Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Gerontology ; 70(6): 661-668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38565079

RESUMO

INTRODUCTION: Perturbation-based balance training (PBT) is promising for fall prevention in older adults, mimicking real-life fall situations at a person's stability thresholds to improve reactive balance. Hence, it can be associated with anxiety, but knowledge about the acceptability of PBT is scarce. METHOD: This is a secondary analysis of a randomized controlled trial comparing the effects of two different PBT paradigms that aims to evaluate and compare the acceptability of those training paradigms in fall-prone older adults. Participants (74.9 ± 5.7 years) who completed the training (6 weeks, 3x/week) on either a perturbation treadmill (PBTtreadmill: n = 22) or unstable surfaces in the presence of perturbations (PBTstability: n = 27) were surveyed on the acceptability of PBT using a 21-item questionnaire addressing seven domains (perceived effectiveness, tailoring, demand, safety, burden, devices, affective attitude), based on the theoretical framework of acceptability and context-specific factors. Relative scores (% of absolute maximum) for single items and domains were calculated. RESULTS: Median domain scores of perceived effectiveness, tailoring, safety, devices, and affective attitude were all ≥70% for both paradigms. The highest scores were obtained for tailoring (both paradigms = 100% [interquartile range 80-100%]). Domain scores of demand and burden were in the medium range (40-45%) for both paradigms. No significant differences between paradigms were found for any domain score. Two single items of safety differed significantly, with PBTtreadmill perceived as needing less support (p = 0.015) and leading less often to balance loss (p = 0.026) than PBTstability. CONCLUSION: PBT conducted on a perturbation treadmill or unstable surfaces is well accepted in this fall-prone older sample, even though it is conducted at individual stability thresholds. Tailoring may play a key role in achieving high levels of perceived effectiveness, appropriate levels of demand and burden, and a high sense of safety. PBT delivered on treadmills might be more appropriate for more anxious persons.


Assuntos
Acidentes por Quedas , Equilíbrio Postural , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Acidentes por Quedas/prevenção & controle , Teste de Esforço/métodos , Terapia por Exercício/métodos , Aceitação pelo Paciente de Cuidados de Saúde/psicologia , Equilíbrio Postural/fisiologia , Inquéritos e Questionários
2.
Exp Brain Res ; 241(1): 13-30, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36329316

RESUMO

The relationship between cognitive demands and postural control is controversial. Mental fatigue paradigms investigate the attentional requirements of postural control by assessing balance after a prolonged cognitive task. However, a majority of mental fatigue research has focused on cognition and sports performance, leaving balance relatively underexamined. The purpose of this paper was to systematically review the existing literature on mental fatigue and balance control. We conducted a comprehensive search on PubMed and Web of Science databases for studies comparing balance performance pre- to post-mental fatigue or between a mental fatigue and control group. The literature search resulted in ten relevant studies including both volitional (n = 7) and reactive (n = 3) balance measures. Mental fatigue was induced by various cognitive tasks which were completed for 20-90 min prior to balance assessment. Mental fatigue affected both volitional and reactive balance, resulting in increased postural sway, decreased accuracy on volitional tasks, delayed responses to perturbations, and less effective balance recovery responses. These effects could have been mediated by the depletion of attentional resources or impaired sensorimotor perception which delayed appropriate balance-correcting responses. However, the current literature is limited by the number of studies and heterogeneous mental fatigue induction methods. Future studies are needed to confirm these postulations and examine the effects of mental fatigue on different populations and postural tasks. This line of research could be clinically relevant to improve safety in occupational settings where individuals complete extremely long durations of cognitive tasks and for the development of effective fall-assessment and fall-prevention paradigms.


Assuntos
Desempenho Atlético , Atenção , Humanos , Atenção/fisiologia , Cognição/fisiologia , Equilíbrio Postural/fisiologia , Fadiga Mental
3.
Gerontology ; 69(7): 910-922, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36921581

RESUMO

INTRODUCTION: There is increasing evidence that perturbation-based balance training (PBT) is highly effective in preventing falls at older age. Different PBT paradigms have been presented so far, yet a systematic comparison of PBT approaches with respect to feasibility and effectiveness is missing. Two different paradigms of PBT seem to be promising for clinical implementation: (1) technology-supported training on a perturbation treadmill (PBTtreadmill); (2) training of dynamic stability mechanisms in the presence of perturbations induced by unstable surfaces (PBTstability). This study aimed to compare both program's feasibility and effectiveness in fall-prone older adults. METHODS: In this three-armed randomized controlled trial, seventy-one older adults (74.9 ± 6.0 years) with a verified fall risk were randomly assigned into three groups: PBTtreadmill on a motorized treadmill, PBTstability using unstable conditions such as balance pads, and a passive control group (CG). In both intervention groups, participants conducted a 6-week intervention with 3 sessions per week. Effects were assessed in fall risk (Brief-BEST), balance ability (Stepping Threshold Test, center of pressure, limits of stability), leg strength capacity, functional performance (Timed Up and Go Test, Chair-Stand), gait (preferred walking speed), and fear of falling (Short FES-I). RESULTS: Fifty-one participants completed the study. Training adherence was 91% for PBTtreadmill and 87% for PBTstability, while no severe adverse events occurred. An analysis of covariance with an intention-to-treat approach revealed statistically significant group effects in favor of PBTstability in the Brief-BEST (p = 0.009, η2 = 0.131) and the limits of stability (p = 0.020, η2 = 0.110) and in favor of PBTtreadmill in the Stepping Threshold Test (p < 0.001, η2 = 0.395). The other outcomes demonstrated no significant group effects. CONCLUSION: Both training paradigms demonstrated high feasibility and were effective in improving specific motor performances in the fall-prone population and these effects were task specific. PBTtreadmill showed higher improvements in reactive balance, which might have been promoted by the unpredictable nature of the included perturbations and the similarity to the tested surface perturbation paradigm. PBTstability showed more wide-ranging effects on balance ability. Consequently, both paradigms improved fall risk-associated measures. The advantages of both formats should be evaluated in light of individual needs and preferences. Larger studies are needed to investigate the effects of these paradigms on real-life fall rates.


Assuntos
Terapia por Exercício , Equilíbrio Postural , Humanos , Idoso , Terapia por Exercício/métodos , Medo , Estudos de Tempo e Movimento , Marcha
4.
BMC Geriatr ; 23(1): 656, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833653

RESUMO

BACKGROUND: 'Reactive balance training' (RBT) was developed to improve balance reactions to unexpected losses of balance. Although this training method is effective, its practical usage in the field of physical-therapy in Israel and world-wide is still unclear. AIMS: This study aimed to evaluate the extent of RBT use in physical-therapy clinics in Israel, to identify the significant barriers to/facilitators for implementing RBT in clinical practice among physical therapists, and to determine which aspects of RBT most interest physical therapists in Israel. METHODS: Physical therapists in Israel completed a survey using a questionnaire regarding their knowledge and use of RBT in their clinical practices. We compared the specific use of RBT among users; non-users; and open-to-use physical therapists. The odds ratios of the facilitators and barriers were calculated using univariate and multivariate logistic regression models. RESULTS: Four-hundred and two physical therapists responded to a yes/no question regarding their use of RBT. Three-quarters (75.4%) of physical therapists reported using RBT in their practices. The most prevalent barrier cited was insufficient space for setting up equipment and most prevalent facilitator was having a colleague who uses RBT. Most of the respondents wanted to learn more about RBT, and most of the non-users wanted to expand their knowledge and mastery of RBT principles. CONCLUSIONS: There are misconceptions and insufficient knowledge about RBT among physical therapists in Israel, indicating that they may falsely believe that RBT requires large and expensive equipment, suggesting they categorize RBT as external perturbation training only. Reliable information may help to improve general knowledge regarding RBT, and to facilitate the more widespread implementation of RBT as an effective fall-prevention intervention method.


Assuntos
Fisioterapeutas , Humanos , Israel , Modalidades de Fisioterapia , Inquéritos e Questionários , Equilíbrio Postural
5.
Sensors (Basel) ; 23(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37765803

RESUMO

Reactive balance is postulated to be attentionally demanding, although it has been underexamined in dual-tasking (DT) conditions. Further, DT studies have mainly included only one cognitive task, leaving it unknown how different cognitive domains contribute to reactive balance. This study examined how DT affected reactive responses to large-magnitude perturbations and compared cognitive-motor interference (CMI) between cognitive tasks. A total of 20 young adults aged 18-35 (40% female; 25.6 ± 3.8 y) were exposed to treadmill support surface perturbations alone (single-task (ST)) and while completing four cognitive tasks: Target, Track, Auditory Clock Test (ACT), Letter Number Sequencing (LNS). Three perturbations were delivered over 30 s in each trial. Cognitive tasks were also performed while seated and standing (ST). Compared to ST, post-perturbation MOS was lower when performing Track, and cognitive performance was reduced on the Target task during DT (p < 0.05). There was a larger decline in overall (cognitive + motor) performance from ST for both of the visuomotor tasks compared to the ACT and LNS (p < 0.05). The highest CMI was observed for visuomotor tasks; real-life visuomotor tasks could increase fall risk during daily living, especially for individuals with difficulty attending to more than one task.

6.
J Aging Phys Act ; 31(1): 7-17, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35562104

RESUMO

We examined whether older adults who cycle outdoors regularly have better reactive balance control than noncycling older adults. Sixteen cyclist older adults and 24 age-, sex-, and health-matched controls who did not cycle (noncyclists) were exposed to unannounced perturbations of increased magnitudes in standing. We evaluated the strategies and kinematics employed at each perturbation magnitude. We found that cyclists exhibited a significantly higher stepping threshold, lower probability of stepping at each perturbation magnitude, and lower number of trials in which the participant needed to make a step to retain their balance. Cyclists also tended to recover balance using unloaded leg strategies in the first recovery step rather than a loaded leg strategy; they showed faster swing phase duration in the first recovery step, better controlling the displacement of center of mass than noncyclists. Older adults who cycle regularly outdoors preserve their reactive balance functions, which may reduce fall risks.


Assuntos
Ciclismo , Equilíbrio Postural , Humanos , Idoso , Estudos de Casos e Controles , Fenômenos Biomecânicos
7.
J Neurophysiol ; 127(3): 673-688, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35080466

RESUMO

The aim of this study was to quantify balance impairments in standing in people with degenerative cervical myelopathy (PwDCM) in response to external perturbations. PwDCM have damage to their spinal cord due to degeneration of the cervical vertebral column, but little is known about balance. Balance was quantified by capturing kinetics, kinematic, and electromyographic data during standing in response to lateral waist pulls. Participants received pulls during predictable and unpredictable contexts in three stance widths at two magnitudes. In response to lateral waist pulls, PwDCM had larger center of mass excursion (P < 0.001) and delayed gluteus medius electromyography onset (P < 0.001) and peak (P < 0.001) timing. These main effects of history of myelopathy were consistent across predictability, stance width, and magnitude. A multilinear regression determined that gluteus medius peak timing + tibialis anterior peak timing most strongly predicted center of mass excursion (R2 = 0.50, P < 0.001). These data suggest that PwDCM have delays in generating voluntary and reactive motor commands, contributing to balance impairments. Future rehabilitation strategies should focus on generating rapid muscular contractions. Additionally, frontal plane postural control is regulated by the gluteus medius and the tibialis anterior, whereas other muscles (e.g. gluteus minimus, ankle invertors/evertors) not studied here may also contribute.NEW & NOTEWORTHY Frontal plane reactive postural control is impaired in persons with degenerative cervical myelopathy because of delayed muscle responses. Additionally, postural control varies across stance width, predictability, and perturbation magnitude.


Assuntos
Equilíbrio Postural , Doenças da Medula Espinal , Eletromiografia , Humanos , Contração Muscular , Músculo Esquelético/fisiologia , Equilíbrio Postural/fisiologia
8.
Exp Brain Res ; 239(12): 3635-3647, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34609544

RESUMO

The aim of the present study was to investigate the effect of the application of neuromuscular electrical stimulation to the quadriceps muscle of the paretic limb during externally induced stance perturbations on reactive balance control and on fall outcomes in people with chronic stroke. Ten participants experienced 12 stance treadmill perturbation trails, 6 forward balance perturbation trials and 6 backward balance perturbation trials. For each perturbation condition, three perturbation trials were delivered synchronized with neuromuscular electrical stimulation applied to the quadriceps of the paretic limb and three perturbation trials were delivered without stimulation. Behavioral outcome measures, such as incidence of laboratory falls and number of compensatory steps, kinematic outcome measures, such as margin of stability and minimum hip high values after the perturbation, step initiation time, step execution time and step length of the stepping leg were analyzed. The application of neuromuscular electrical stimulation on the paretic quadriceps between the range of 50 and 500 ms after stance forward and backward perturbations reduced the laboratory falls incidence (p < 0.05), improved stability values (p < 0.05) and reduced the hip height descent (p < 0.05) compared to the experimental condition in which participants were exposed to stance perturbations without neuromuscular electrical stimulation. Additionally, step initiation time of the recovery step was lower in neuromuscular electrical stimulation condition during the forward balance perturbation protocol. Our results showed that the application of neuromuscular electrical stimulation on the knee extensor muscles of the paretic limb reduces the incidence of laboratory falls, enhances reactive stability control and reduces vertical limb collapse after stance forward and backward perturbations in people with chronic stroke.


Assuntos
Equilíbrio Postural , Acidente Vascular Cerebral , Acidentes por Quedas , Fenômenos Biomecânicos , Estimulação Elétrica , Humanos , Projetos Piloto , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia
9.
Age Ageing ; 49(6): 982-988, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32417879

RESUMO

BACKGROUND: pain is associated with increased postural sway and falls in older adults. However, the impact of pain on reactive balance induced by postural perturbations and how this might predispose older adults to falls is not known. OBJECTIVE: to investigate whether any pain, back/neck pain and lower limb pain are associated with poor reactive balance and prospective fall outcomes in older adults. DESIGN: 12-month prospective cohort study. SETTING: community. SUBJECTS: 242 community-dwelling older adults aged 70+ years. METHODS: participants completed a questionnaire on the presence of pain and underwent force-controlled waist-pull postural perturbations while standing. Force thresholds for stepping, step initiation time, step velocity and step length were quantified. Falls were monitored with monthly falls calendars for 12-months. RESULTS: participants with lower limb pain had significantly lower force thresholds for stepping. Those with any pain or pain in the back/neck had longer step initiation time, slower step velocity and shorter step length. The three pain measures (any pain, back/neck pain, lower limb pain) were significantly associated with multiple falls when adjusted for age, sex, body mass index, use of polypharmacy, strength and walking speed. In mediation analyses, there was a significant indirect effect of reactive balance for the relationship between back/neck pain and falls with fractures. CONCLUSIONS: older people with pain have impaired reactive balance and an increased risk of falls. Reactive balance partially mediated the association between pain and fall-related fractures. Further research is required to confirm the findings of this study.


Assuntos
Vida Independente , Equilíbrio Postural , Idoso , Humanos , Cervicalgia , Estudos Prospectivos
10.
J Aging Phys Act ; 27(2): 252-264, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29989462

RESUMO

BACKGROUND: A variety of physical interventions have been used to improve reactive balance in older adults. PURPOSE: To summarize the effectiveness of active treatment approaches to improve reactive postural responses in community-dwelling older adults. DESIGN: Systematic review guided by PRISMA guidelines. STUDY SELECTION: A literature search included the databases PubMed, OVID, CINAHL, ClinicalTrials.gov, OTseeker, and PEDro up to December 2017. Randomized controlled trials that evaluated quantitative measures of reactive postural responses in healthy adults following participation in an active physical training program were included. DATA SYNTHESIS: Of 4,481 studies initially identified, 11 randomized controlled trials covering 313 participants were selected for analysis. Study designs were heterogeneous, preventing a quantitative analysis. Nine of the 11 studies reported improvements in reactive postural responses. CONCLUSIONS: Several clinically feasible training methods have the potential to improve reactive postural responses in older adults; however, conclusions on the efficacy of treatment methods are limited because of numerous methodological issues and heterogeneity in outcomes and intervention procedures.


Assuntos
Acidentes por Quedas/prevenção & controle , Terapia por Exercício , Equilíbrio Postural , Idoso , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
11.
J Stroke Cerebrovasc Dis ; 28(4): 935-943, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30630753

RESUMO

BACKGROUND: Although perturbation-based balance training (PBT) may be effective in improving reactive balance control and/or reducing fall risk in individuals with stroke, the characteristics of reactive balance responses that improve following PBT have not yet been identified. This study aimed to determine if reactive stepping characteristics and timing in response to support-surface perturbations improved to a greater extent following PBT, compared to traditional balance training. MATERIALS AND METHODS: This study represents a substudy of a multisite randomized controlled trial. Sixteen individuals with chronic stroke were randomly assigned to either perturbation-based or traditional balance training, and underwent 6-weeks of training as a part of the randomized controlled trial. Responses to support-surface perturbation were evaluated pre- and post-training, and 6-months post-training. Reactive stepping characteristics and timing were compared between sessions within each group, and between groups at post-training and 6-months post-training while controlling for each measure at the pre-training session. RESULTS: The frequency of extra steps in response to perturbations decreased from pre-training to post-training for the PBT group, but not for the control group. CONCLUSIONS: Improvements in reactive balance control were identified after PBT in individuals with chronic stroke. Findings provide insight into the mechanism by which PBT improves reactive balance control poststroke, and support the use of PBT in balance rehabilitation programs poststroke.


Assuntos
Acidentes por Quedas/prevenção & controle , Terapia por Exercício/métodos , Transtornos Neurológicos da Marcha/reabilitação , Marcha , Equilíbrio Postural , Transtornos de Sensação/reabilitação , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/terapia , Adulto , Idoso , Feminino , Análise da Marcha , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Ontário , Recuperação de Função Fisiológica , Transtornos de Sensação/diagnóstico , Transtornos de Sensação/etiologia , Transtornos de Sensação/fisiopatologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo , Resultado do Tratamento
12.
Exp Brain Res ; 236(2): 619-628, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29279981

RESUMO

Studies examining recovery from SLIPS and TRIPS indicate higher incidence of falls during SLIPS than TRIPS however, differences in the recovery mechanisms during these opposing perturbations have not been examined. We therefore aimed to compare the reactive balance responses contributing to fall risk during SLIPS and TRIPS at comparable perturbation intensity among community-dwelling healthy adults and chronic stroke survivors. Younger adults (N = 11), age-matched adults (N = 11) and chronic stroke survivors (N = 12) were exposed to a single SLIP and TRIP through a motorized treadmill (16 m/s2, 0.20 m). Center of mass (COM) state stability was measured by recording COM position and velocity relative to base of support, i.e., D COM/BOS and X COM/BOS, respectively. Trunk and compensatory step kinematics were also recorded. During SLIPS, the incidence of falls among stroke survivors was greater than healthy adults (53.83% vs. 0%), however not for TRIPS. All groups showed higher change in postural stability from liftoff to touchdown during TRIPS than SLIPS. Among healthy adults higher change in D COM/BOS during TRIPS was accompanied by the ability to control trunk flexion at step touchdown and lower peak trunk velocity as compared with SLIPS, with no significant differences in compensatory step length between the perturbations (p > 0.05). Chronic stroke survivors increased compensatory step length during TRIPS versus SLIPS (p < 0.05) contributing to greater stability change. They were unable to control trunk excursion and peak trunk velocity as compared with the healthy adults leading to lower stability than healthy younger and age-matched adults during SLIPS and lower stability than younger adults during TRIPS. Difficulty in trunk control during SLIPS among all individuals and compensatory step length  among stroke survivors emphasizes higher fall risk for SLIPS than TRIPS among these populations.


Assuntos
Acidentes por Quedas , Equilíbrio Postural/fisiologia , Postura/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Sobreviventes , Adulto , Idoso , Análise de Variância , Fenômenos Biomecânicos , Estudos de Casos e Controles , Doença Crônica , Teste de Esforço , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tronco/inervação , Adulto Jovem
13.
J Stroke Cerebrovasc Dis ; 26(2): 237-245, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27955809

RESUMO

BACKGROUND: Reduced balance confidence is associated with impairments in features of balance and gait in individuals with subacute stroke. However, an understanding of these relationships in individuals at the chronic stage of stroke recovery is lacking. This study aimed to quantify the relationships between balance confidence and specific features of balance and gait in individuals with chronic stroke. METHODS: Participants completed a balance confidence questionnaire and clinical balance assessment (quiet standing, walking, and reactive stepping) at 6 months postdischarge from inpatient stroke rehabilitation. Regression analyses were performed using balance confidence as a predictor variable, and quiet standing, walking, and reactive stepping outcome measures as the dependent variables. RESULTS: Walking velocity was positively correlated with balance confidence, whereas mediolateral center of pressure excursion (quiet standing) and double support time, step width variability, and step time variability (walking) were negatively correlated with balance confidence. CONCLUSIONS: This study provides insight into the relationships between balance confidence and balance and gait measures in individuals with chronic stroke, suggesting that individuals with low balance confidence exhibited impaired control of quiet standing as well as walking characteristics associated with cautious gait strategies. Future work should identify the direction of these relationships to inform community-based stroke rehabilitation programs for individuals with chronic stroke, and determine the potential utility of incorporating interventions to improve balance confidence into these programs.


Assuntos
Marcha , Equilíbrio Postural , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/psicologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Doença Crônica , Estudos Transversais , Autoavaliação Diagnóstica , Feminino , Marcha/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Pacientes Ambulatoriais , Percepção , Equilíbrio Postural/fisiologia , Recuperação de Função Fisiológica , Estudos Retrospectivos , Reabilitação do Acidente Vascular Cerebral , Inquéritos e Questionários
14.
Exp Brain Res ; 234(12): 3497-3508, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27491683

RESUMO

The neuromuscular mechanisms that underlie post-stroke impairment in reactive balance control during gait are not fully understood. Previous research has described altered muscle activations in the paretic leg in response to postural perturbations from static positions. Additionally, attenuation of interlimb reflexes after stroke has been reported. Our goal was to characterize post-stroke changes to neuromuscular responses in the stance leg following a swing phase perturbation during gait. We hypothesized that, following a trip, altered timing, sequence, and magnitudes of perturbation-induced activations would emerge in the paretic and nonparetic support legs of stroke survivors compared to healthy control subjects. The swing foot was interrupted, while subjects walked on a treadmill. In healthy subjects, a sequence of perturbation-induced activations emerged in the contralateral stance leg with mean onset latencies of 87-147 ms. The earliest latencies occurred in the hamstrings and hip abductor and adductors. The hamstrings, the adductor magnus, and the gastrocnemius dominated the relative balance of perturbation-induced activations. The sequence and balance of activations were largely preserved after stroke. However, onset latencies were significantly delayed across most muscles in both paretic and nonparetic stance legs. The shortest latencies observed suggest the involvement of interlimb reflexes with supraspinal pathways. The preservation of the sequence and balance of activations may point to a centrally programmed postural response that is preserved after stroke, while post-stroke delays may suggest longer transmission times for interlimb reflexes.


Assuntos
Lateralidade Funcional/fisiologia , Transtornos Neurológicos da Marcha/reabilitação , Perna (Membro)/fisiopatologia , Doenças Neuromusculares/etiologia , Adulto , Idoso , Fenômenos Biomecânicos , Eletromiografia , Teste de Esforço , Feminino , Transtornos Neurológicos da Marcha/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia , Acidente Vascular Cerebral/complicações
15.
Appl Ergon ; 117: 104236, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38237306

RESUMO

Backpacks are common devices for carrying external posterior loads. However, relatively little is known about how these external loads affect the ability to recover from balance loss. In this exploratory investigation, 16 young adults (8 female, 8 male) performed forward and backward lean-and-release balance recovery trials, while wearing a backpack that was unloaded or loaded (at 15% of individual body weight). We quantified the effects of backpack loading on balance recovery in terms of maximum recoverable lean angles, center-of-mass kinematics, and temporal-spatial stepping characteristics. Mean values of maximum lean angles were 20° and 9° in response to forward and backward perturbations, respectively. These angles significantly decreased when wearing the additional load for only backward losses of balance. During backward losses of balance, the additional load decreased peak center-of-mass velocity and increased acceleration by ∼10 and 18% respectively, which was accompanied by ∼5% faster stepping responses and steps that were ∼9% longer, 11% higher, and had an ∼10% earlier onset. Thus, wearing a backpack decreases backward balance recovery ability and changes backward recovery stepping characteristics.


Assuntos
Aceleração , Equilíbrio Postural , Adulto Jovem , Humanos , Masculino , Feminino , Equilíbrio Postural/fisiologia , Fenômenos Biomecânicos , Suporte de Carga/fisiologia
16.
J Pharm Bioallied Sci ; 16(Suppl 1): S452-S455, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38595384

RESUMO

Objective: This study aims to assess the comparative efficacy of two distinct balancing training intervention strategies, namely, Wii Fit Balance Training (WFT) and Reactive Balance Training (RBT), in reducing older individuals' fear of falling, as well as enhancing their balance and functional mobility. Materials and Methods: One of the two groups was randomly assigned a total of 45 individuals. The first group received Wii Fit training, whereas the second group engaged in reactive balancing challenges. The efficiency of the techniques was evaluated using three outcome measures: the Fullerton Advanced Balance (FAB), Scale Time up and Go Test (TUG), and Berg Balance Scale (BBS). To facilitate the comparison between the groups, an independent student t-test was employed. Results: Both experimental groups showed significant improvements compared to their respective control groups in the research study (BBS: P = 0.023; P = 0.036; FAB: P = 0.027; P = 0.044; and TUG: P = 0.017; P = 0.025). Conclusion: It can be inferred that both reactive balance training and Wii Fit training have the potential to serve as efficacious treatment interventions aimed at mitigating balance deterioration among older individuals.

17.
Front Rehabil Sci ; 5: 1384582, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38813371

RESUMO

Background: Dual tasking (i.e., concurrent performance of motor and cognitive task) is significantly impaired in older adults with mild cognitive impairment (OAwMCI) compared to cognitively intact older adults (CIOA) and has been associated with increased fall risk. Dual task studies have primarily examined volitionally driven events, and the effects of mild cognitive impairment on reactive balance control (i.e., the ability to recover from unexpected balance threats) are unexplored. We examined the effect of cognitive tasks on reactive balance control in OAwMCI compared to CIOA. Methods: Adults >55 years were included and completed the Montreal Cognitive Assessment (MoCA) to categorize them as OAwMCI (MoCA: 18-24, n = 15) or CIOA (MoCA: ≥25, n = 15). Both OAwMCI [MoCA: 22.4 (2.2), 65.4 (6.1) years, 3 females] and CIOA [MoCA: 28.4 (1.3), 68.2 (5.5) years, 10 females] responded to large magnitude stance slip-like perturbations alone (single task) and while performing perceptual cognitive tasks targeting the visuomotor domain (target and tracking game). In these tasks, participants rotated their head horizontally to control a motion mouse and catch a falling target (target game) or track a moving object (track). Margin of stability (MOS) and fall outcome (harness load cell >30% body weight) were used to quantify reactive balance control. Cognitive performance was determined using performance error (target) and sum of errors (tracking). A 3 × 2 repeated measures ANOVA examined the effect of group and task on MOS, and generalized estimating equations (GEE) model was used to determine changes in fall outcome between groups and tasks. 2 × 2 repeated measures ANOVAs examined the effect of group and task on cognitive performance. Results: Compared to CIOA, OAwMCI exhibited significantly deteriorated MOS and greater number of falls during both single task and dual task (p < 0.05), and lower dual task tracking performance (p < 0.01). Compared to single task, both OAwMCI and CIOA exhibited significantly deteriorated perceptual cognitive performance during dual task (p < 0.05); however, no change in MOS or fall outcome between single task and dual task was observed. Conclusion: Cognitive impairment may diminish the ability to compensate and provide attentional resources demanded by sensory systems to integrate perturbation specific information, resulting in deteriorated ability to recover balance control among OAwMCI.

18.
Gait Posture ; 107: 281-286, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349937

RESUMO

BACKGROUND: The present study investigated neural mechanisms for suppressing a highly automatic balance recovery step. Response inhibition has typically been researched using focal hand reaction tasks performed by seated participants, and this has revealed a neural stopping network including the Inferior Frontal Gyrus (IFG). It is unclear if the same neural networks contribute to suppressing an unwanted balance reaction. RESEARCH QUESTION: Is there greater IFG activation when suppressing an automatic balance recovery step? METHODS: Functional near-infrared spectroscopy (fNIRS) was used to measure brain activity in 21 young adults as they performed a balance recovery task that demanded rapid step suppression following postural perturbation. The hypothesis was that the IFG would show heightened activity when suppressing an automatic balance recovery step. A lean and-release system was used to impose temporally unpredictable forward perturbations by releasing participants from a supported forward lean. For most trials (80%), participants were told to recover balance by quickly stepping forward (STEP). However, on 20% of trials at random, a high-pitch tone was played immediately after postural perturbation signaling participants to suppress a step and fully relax into a catch harness (STOP). This allowed us to target the ability to cancel an already initiated step in a balance recovery context. Average oxygenated hemoglobin changes were contrasted between STEP and STOP trials, 1-6 s post perturbation. RESULTS: The results showed a greater bilateral prefrontal response during STOP trials, supporting the idea that executive brain networks are active when suppressing a balance recovery step. SIGNIFICANCE: Our study demonstrates one way in which higher brain processes may help us prevent falls in complex environments where behavioral flexibility is necessary. This study also presents a novel method for assessing response inhibition in an upright postural context where rapid stepping reactions are required.


Assuntos
Encéfalo , Córtex Pré-Frontal , Adulto Jovem , Humanos , Encéfalo/fisiologia , Posição Ortostática , Mãos/fisiologia , Extremidade Superior , Equilíbrio Postural/fisiologia
19.
Gait Posture ; 107: 121-129, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-36990910

RESUMO

BACKGROUND: Balance impairments are common in children with cerebral palsy (CP). Muscle activity during perturbed standing is higher in children with CP than in typically developing (TD) children, but we know surprisingly little about how sensorimotor processes for balance control are altered in CP. Sensorimotor processing refers to how the nervous system translates incoming sensory information about body motion into motor commands to activate muscles. In healthy adults, muscle activity in response to backward support-surface translations during standing can be reconstructed by center of mass (CoM) feedback, i.e., by a linear combination of delayed (due to neural transmission times) CoM displacement, velocity, and acceleration. The level of muscle activity in relation to changes in CoM kinematics, i.e., the feedback gains, provides a metric of the sensitivity of the muscle response to CoM perturbations. RESEARCH QUESTION: Can CoM feedback explain reactive muscle activity in children with CP, yet with higher feedback gains than in TD children? METHODS: We perturbed standing balance by backward support-surface translations of different magnitudes in 20 children with CP and 20 age-matched TD children and investigated CoM feedback pathways underlying reactive muscle activity in the triceps surae and tibialis anterior. RESULTS: Reactive muscle activity could be reconstructed by delayed feedback of CoM kinematics and hence similar sensorimotor pathways might underlie balance control in children with CP and TD children. However, sensitivities of both agonistic and antagonistic muscle activity to CoM displacement and velocity were higher in children with CP than in TD children. The increased sensitivity of balance correcting responses to CoM movement might explain the stiffer kinematic response, i.e., smaller CoM movement, observed in children with CP. SIGNIFICANCE: The sensorimotor model used here provided unique insights into how CP affects neural processing underlying balance control. Sensorimotor sensitivities might be a useful metric to diagnose balance impairments.


Assuntos
Paralisia Cerebral , Adulto , Humanos , Criança , Paralisia Cerebral/complicações , Movimento/fisiologia , Músculo Esquelético/fisiologia , Equilíbrio Postural/fisiologia , Retroalimentação
20.
Gait Posture ; 109: 303-310, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38412683

RESUMO

BACKGROUND: People with degenerative cervical myelopathy are known to have impaired standing balance and walking abilities, but less is known about balance responses during walking. RESEARCH QUESTION: The aim of this project was to assess reactive balance impairments during walking in people with degenerative cervical myelopathy (PwDCM). We hypothesized that center of mass motion following perturbations would be larger in PwDCM and gluteus medius electromyographic amplitude responses would be decreased in PwDCM. METHODS: Reactive balance responses were quantified during unanticipated lateral pulls to the waist while treadmill walking. Walking biomechanics data were collected from 10 PwDCM (F=6) and 10 non-myelopathic controls (F=7) using an 8 camera Vicon System (Vicon MX T-Series). Electromyography was collected from lower limb muscles. Participants walked on an instrumented treadmill and received lateral pulls at random intervals and in randomized direction at 5% and 2.5% body mass. Participants walked at 3 prescribed foot placements to control for effects of the size of base of support. RESULTS: As compared with controls, the perturbation-related positional change of the center of mass motion (ΔCOM) was increased in PwDCM (p=0.001) with similar changes in foot placement (p>0.05). Change in gluteus medius electromyography, however, was less in PwDCM than in controls (p<0.001). SIGNIFICANCE: After experimentally controlling step width, people with mild-to-moderate degenerative cervical myelopathy at least 3 months following cervical spine surgery have impaired reactive balance during walking likely coupled with reduced gluteus medius electromyographic responses. Rehabilitation programs focusing on reactive balance and power are likely necessary for this population.


Assuntos
Doenças da Medula Espinal , Caminhada , Humanos , Caminhada/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia , Doenças da Medula Espinal/complicações , Equilíbrio Postural/fisiologia , Nádegas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA