contributes to statin-mediated induction of PCSK9.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Pró-Proteína Convertase 9 , Camundongos , Animais , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , LDL-Colesterol , Anticorpos Monoclonais/farmacologia , Colesterol
12.
Dev Biol ; 501: 20-27, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37276970

RESUMO

The continuity of a lumen within an epithelial tubule is critical for its function. We previously found that the F-actin binding protein Afadin is required for timely lumen formation and continuity in renal tubules formed from the nephrogenic mesenchyme in mice. Afadin is a known effector and interactor of the small GTPase Rap1, and in the current study, we examine the role of Rap1 in nephron tubulogenesis. Here, we demonstrate that Rap1 is required for nascent lumen formation and continuity in cultured 3D epithelial spheroids and in vivo in murine renal epithelial tubules derived from the nephrogenic mesenchyme, where its absence ultimately leads to severe morphogenetic defects in the tubules. By contrast, Rap1 is not required for lumen continuity or morphogenesis in renal tubules derived from the ureteric epithelium, which differ in that they form by extension from a pre-existing tubule. We further demonstrate that Rap1 is required for correct localization of Afadin to adherens junctions both in vitro and in vivo. Together, these results suggest a model in which Rap1 localizes Afadin to junctional complexes, which in turn regulates nascent lumen formation and positioning to ensure continuous tubulogenesis.


Assuntos
Túbulos Renais , Proteínas dos Microfilamentos , Animais , Camundongos , Junções Aderentes/metabolismo , Túbulos Renais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Néfrons/metabolismo
13.
J Biol Chem ; 299(6): 104698, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37059183

RESUMO

Identifying events that regulate the prenylation and localization of small GTPases will help define new strategies for therapeutic targeting of these proteins in disorders such as cancer, cardiovascular disease, and neurological deficits. Splice variants of the chaperone protein SmgGDS (encoded by RAP1GDS1) are known to regulate prenylation and trafficking of small GTPases. The SmgGDS-607 splice variant regulates prenylation by binding preprenylated small GTPases but the effects of SmgGDS binding to the small GTPase RAC1 versus the splice variant RAC1B are not well defined. Here we report unexpected differences in the prenylation and localization of RAC1 and RAC1B and their binding to SmgGDS. Compared to RAC1, RAC1B more stably associates with SmgGDS-607, is less prenylated, and accumulates more in the nucleus. We show that the small GTPase DIRAS1 inhibits binding of RAC1 and RAC1B to SmgGDS and reduces their prenylation. These results suggest that prenylation of RAC1 and RAC1B is facilitated by binding to SmgGDS-607 but the greater retention of RAC1B by SmgGDS-607 slows RAC1B prenylation. We show that inhibiting RAC1 prenylation by mutating the CAAX motif promotes RAC1 nuclear accumulation, suggesting that differences in prenylation contribute to the different nuclear localization of RAC1 versus RAC1B. Finally, we demonstrate RAC1 and RAC1B that cannot be prenylated bind GTP in cells, indicating that prenylation is not a prerequisite for activation. We report differential expression of RAC1 and RAC1B transcripts in tissues, consistent with these two splice variants having unique functions that might arise in part from their differences in prenylation and localization.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Prenilação , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Prenilação de Proteína
14.
J Cell Sci ; 135(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35848790

RESUMO

Respiratory syncytial virus (RSV) infection is the leading cause of acute lower respiratory tract infection in young children worldwide. Our group recently revealed that RSV infection disrupts the airway epithelial barrier in vitro and in vivo. However, the underlying molecular pathways were still elusive. Here, we report the critical roles of the filamentous actin (F-actin) network and actin-binding protein cortactin in RSV infection. We found that RSV infection causes F-actin depolymerization in 16HBE cells, and that stabilizing the F-actin network in infected cells reverses the epithelial barrier disruption. RSV infection also leads to significantly decreased cortactin in vitro and in vivo. Cortactin-knockout 16HBE cells presented barrier dysfunction, whereas overexpression of cortactin protected the epithelial barrier against RSV. The activity of Rap1 (which has Rap1A and Rap1B forms), one downstream target of cortactin, declined after RSV infection as well as in cortactin-knockout cells. Moreover, activating Rap1 attenuated RSV-induced epithelial barrier disruption. Our study proposes a key mechanism in which RSV disrupts the airway epithelial barrier via attenuating cortactin expression and destabilizing the F-actin network. The identified pathways will provide new targets for therapeutic intervention toward RSV-related disease. This article has an associated First Person interview with the first author of the paper.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Actinas/metabolismo , Criança , Pré-Escolar , Cortactina/genética , Cortactina/metabolismo , Células Epiteliais/metabolismo , Humanos , Infecções por Vírus Respiratório Sincicial/metabolismo , Sistema Respiratório/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-39269448

RESUMO

Phenotypic transformation of vascular smooth muscle (VSM) from a contractile state to a synthetic, proliferative state is a hallmark of cardiovascular disease (CVD). In CVD, diseased tissue often becomes acidic from altered cellular metabolism secondary to compromised blood flow, yet the contribution of local acid/base imbalance to the disease process has been historically overlooked. In this study, we examined the regulatory impact of the pH-sensing G protein-coupled receptor GPR68 on vascular smooth muscle (VSM) proliferation in vivo and in vitro in wild-type (WT) and GPR68 knockout (KO) male and female mice. Arterial injury reduced GPR68 expression in WT vessels and exaggerated medial wall remodeling in GPR68 KO vessels. In vitro, KO VSM cells showed increased cell cycle progression and proliferation compared to WT VSM cells, and GPR68-inducing acidic exposure reduced proliferation in WT cells. mRNA and protein expression analyses revealed increased Rap1A in KO cells compared to WT cells, and RNA silencing of Rap1A reduced KO VSM cell proliferation. In sum, these findings support a growth-inhibitory capacity of pH-sensing GPR68 and suggest a mechanistic role for the small GTPase Rap1A in GPR68-mediated VSM growth control. These results shed light on GPR68 and its effector Rap1A as potential targets to combat pathologic phenotypic switching and proliferation in VSM.

16.
Clin Genet ; 105(2): 196-201, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37850357

RESUMO

Syndromic constitutive thrombocytopenia encompasses a heterogeneous group of disorders characterised by quantitative and qualitative defects of platelets while featuring other malformations. Recently, heterozygous, de novo variants in RAP1B were reported in three cases of syndromic thrombocytopenia. Here, we report two additional, unrelated individuals identified retrospectively in our data repository with heterozygous variants in RAP1B: NM_001010942.2(RAP1B):c.35G>A, p.(Gly12Glu) (de novo) and NM_001010942.2(RAP1B):c.178G>A, p.(Gly60Arg). Both individuals had thrombocytopenia, as well as congenital malformations, and neurological, behavioural, and dysmorphic features, in line with previous reports. Our data supports the causal role of monoallelic RAP1B variants that disrupt RAP1B GTPase activity in syndromic congenital thrombocytopenia.


Assuntos
Plaquetas , Trombocitopenia , Humanos , Estudos Retrospectivos , Plaquetas/metabolismo , Trombocitopenia/genética , Proteínas rap de Ligação ao GTP
17.
Arch Biochem Biophys ; 755: 109982, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570110

RESUMO

Diabetes mellitus (DM) is a group of chronic metabolic disorders characterized by persistent hyperglycemia. In our study, we analyzed the level and location of RAP1 changes in the development of ß-cell dysfunction induced by glucotoxicity. We employed three pancreatic ß-cell lines, namely INS-1, 1.2B4, and NIT-1, as well as a streptozotocin-induced diabetes rat model. We demonstrate that after high glucose treatment, RAP1 is increased, probably through induction by AKT, allowing RAP1 to shuttle from the nucleus to the cytoplasm and activate NF-κB signaling. Furthermore, non-enzymatic post-translational modifications of RAP1, such as advanced glycation end products and carbonylation may affect the function of RAP1, such as activation of the NF-κB signaling. Taken together, we showed that RAP1 is a new player in the mechanism of glucotoxicity in pancreatic ß-cells.

18.
Exp Eye Res ; 247: 110042, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147193

RESUMO

Retinal vascular leakage is a major event in several retinal diseases, including diabetic retinopathy (DR). In a previous study, we demonstrated that the aqueous humor concentration of Cystatin C (CST3), a physiological inhibitor of cysteine protease, is negatively correlated with the severity of diabetic macular edema. However, its function in the retina has not been clearly elucidated. In this study, we found a significant decrease in the aqueous humor concentration of CST3 with DR progression. Furthermore, we found that CST3 was expressed in retinal endothelial cells and that its expression was significantly downregulated in high glucose-treated human retinal microvascular endothelial cells (HRMECs) and the retinal vessels of oxygen-induced retinopathy (OIR) mice. Silencing CST3 expression resulted in decreased HRMEC migration and tubule formation ability. Exogenous addition of the CST3 protein significantly improved HRMEC migration and tubular formation. In-vivo experiments demonstrated that CST3 silencing induced retinal vascular leakage in WT mice, while its intravitreal injection significantly reduced retinal leakage in OIR mice. Mechanistically, CST3 promoted the expression of the downstream adhesion molecules, claudin5, VE-cadherin, and ZO-1, in retinal vascular cells by regulating the Rap1 signaling pathway. Therefore, this study revealed a novel mechanism by which CST3 improves retinal vascular function and provided evidence that it is a potential therapeutic target for retinal vascular leakage.


Assuntos
Permeabilidade Capilar , Cistatina C , Retinopatia Diabética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Vasos Retinianos , Transdução de Sinais , Proteínas rap1 de Ligação ao GTP , Animais , Humanos , Camundongos , Humor Aquoso/metabolismo , Barreira Hematorretiniana , Western Blotting , Movimento Celular , Células Cultivadas , Cistatina C/genética , Cistatina C/metabolismo , Retinopatia Diabética/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Regulação da Expressão Gênica , Injeções Intravítreas , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/genética , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Complexo Shelterina , Transdução de Sinais/fisiologia , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/genética
19.
FASEB J ; 37(5): e22921, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37052612

RESUMO

The serious clinical challenge of peripheral nerve injury (PNI) is nerve regeneration. Nerve conduit represents a promising strategy to contribute to nerve regeneration by bridging injured nerve gaps. However, due to a unique microenvironment of nerve tissue, autologous nerves have not been substituted by nerve conduit. Nerve regeneration after nerve conduit implantation depends on many factors, such as conductivity and biocompatibility. Therefore, Gelatin (Gel) with biocompatibility and polypyrrole (Ppy) with conductivity is highly concerned. In this paper, Gel-Ppy modified nerve conduit was fabricated with great biocompatibility and conductivity to evaluate its properties of enhancing nerve regeneration in vivo and in vitro. The proliferation of Schwann cells on Gel-Ppy modified nerve conduit was remarkably increased. Consistent with in vitro results, the Gel-Ppy nerve conduit could contribute to the regeneration of Schwann cell in vivo. The axon diameters and myelin sheath thickness were also enhanced, resulting in the amelioration of muscle atrophy, nerve conduction, and motor function recovery. To explain this interesting phenomenon, western blot results indicated that the Gel-Ppy conduit facilitated nerve regeneration via upregulating the Rap1 pathway to induce neurite outgrowth. Therefore, the above results demonstrated that Gel-Ppy modified nerve conduit could provide an acceptable microenvironment for nerve regeneration and be popularized as a novel therapeutic strategy of PNI.


Assuntos
Tecido Nervoso , Traumatismos dos Nervos Periféricos , Ratos , Animais , Polímeros , Gelatina , Ratos Sprague-Dawley , Pirróis , Nervo Isquiático/lesões , Traumatismos dos Nervos Periféricos/cirurgia , Regeneração Nervosa/fisiologia
20.
FASEB J ; 37(12): e23310, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38010922

RESUMO

Vascular permeability is dynamically but tightly controlled by vascular endothelial (VE)-cadherin-mediated endothelial cell-cell junctions to maintain homeostasis. Thus, impairments of VE-cadherin-mediated cell adhesions lead to hyperpermeability, promoting the development and progression of various disease processes. Notably, the lungs are a highly vulnerable organ wherein pulmonary inflammation and infection result in vascular leakage. Herein, we showed that Rap1, a small GTPase, plays an essential role for maintaining pulmonary endothelial barrier function in mice. Endothelial cell-specific Rap1a/Rap1b double knockout mice exhibited severe pulmonary edema. They also showed vascular leakage in the hearts, but not in the brains. En face analyses of the pulmonary arteries and 3D-immunofluorescence analyses of the lungs revealed that Rap1 potentiates VE-cadherin-mediated endothelial cell-cell junctions through dynamic actin cytoskeleton reorganization. Rap1 inhibits formation of cytoplasmic actin bundles perpendicularly binding VE-cadherin adhesions through inhibition of a Rho-ROCK pathway-induced activation of cytoplasmic nonmuscle myosin II (NM-II). Simultaneously, Rap1 induces junctional NM-II activation to create circumferential actin bundles, which anchor and stabilize VE-cadherin at cell-cell junctions. We also showed that the mice carrying only one allele of either Rap1a or Rap1b out of the two Rap1 genes are more vulnerable to lipopolysaccharide (LPS)-induced pulmonary vascular leakage than wild-type mice, while activation of Rap1 by administration of 007, an activator for Epac, attenuates LPS-induced increase in pulmonary endothelial permeability in wild-type mice. Thus, we demonstrate that Rap1 plays an essential role for maintaining pulmonary endothelial barrier functions under physiological conditions and provides protection against inflammation-induced pulmonary vascular leakage.


Assuntos
Actinas , Proteínas rap1 de Ligação ao GTP , Animais , Camundongos , Actinas/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar , Adesão Celular/fisiologia , Endotélio Vascular/metabolismo , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA