Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 296: 100109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33853759

RESUMO

Cell-extracellular matrix (ECM) detachment is known to decrease extracellular signal-regulated kinase (ERK) signaling, an intracellular pathway that is central for control of cell behavior. How cell-ECM detachment is linked to downregulation of ERK signaling, however, is incompletely understood. We show here that focal adhesion protein Ras Suppressor 1 (RSU1) plays a critical role in cell-ECM detachment induced suppression of ERK signaling. We have identified prohibitin 2 (PHB2), a component of membrane lipid rafts, as a novel binding protein of RSU1, and mapped a major RSU1-binding site to PHB2 amino acids 150 to 206 in the C-terminal region of the PHB/SPFH (stomatin/prohibitin/flotillin/HflKC) domain. The PHB2 binding is mediated by multiple sites located in the N-terminal leucine-rich repeat region of RSU1. Depletion of PHB2 suppressed cell-ECM adhesion-induced ERK activation. Furthermore, cell-ECM detachment increased RSU1 association with membrane lipid rafts and interaction with PHB2. Finally, knockout of RSU1 or inhibition of RSU1 interaction with PHB2 by overexpression of the major RSU1-binding PHB2 fragment (amino acids 150-206) effectively suppressed the cell-ECM detachment induced downregulation of ERK signaling. Additionally, expression of venus-tagged wild-type RSU1 restored ERK signaling, while expression of venus-tagged PHB2-binding defective RSU1 mutant in which the N-terminal leucine-rich repeat region is deleted did not. Taken together, Our findings identify a novel RSU1-PHB2 signaling axis that senses cell-ECM detachment and links it to decreased ERK signaling.


Assuntos
Regulação para Baixo , Matriz Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Adesão Celular/genética , Linhagem Celular Tumoral , Matriz Extracelular/genética , Humanos , Proibitinas , Proteínas Repressoras/genética
2.
World J Methodol ; 13(4): 223-237, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37771863

RESUMO

BACKGROUND: Ras suppressor 1 (RSU1), a highly conserved protein, plays an important role in actin cytoskeleton remodeling and cell-extracellular matrix adhesion. Aberration of RSU1 activity can cause changes in cell adhesion and migration, thereby enhancing tumor proliferation and metastasis. However, the correlation between RSU1 and gastrointestinal cancers (GICs), as well as its prognostic role related to tumor-infiltrating immune cells (TIICs) remains unclear. AIM: To shows RSU1 plays a potential promoting role in facilitating tumor immune escape in GIC. METHODS: Differential expression of RSU1 in different tumors and their corresponding normal tissues was evaluated by exploring the Gene Expression Profiling Interactive Analysis (GEPIA) dataset. The correlation between RSU1 expression and prognosis of GIC cancer patients was evaluated by Kaplan-Meier plotter. Then, RSU1-correlated genes were screened and functionally characterized via enrichment analysis. The correlation between RSU1 and TIICs was further characterized using the Tumor Immune Estimation Resource (TIMER). In addition, the correlation between RSU1 and immune cell surface molecules was also analyzed by TIMER. RESULTS: High RSU1 expression was associated with poor overall survival of gastric cancer patients, exhibiting a hazard ratio (HR) = 1.36, first progression HR = 1.53, and post progression survival HR = 1.6. Specifically, high RSU1 Levels were associated with prognosis of gastric cancer in females, T4 and N3 stages, and Her-2-negative subtypes. Regarding immune-infiltrating cells, RSU1 expression level was positively correlated with infiltration of CD4+ T cells, macrophages, neutrophils, and dendritic cells (DCs) in colorectal adenocarcinoma and stomach adenocarcinoma. RSU1 expression was also predicted to be strongly correlated with immune marker sets in M2 macrophage, DCs and T cell exhaustion in GICs. CONCLUSION: In gastrointestinal cancers, RSU1 is increased in tumor tissues, and predicts poor survival of patients. Increased RSU1 may be involved in promoting macrophage polarization, DC infiltration, and T cell exhaustion, inducing tumor immune escape and the development of tumors in GICs. We suggest that RSU1 is a promising prognostic biomarker reflecting immune infiltration level of GICs, as well as a potential therapeutic target for precision treatment through improving the immune response.

3.
Clin Exp Med ; 23(3): 871-885, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35729367

RESUMO

Ras suppressor-1 (RSU1), originally described as a suppressor of Ras oncogenic transformation, localizes to focal adhesions interacting with the ILK-PINCH-PARVIN (IPP) complex that exerts a well-established oncogenic role in cancer. However, RSU1 implication in lung cancer is currently unknown. Our study aims to address the role of RSU1 in lung adenocarcinoma (LUADC). We here show that RSU1 protein expression by immunohistochemistry is downregulated in LUADC human tissue samples and represents a significant prognostic indicator. In silico analysis of gene chip and RNA seq data validated our findings. Depletion of RSU1 by siRNA in lung cancer cells promotes anchorage-independent cell growth, cell motility and epithelial to mesenchymal transition (EMT). Silencing of RSU1 also alters IPP complex expression in lung cancer cells. The p29 RSU1 truncated isoform is detected in lung cancer cells, and its expression is downregulated upon RSU1 silencing, whereas it is overexpressed upon ILK overexpression. These findings suggest that RSU1 exerts a tumor suppressive role with prognostic significance in LUADC.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Transição Epitelial-Mesenquimal , Prognóstico , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Movimento Celular , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo
4.
Cell Signal ; 101: 110522, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375714

RESUMO

Ras Suppressor-1 (RSU1) is a cell-extracellular matrix (ECM) adhesion protein implicated in breast cancer (BC) cell metastasis. Nevertheless, its role in apoptosis is yet unknown. In the present study, we used bioinformatics tools to evaluate the association of RSU1 expression and BC patient survival, the expression of basic pro- and anti-apoptotic genes in metastatic BC samples and their correlation with the expression of RSU1. Then, we specifically depleted RSU1 long form (RSU1L) using a short hairpin RNA (shRNA) silencing approach in two BC cell lines, the non-invasive MCF-7 and the highly invasive MDA-MB-231-LM2 cells and assessed gene expression of pro-and anti-apoptotic genes, as well as cell survival and apoptosis. Our results showed that high RSU1 expression was correlated with poor survival and significant changes were found in the expression of apoptosis-related genes (PUMA, TP53, BCL-2 and BCL-XL) in metastatic BC. Moreover, silencing of the long and most common isoform of RSU1 (RSU1L) resulted in the upregulation of PUMA and TP53 and concomitant downregulation of anti-apoptotic BCL-2 and BCL-XL, with the effect being more prominent in invasive MDA-MB-231-LM2 cells. Finally, RSU1L depletion leads to a dramatic increase in apoptosis of MDA-MB-231-LM2 cells, while no change was observed in the apoptotic rate of MCF-7 cells. This is the first study linking RSU1L with apoptosis and provides evidence for its differential role in cell lines of different invasive potential. This indicates that RSU1L represses apoptosis in aggressive BC cells helping them evade cell death and survive.


Assuntos
Apoptose , Neoplasias da Mama , Fatores de Transcrição , Feminino , Humanos , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Células MCF-7 , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Interferente Pequeno/genética , Inativação Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo
5.
J Mol Histol ; 51(4): 385-400, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32592097

RESUMO

Integrin-linked kinase (ILK) forms a heterotrimeric protein complex with PINCH and PARVIN (IPP) in Focal Adhesions (FAs) that acts as a signaling platform between the cell and its microenvironment regulating important cancer-related functions. We aimed to elucidate the role of ILK in lung adenocarcinoma (LUADC) focusing on a possible link with KRAS oncogene. We used immunohistochemistry on human tissue samples and KRAS-driven LUADC in mice, analysis of large scale publicly available RNA sequencing data, ILK overexpression and pharmacological inhibition as well as knockdown of KRAS in lung cancer cells. ILK, PINCH1 and PARVB (IPP) proteins are overexpressed in human LUADC and KRAS-driven LUADC in mice representing poor prognostic indicators. Genes implicated in ILK signaling are significantly enriched in KRAS-driven LUADC. Silencing of KRAS, as well as, overexpression and pharmacological inhibition of ILK in lung cancer cells provide evidence of a two-way association between ILK and KRAS. Upregulation of PINCH, PARVB and Ras suppressor-1 (RSU1) expression was demonstrated in ILK overexpressing lung cancer cells in addition to a significant positive correlation between these factors in tissue samples, while KRAS silencing downregulates IPP and RSU1. Pharmacological inhibition of ILK in KRAS mutant lung cancer cells suppresses cell growth, migration, EMT and increases sensitivity to platinum-based chemotherapy. ILK promotes an aggressive lung cancer phenotype with prognostic and therapeutic value through functions that involve KRAS, IPP complex and RSU1, rendering ILK a promising biomarker and therapeutic target in lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Proteínas do Citoesqueleto/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores de Transcrição/metabolismo , Células A549 , Adenocarcinoma de Pulmão/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Transdução de Sinais/fisiologia , Microambiente Tumoral/fisiologia , Regulação para Cima/fisiologia
6.
Cancers (Basel) ; 11(8)2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412547

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor due to its invasive phenotype. Ras suppressor 1 (RSU-1) is a cell-extracellular matrix adhesion protein and we recently found that it promotes cell invasion in aggressive cells and inhibits it in non-invasive. Growth differentiation factor-15 (GDF15) is known to be involved in actin cytoskeleton reorganization and metastasis. In this study, we used three brain cell lines (H4, SW1088 and A172) with increasing RSU-1 expression levels and invasive capacity and decreasing GDF15 levels to investigate the interplay between RSU-1 and GDF15 with regard to cell invasion. Four experimental approaches were used: (a) GDF15 treatment, (b) Rsu-1 silencing, (c) GDF15 silencing, and (d) combined GDF15 treatment and RSU-1 silencing. We found that the differential expression of RSU-1 and GDF15 in H4 and A172 cells leading to inhibition of cell invasion in H4 cells and promotion in A172 through respective changes in PINCH1, RhoA and MMP-13 expression. Interestingly SW1088, with intermediate RSU-1 and GDF15 expression, were not affected by any treatment. We conclude that there is a strong connection between RSU-1 and GDF15 in H4, SW1088 and A172 cells and the relative expression of these two proteins is fundamental in affecting their invasive fate.

7.
Oncotarget ; 8(16): 27364-27379, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28423706

RESUMO

Breast cancer (BC) is the most common malignant disease in women, with most patients dying from metastasis to distant organs, making discovery of novel metastasis biomarkers and therapeutic targets imperative. Extracellular matrix (ECM)-related adhesion proteins as well as tumor matrix stiffness are important determinants for metastasis. As traditional two-dimensional culture does not take into account ECM stiffness, we employed 3-dimensional collagen I gels of increasing concentration and stiffness to embed BC cells of different invasiveness (MCF-7, MDA-MB-231 and MDA-MB-231-LM2) or tumor spheroids. We tested the expression of cell-ECM adhesion proteins and found that Ras Suppressor-1 (RSU-1) is significantly upregulated in increased stiffness conditions. Interestingly, RSU-1 siRNA-mediated silencing inhibited Urokinase Plasminogen Activator, and metalloproteinase-13, whereas tumor spheroids formed from RSU-1-depleted cells lost their invasive capacity in all cell lines and stiffness conditions. Kaplan-Meier survival plot analysis corroborated our findings showing that high RSU-1 expression is associated with poor prognosis for distant metastasis-free and remission-free survival in BC patients. Taken together, our results indicate the important role of RSU-1 in BC metastasis and set the foundations for its validation as potential BC metastasis marker.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fatores de Transcrição/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Adesão Celular , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Expressão Gênica , Inativação Gênica , Humanos , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Metástase Neoplásica , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Esferoides Celulares , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
8.
Onco Targets Ther ; 10: 1695-1705, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28356756

RESUMO

BACKGROUND: Cervical cancer is the fourth most frequent malignancy affecting women worldwide, but drug resistance and toxicities remain a major challenge in chemotherapy. The use of natural compounds is promising because they are less toxic and able to target multiple signaling pathways. The 1'S-1'-acetoxychavicol acetate (ACA), a natural compound isolated from wild ginger Alpinia conchigera, induced cytotoxicity on various cancer cells including cervical cancer. MicroRNAs (miRNAs) are short noncoding RNAs that regulate numerous biological processes, such as apoptosis and chemosensitivity. Past studies reported that miR-629 is upregulated in many cancers, and its expression was altered in ACA-treated cervical cancer cells. However, the role of miR-629 in regulating sensitivity toward ACA or other anticancer agents has not been reported. Hence, this study aims to investigate the role of miR-629 in regulating response toward ACA on cervical cancer cells. METHODS: The miR-629 expression following transfection with miR-629 hairpin inhibitor and hairpin inhibitor negative control was measured using quantitative real-time polymerase chain reaction (RT-qPCR). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to investigate sensitivity toward ACA. Apoptosis was detected using Annexin V/propidium iodide and Caspase 3/7 assays. The gene target for miR-629 was identified using miRNA target prediction programs, luciferase reporter assay and Western blots. Gene overexpression studies were performed to evaluate its role in regulating response toward ACA. RESULTS: Transfection with miR-629 hairpin inhibitor downregulated its expression in both cervical cancer cell lines. Suppression of miR-629 increased sensitivity toward ACA by reducing cell proliferation and inducing apoptosis. Luciferase reporter assay confirmed RSU1 as a direct target of miR-629. Overexpression of miR-629 decreased RSU1 protein expression, while inhibition of miR-629 increased RSU1 protein expression. Overexpression of RSU1 augmented antiproliferative and apoptosis-inducing effects of ACA. CONCLUSION: Our findings showed that combination of ACA with miR-629 and RSU1 may provide a potential strategy in treating cervical cancer.

9.
Anticancer Res ; 35(3): 1509-12, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25750304

RESUMO

BACKGROUND/AIM: Extracellular matrix (ECM) is of great significance for homeostasis in the liver. In fact, one of the stages leading to hepatocellular carcinoma (HCC) includes accumulation of excess ECM. Ras Suppressor-1 (RSU-1) is localized in the cell-ECM adhesions but its role in HCC is unexplored. MATERIALS AND METHODS: We investigated the expression and role of RSU-1 in two HCC cell lines that differ in aggressiveness; non-invasive Alexander cells and highly invasive HepG2 cells. RESULTS: Our results showed that RSU-1 expression is elevated in HepG2 cells both at the mRNA and protein level, while its silencing leads to increased cell proliferation in both cell lines. Interestingly, RSU-1 depletion from highly invasive HepG2 cells reduces cell adhesion and invasion. CONCLUSION: This is the first study to provide in vitro evidence for the involvement of RSU-1 in HCC cell invasive behavior.


Assuntos
Carcinoma Hepatocelular/secundário , Neoplasias Hepáticas/patologia , Fatores de Transcrição/fisiologia , Carcinoma Hepatocelular/patologia , Adesão Celular , Linhagem Celular Tumoral , Humanos , Invasividade Neoplásica , Fatores de Transcrição/análise , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA