Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Environ Res ; 223: 115083, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36529333

RESUMO

Coal mine water is usually recycled as supplementary water for aquatic ecosystems in arid and semiarid mining regions of China. To ensure ecosystem health, the coal mine water is rigorously treated using several processes, including reverse osmosis, to meet surface water quality standards. However, the potential environmental impacts of this management pattern on the ecological function of receiving water bodies are unclear. In this study, we built several microcosm water ecosystems to simulate the receiving water bodies. High-quality treated coal mine drainage was mixed into the model water bodies at different concentrations, and the sediment bacterial community response and functional changes were systematically investigated. The results showed that the high-quality coal mine drainage could still shape bacterial taxonomic diversity, community composition and structure, with a concentration threshold of approximately 50%. Moreover, both the Mantel test and the structural equation model indicated that the salinity fluctuation caused by the receiving of coal mine drainage was the primary factor shaping the bacterial communities. 10 core taxa in the molecular ecological network influenced by coal mine drainage were identified, with the most critical taxa being patescibacteria and g_Geothermobacter. Furthermore, the pathway of carbohydrate metabolism as well as signaling molecules and interactions was up-regulated, whereas amino acid metabolism showed the opposite trend. All results suggested that the complex physical-chemical and biochemical processes in water ecosystems may be affected by the coal mine drainage. The bacterial community response and underlying functional changes may accelerate internal nutrient cycling, which may have a potential impact on algal bloom outbreaks.


Assuntos
Ecossistema , Mineração , Bactérias , China , Carvão Mineral
2.
J Environ Manage ; 288: 112445, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33823442

RESUMO

Concentrations of genetic markers for antibiotic resistance genes (ARGs) were measured in the effluents of three Norwegian wastewater treatment plants (WWTPs) and in a receiving river upstream and downstream of the discharge point of one WWTP. Calculations based on mass balances were carried out to evaluate the impact of river flow rates and treatment effectivity on the WWTP's contribution to the load of genetic markers in the river. At average river flow rates, the WWTP effluent contributes 5-15% to the genetic marker load of the respective river. However, at minimum river flow rates, the WWTP effluent contributes 22-55% to the loads of different genetic markers. Scenarios of an improved or worsened removal of genetic markers in the WWTP showed that a further 1-log removal using additional treatment would be sufficient to improve considerably the river water quality with respect to genetic markers. Then, at an average flow rate, the contribution of the WWTP effluent to the load of the river would be less than 2%. However, in the case of low treatment effectivity or malfunction of the WWTP, the marker load of the river would increase dramatically. Even at average flow rate, 75-92% of the marker load would then originate from the WWTP. The results demonstrate the importance of considering the flow rates and hydrologic characteristics of the recipient water body when deciding on priorities regarding the upgrade of WWTPs for further removal of ARGs.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Genes Bacterianos , Rios , Águas Residuárias/análise , Poluentes Químicos da Água/análise
3.
Environ Monit Assess ; 191(2): 112, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30693376

RESUMO

Despite their proven reliability for revealing 'acceptable' degrees of toxicity in waste- and reclaimed waters, bioassays are rarely used to assess the toxicity of hazardous contaminants present in natural waters. In this study, we used organisms from different trophic levels to assess the toxicity of water samples collected from four different South Korean rivers. The main objective was to develop a multi-descriptor index of toxicity for undiluted river water. The responses of six test organisms (Aliivibrio fischeri, Pseudokirchneriella subcapitata, Heterocypris incongruens, Moina macrocopa, Danio rerio and Lemna minor) after laboratory exposure to water samples were considered for this index, as well as the frequency of teratologies in diatom assemblages. Each individual test was attributed a toxicity class and score (three levels; no toxicity = 0, low toxicity = 1, confirmed toxicity = 2) based on the organism's response after exposure and a total score was calculated. The proposed index also considers the number of test organisms that received the highest toxicity score (value = 2). An overall toxicity category was then attributed to the water sample based on those two metrics: A = no toxicity, B = slight toxicity, C = moderate toxicity; D = toxicity and E = high toxicity. The susceptibility of the test organisms varied greatly and the sensitivity of their response also differed among bioassays. The combined responses of organisms from different trophic levels and with different life strategies provided multi-level diagnostic information about the intensity and the nature of contamination.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Aliivibrio fischeri , Animais , Araceae , Bioensaio , Água Doce , Reprodutibilidade dos Testes , Rios , Testes de Toxicidade , Poluentes Químicos da Água/análise
4.
Ecotoxicol Environ Saf ; 149: 225-232, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29182968

RESUMO

Phytotoxicity tests using higher plants are among the most simple, sensitive, and cost-effective of the methods available for ecotoxicity testing. In the present study, a hydroponic-based phytotoxicity test using seeds of Lactuca sativa was used to evaluate the water quality of receiving waters and effluents near two industrial sites (Soyo and Daejon) in Korea with respect to the toxicity of 10 metals (As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, Zn) and phenol, and of the receiving waters and effluents themselves. First, the L. sativa hydroponic bioassay was used to determine whether the receiving water or effluents were toxic; then, the responsible toxicant was identified. The results obtained with the L. sativa bioassay ranked the EC50 toxicities of the investigated metal ions and phenol as: Cd > Ni > Cu > Zn > Hg > phenol > As > Mn > Cr > Pb > Fe. We found that Zn was the toxicant principally responsible for toxicity in Daejeon effluents. The Daejeon field effluent had a higher Zn concentration than permitted by the effluent discharge criteria of the Ministry of Environment of Korea. Our conclusion on the importance of Zn toxicity was supported by the results of the L. sativa hydroponic assay, which showed that the concentration of Zn required to inhibit root elongation in L. sativa by 50% (EC50) was higher in the Daejeon field effluent than that of pure Zn. More importantly, we proved that the L. sativa hydroponic test method can be applied not only as an alternative tool for determining whether a given waste is acceptable for discharge into public water bodies, but also as an alternative method for measuring the safety of aquatic environments using EC20 values, with respect to the water pollutants investigated (i.e., Cd, Cr, Cu, Pb, Mn, Hg, Ni, Zn, and phenol).


Assuntos
Lactuca/efeitos dos fármacos , Metais Pesados/toxicidade , Fenol/toxicidade , Raízes de Plantas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Hidroponia , Lactuca/crescimento & desenvolvimento , Metais Pesados/análise , Fenol/análise , Raízes de Plantas/crescimento & desenvolvimento , República da Coreia , Poluentes Químicos da Água/análise , Qualidade da Água
5.
Sci Total Environ ; 921: 171134, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401720

RESUMO

Sewage treatment plants (STPs) are primary sources of antibiotics in aquatic environments. However, limited research has been conducted on antibiotic attenuation in STPs and their downstream waters in low-urbanized areas. This study analyzed 15 antibiotics in the STP sewage and river water in the Zijiang River basin to quantify antibiotic transport and attenuation in the STPs and downstream. The results showed that 14 target antibiotics, except leucomycin, were detected in the STP sewage, dominated by amoxicillin (AMOX), ofloxacin, and roxithromycin. The total antibiotic concentration in the influent and effluent ranged from 158 to 1025 ng/L and 99.9 to 411 ng/L, respectively. The removal efficiency of total antibiotics ranged from 54.7 % to 75.7 % and was significantly correlated with total antibiotic concentration in the influent. The antibiotic emission from STPs into rivers was 78 kg/yr and 4.6 g/km2yr in the Zijiang River basin. The total antibiotic concentration downstream of the STP downstream was 23.6 to 213 ng/L and was significantly negatively correlated with the transport distance away from the STP outlets. Antibiotics may pose a high ecological risk to algae and low ecological risk to fish in the basin. The risk of AMOX and ciprofloxacin resistance for organisms in the basin was estimated to be moderate. This study established antibiotic removal and attenuation models in STPs and their downstream regions in a low-urbanized basin, which is important for simulating antibiotic transport in STPs and rivers worldwide.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Animais , Antibacterianos/análise , Esgotos/análise , Água , Monitoramento Ambiental , Amoxicilina , China , Poluentes Químicos da Água/análise
6.
Sci Rep ; 14(1): 14171, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898074

RESUMO

The tailwater from wastewater treatment plants serves as an important water resource in arid regions, alleviating the conflict between supply and demand. However, the effects of different tailwater discharge proportions on microbial community dynamics remain unclear. In this study, we investigated the effects of different tailwater discharge proportions on the water quality and microbial community characteristics of sediments in receiving water bodies under controlled conditions (WF-1, WF-2, WF-3, WF-4, and WF-5, containing 0% tailwater + 100% natural water, 25% tailwater + 75% natural water, 50% tailwater + 50% natural water, 75% tailwater + 25% natural water, and 100% tailwater + 0% natural water, respectively). Microbial co-occurrence networks and structural equation model were used to unveil the relationship between microbial communities and their shaping factors. Results showed that distinct microbial community compositions were found in the sediments with low- (< 50%) and high- (> 50%) proportions of tailwater. Specifically, WCHB1-41 and g_4-29-1, which are involved in organic degradation-related functions, were the key genera in the high-proportion cluster. A total of 21 taxa were more abundant in the low-proportion (< 50%) cluster than that in high-proportion (> 50%). Moreover, higher modularity was observed in the low-proportion. Total phosphorus directly affected while ammonia nitrogen indirectly affected the microbial community structure. Our findings support the distinct heterogeneity of microbial communities driven by tailwater discharge in receiving water bodies, and further confirmed that high-proportion tailwater depletes sensitive microbial communities, which may be avoided through scientific management.


Assuntos
Sedimentos Geológicos , Microbiota , Sedimentos Geológicos/microbiologia , Águas Residuárias/microbiologia , Microbiologia da Água , Bactérias/classificação , Bactérias/genética , Qualidade da Água
7.
J Hazard Mater ; 442: 130005, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179618

RESUMO

Discharged wastewater treatment plant (WWTP) effluents can contaminate receiving water bodies with human feces and alter the abundance of antibiotic resistance genes (ARGs). In this study, we examined the co-occurrence of ARGs, human fecal pollution indicator crAssphage, and antibiotics in human feces and a series of connected receiving water bodies affected by human feces, including water from different treatment units of a WWTP, river, lake, and tap waters. Results showed that crAssphage was detected in 68.2 % of the studied water bodies, confirming widespread human fecal contamination. Both ARG and crAssphage abundances exhibited a distance-decay effect from the emission source to the receiving environment. Interestingly, the detected ARG abundance in the water bodies was significantly correlated with crAssphage abundance but not with the residual antibiotic concentration, demonstrating that the presence of ARG could largely be explained by the extent of fecal pollution, with no clear signs of antibiotic selection. In addition, 14 ARGs co-shared by human feces and water bodies were significantly correlated with crAssphage. Furthermore, a close evolutionary relationship was observed between the blaTEM-1 gene from human feces and aquatic environments. These results imply a potential ARG exchange between human feces and receiving water bodies. Overall, this study provides important insights into the distribution and sources of ARGs in water bodies affected by human fecal contamination.


Assuntos
Antibacterianos , Poluição da Água , Humanos , Resistência Microbiana a Medicamentos/genética , Fezes , Poluição da Água/análise , Antibacterianos/farmacologia , Água , Águas Residuárias , Genes Bacterianos
8.
Water Res ; 226: 119282, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332295

RESUMO

Wastewater treatment plant (WWTP) effluent discharge could induce the resistome enrichment in the receiving water environments. However, because of the general lack of a robust antibiotic-resistant bacteria (ARB) identification method, the driving mechanism for resistome accumulation in receiving environment is unclear. Here, we took advantage of the enhanced ARBs recognition by nanopore long reads to distinguish the indigenous ARBs and the accumulation of WWTP-borne ARBs in the receiving water body of a domestic WWTP. A bioinformatic framework (named ARGpore2: https://github.com/sustc-xylab/ARGpore2) was constructed and evaluate to facilitate antibiotic resistance genes (ARGs) and ARBs identification in nanopore reads. ARGs identification by ARGpore2 showed comparable precision and recall to that of the commonly adopt BLASTP-based method, whereas the spectrum of ARBs doubled that of the assembled Illumina dataset. Totally, we identified 33 ARBs genera carrying 65 ARG subtypes in the receiving seawater, whose concentration was in general 10 times higher than clean seawater's. Notably we report a primary resistome intrusion caused by the revival of residual microbes survived from disinfection treatment. These WWTP-borne ARBs, including several animal/human enteric pathogens, contributed up to 85% of the receiving water resistome. Plasmids and class 1 integrons were reckoned as major vehicles facilitating the persistence and dissemination of ARGs. Moreover, our work demonstrated the importance of extensive carrier identification in determining the driving force of multifactor coupled resistome booming in complicated environmental conditions, thereby paving the way for establishing priority for effective ARGs mitigation strategies.


Assuntos
Nanoporos , Águas Residuárias , Animais , Humanos , Antibacterianos/farmacologia , Bactérias/genética , Genes Bacterianos , Metagenômica/métodos , Águas Residuárias/microbiologia , Água
9.
Sci Total Environ ; 847: 157563, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35907554

RESUMO

The study of the presence of antibiotics in the aquatic environment is a preliminary step to analyse their possible harmful effects on aquatic ecosystems. In order to monitor their occurrence in the aquatic environment, the European Commission established in 2015, 2018, and 2020 three Watch Lists of substances for Union-wide monitoring (Decisions (EU) 2015/495, 2018/840, and 2020/1161), where some antibiotics within the classes of macrolides, fluoroquinolones and penicillins were included. In the Basque coast, northern Spain, three macrolide antibiotics (erythromycin, clarithromycin, azithromycin) and ciprofloxacin were monitored quarterly from 2017 to 2020 (covering a period before and after the COVID19 outbreak), in water samples collected from two Waste Water Treatment Plants (WWTPs), and three control points associated with receiving waters (transitional and coastal water bodies). This work was undertaken for the Basque Water Agency (URA). The three macrolide antibiotics in water showed a frequency of quantification >65 % in the Basque coast, with higher concentrations in the WWTP emission stations than in receiving waters. Their frequency of quantification decreased from 2017 to 2020, as did the consumption of antibiotics in Spanish primary care since 2015. Ciprofloxacin showed higher frequencies of quantification in receiving waters than in wastewaters, but the highest concentrations were observed in the WWTP emission stations. Although consumption of fluoroquinolones (among which is ciprofloxacin) in primary care in the Basque Country has decreased in recent years, this trend was not observed in the waters sampled in the present study. On the other hand, concentrations of clarithromycin, azithromycin, and ciprofloxacin in receiving waters exceeded their respective Predicted No-Effect Concentrations, so they could pose an environmental risk. These substances are widely used in human and animal medicine, so, although only ciprofloxacin is included in the third Watch List, it would be advisable to continue monitoring macrolides in the Basque coast as well.


Assuntos
COVID-19 , Poluentes Químicos da Água , Antibacterianos/análise , Azitromicina , Ciprofloxacina/análise , Claritromicina , Ecossistema , Monitoramento Ambiental , Fluoroquinolonas/análise , Humanos , Penicilinas , Medição de Risco , Espanha , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
10.
Chemosphere ; 287(Pt 2): 132109, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34492414

RESUMO

The influx of rainfall runoff intensifies phase partition of the pollutant in receiving water bodies, and the phase partition plays an important role in the speciation transformation and spatial partition of pollutants. In this study, the Meishe River on Hainan Island, China, was adopted as the research area, and palladium (Pd) was selected as the target pollutant. The purpose of this study was to explore phase partition of Pd in receiving water bodies and the underlying influential mechanism. The partition coefficients (Kds) of Pd between water and suspended particulate matter in receiving water bodies and rainfall runoff were 0.74 (0.1 × 10-2 - 8.75) and 2.74 (0.5 × 10-2 - 15.70), respectively. These results indicated that Pd dominated the dissolved phase in the receiving water bodies and that Pd dominated the particulate phase in rainfall runoff. Variations in the Kd value of Pd in the receiving water bodies were relatively smooth over time during the precipitation events in May and June. There were no significant differences in phase partition of Pd between the receiving water bodies and rainfall runoff. The Kd value for Pd in the receiving water bodies showed a fluctuating upward trend over time during the precipitation events in August, and the difference in Kd values of Pd between the receiving water bodies and the rainfall runoff were large. Variations in the Kd value of Pd among sections of the receiving water bodies could be roughly divided into two categories, namely, U and inverted-U types. After rainfall runoff converged for 20-25 min, the Pd phase transitions were more frequent within 7 m downstream of the outfall. The Kd value of Pd in the receiving water bodies was correlated with pH, Eh, and total suspended solid (TSS), and the correlation coefficients were 0.52, -0.57, and 0.84, respectively (p < 0.05). Compared with rainfall runoff, pH, Eh, TSS had less influence on phase partition of Pd in receiving water bodies. This might be attributed to the dilution effect of natural water and the unique dynamic mechanism of rivers.


Assuntos
Movimentos da Água , Poluentes Químicos da Água , China , Monitoramento Ambiental , Paládio , Chuva , Água , Poluentes Químicos da Água/análise
11.
Data Brief ; 40: 107726, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34993289

RESUMO

The Bellecombe pilot site - SIPIBEL - was created in 2010 in order to study the characterisation, treatability and impacts of hospital effluents in an urban wastewater treatment plant. This pilot site is composed of: i) the Alpes Léman hospital (CHAL), opened in February 2012, ii) the Bellecombe wastewater treatment plant, with two separate treatment lines allowing to fully separate the hospital wastewater and the urban wastewater, and iii) the Arve River as the receiving water body and a tributary of the Rhône River and the Geneva aquifer. The database includes in total 48 439 values measured on 961 samples (raw and treated hospital and urban wastewater, activated sludge in aeration tanks, dried sludge after dewatering, river and groundwater, and a few additional campaigns in aerobic and anaerobic sewers) with 44 455 physico-chemistry values (including 15 pharmaceuticals and 14 related transformation products, biocides compounds, metals, organic micropollutants), 2 193 bioassay values (ecotoxicity), 1 679 microbiology values (including microorganisms and antibioresistance indicators) and 112 hydrobiology values.

12.
Environ Sci Pollut Res Int ; 28(21): 26684-26696, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33495951

RESUMO

Urban rainfall-runoff pollution is one of the main reasons for the deterioration of the receiving water quality. In this study, the lower reaches of the Meishe River on Hainan Island, China were adopted as the research area, and palladium (Pd) was selected as the target pollutant. The purpose of this study was to construct an input response model and to examine the Pd response relationship of receiving water bodies under multiple scenario changes of rainfall-runoff pollution combined with scenario analysis methods. The results showed that the mean absolute percent error (MAPE) and relative mean square error (RMSE) of the input response model were within 15%, which demonstrated the reliability of the model when applied to the simulation of the response of Pd in receiving water bodies to rainfall runoff. The dissolved Pd concentration in the receiving water body decreased in the following order: the moderate rain scenario > rainstorm scenario > the heavy rain scenario. The suspended Pd concentration in the receiving water body first increased and then decreased, and its decay rate was closely related to rainfall intensity and duration. Under the heavy rain and rainstorm scenarios, within 20 m downstream from the outfall, the occurrence time of the maximum suspended Pd concentration in the receiving water body was inversely proportional to the distance. The number of previous clear days was inversely proportional to the dissolved Pd concentration in the receiving water body and proportional to the suspended Pd concentration in the receiving water body. Under the short period of previous clear day scenario, the maximum suspended Pd concentration in each section of the receiving water body appeared earlier than that under the moderate and long periods of previous clear day scenarios.


Assuntos
Movimentos da Água , Poluentes Químicos da Água , China , Monitoramento Ambiental , Paládio , Chuva , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise
13.
Environ Sci Pollut Res Int ; 28(8): 10027-10038, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33164127

RESUMO

Palladium (Pd) is widely used in automotive catalytic converters to reduce toxic gas emissions. The input of Pd in the rainfall-runoff is an important contributing factor to the accumulation of Pd in receiving water bodies. In this study, the Meishe River in Haikou, Hainan Province, China, was used as the research area, and palladium (Pd) was selected as the target pollutant. This study explored the response of Pd in the receiving water body to rainfall-runoff and to analyze the influencing factors. The results showed that the dissolved Pd concentration in the receiving water body had a corresponding relationship with that in rainfall-runoff. The response of suspended Pd in the receiving water body to rainfall-runoff was closely related to the location of the drainage outlet. Compared with that of suspended Pd, the response of dissolved Pd in the receiving water body to that in the rainfall-runoff was more obvious. Seven meters downstream from the outfall was the most sensitive response distance of dissolved Pd in receiving water bodies to rainfall-runoff, and the response time was approximately 0-10 min. The suspended Pd at 3 m downstream from the outfall also had a certain response to the rainfall-runoff, and the response time was approximately 15-25 min. The response time of the suspended Pd in the receiving water body depended largely on the first flush ability of the runoff. There was a moderately positive correlation between the dissolved Pd and Cl- in the receiving water body (r = 0.687; p < 0.05). The effects of pH, Eh, and total suspended solids (TSS) on suspended Pd were reduced in the response process of the receiving water body. The synergistic effect of multiple factors increased the uncertainty of the Pd response.


Assuntos
Movimentos da Água , Poluentes Químicos da Água , China , Monitoramento Ambiental , Paládio , Chuva , Água , Poluentes Químicos da Água/análise
14.
Sci Total Environ ; 796: 148919, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34273824

RESUMO

There is a growing concern on the fate and the consequent ecological or health risks of antibiotics and antibiotic resistance genes (ARGs) in natural or artificial water environment. The effluent of wastewater treatment plants (WWTPs) has been reported to be an important source of antibiotics and ARGs in the environment. WWTP effluent could be discharged into surface water bodies or recycled, either of which could lead to different exposure risks. The impact of WWTP effluents on the levels of antibiotics and ARGs in effluent-receiving water bodies and the removal efficiency of antibiotics and ARGs in reclaimed wastewater treatment plants (RWTPs) were seldom simultaneously investigated. Thus, in this study, we investigated the occurrence of antibiotics and ARGs in four WWTP effluents, and their downstream effluent-receiving water bodies and RWTPs in seasons of low-water-level. The total concentrations of ofloxacin, norfloxacin, ciprofloxacin, roxithromycin, azithromycin, erythromycin, tetracycline, oxytetracycline, chlortetracycline, and sulfamethoxazole in the secondary effluents were 1441.6-4917.6 ng L-1. Ofloxacin had the highest concentration. The absolute and relative abundances of total ARGs (qnrD, qnrS, ermA, ermB, tetA, tetQ, sul1, and sul2) in the secondary effluents were 103-104 copies mL-1 and 10-4-10-2 ARG/16S rRNA. Sul1 and sul2 were the major species with the highest detection frequencies and levels. In most cases, WWTP effluents were not the major contributors to the levels and species of antibiotics and ARGs in the surface water bodies. Four RWTPs removed 43.5-98.9% of antibiotics and - 0.19-2.91 log of ARGs. Antibiotics and ARGs increased in chlorination, ozonation and filtration units. Antibiotics had significantly positive correlations with ARGs, biological oxygen demands, total phosphorus, total nitrogen, and ammonia nitrogen in the four effluent-receiving water bodies. In RWTPs, the total concentrations of antibiotics showed a significant positive correlation with the total abundance of ARGs.


Assuntos
Antibacterianos , Purificação da Água , Antibacterianos/análise , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , RNA Ribossômico 16S , Águas Residuárias/análise , Água
15.
Sci Total Environ ; 765: 142765, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33077229

RESUMO

The study of the presence in the aquatic environment of certain substances considered as contaminants of emerging concern (CEC) is a preliminary step to the analysis of the possible harmful effects on aquatic ecosystems and the establishment of the corresponding environmental quality standards. In order to monitor the occurrence of CECs in the aquatic environment, the European Commission established in 2015 and 2018 two watch-list of substances for Union-wide monitoring in the field of water policy (Decision (EU) 2015/495 and Decision (EU) 2018/840). In the coast of the Basque Country, southeast of the Bay of Biscay, 19 of these watch list substances were monitored quarterly from May 2017 to March 2019. Water samples were collected at the effluent of three wastewater treatment plants and five control points associated with receiving waters (transitional and coastal water bodies). The most frequently quantified substances were azithromycin (91%), imidacloprid (82%), clarithromycin (80%), diclofenac (78%) and erythromycin (73%), with frequencies of quantification higher in wastewaters (83-100%) than in receiving waters (70-85%). In general, concentrations in wastewater were also higher than in receiving waters, indicating a dilution effect in the environment. In receiving waters, six out of the nineteen substances monitored exceeded their respective Predicted No-Effect Concentrations: azithromycin (34%), imidacloprid (9%), 17ß-estradiol (E2) (9%), clarithromycin (7%), ciprofloxacin (7%), and diclofenac (5%); and therefore, their levels could pose an environmental risk.

16.
Huan Jing Ke Xue ; 41(3): 1368-1376, 2020 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608638

RESUMO

Organophosphate esters (OPEs) are ubiquitous in the environment and pose a potential threat to ecosystems and human health. A method for the determination of eight OPEs by ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS) was established. The recovery rates of eight target compounds with different solid-phase extraction columns, different eluents, and different eluent volumes were compared. The results showed that using ENVI-18 column enrichment, OPEs were eluted with 8 mL acetonitrile containing 25% (volume fraction) dichloromethane, and the labeled recovery rate of the target compound was 92.5%-102.2%. The recoveries of different matrix samples were 88.5%-116.1% and relative standard deviation was 1.7%-9.9%. The concentration range of 8 different detectable organophosphate esters in the effluent of sewage treatment plant is 85.9-235.4 ng·L-1 during the six-day sampling process, permissive river downstream of the six-day ΣOPEs average total concentration was 130.3 ng·L-1, higher than the 119.4 ng·L-1 upstream water concentration, but lower than the sewage treatment plant effluent concentration of total 162.5ng·L-1. The study shows that the sewage treatment plant cannot completely remove OPEs; for triethyl phosphate (TEP) and 3 (2-ethyl hexyl) phosphate ester (TEHP) there exists a negative removal phenomenon, whereas for other OPEs the removal rate was between 14.1% and 84.9%, and the total ΣOPEs removal rate by the sewage plant was 50.0%. The TPhP in the effluent of the sewage treatment plant has medium environmental risk (RQ>0.1), and other organophosphates have low environmental risk (RQ<0.1); however, the long-term mixing effects of organophosphate esters on the ecosystem of the receiving river should not be ignored.


Assuntos
Águas Residuárias , Poluentes Químicos da Água/análise , Pequim , Cromatografia Líquida , Ecossistema , Monitoramento Ambiental , Ésteres , Humanos , Organofosfatos , Medição de Risco , Espectrometria de Massas em Tandem , Água
17.
Sci Total Environ ; 737: 140219, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783843

RESUMO

The occurrence of phthalate esters (PAEs) and microplastics (MPs) was simultaneously investigated in four wastewater treatment plants (WWTPs), receiving water bodies and reclaimed water treatment processes (RWTPs) in winter and spring. Four PAEs (dimethyl phthalate, dibutyl phthalate, diisobutyl phthalate, and di(2-ethylhexyl)phthalate) were detected. The total concentrations of PAEs were 568.9-1847.5 ng/L in the four WWTP effluents and 39.9-1847.5 ng/L in the four receiving water bodies. Di(2-ethylhexyl)phthalate had the highest concentration among the PAEs. MPs were mostly in the form of granules and fragments with size <0.01 mm in the four WWTP effluents (276-1030 items/L) and receiving water bodies (103-4458 items/L). The four WWTP effluents were important sources of PAEs to the receiving water bodies in spring but were not likely to be the sources of MPs. The overall removal rates of PAEs and MPs were 47.7%-81.6% and 63.5%-95.4% in the four RWTPs. Low or negative removal rates of PAEs were observed in chlorination and ozonation. Clarification, filtration (except ultrafiltration) and reverse osmosis were the dominant processes, contributing 42.7%-69.2%, 25.3%-59.3%, and 22.6%-51.0%, respectively, of the MP removal in the RWTPs. According to the Spearman analysis results, the levels of PAEs and MPs had more significant correlations with the physicochemical parameters of water samples from the RWTPs (including the WWTP effluents) than those of the receiving water bodies. The results indicated that the levels of PAEs and MPs in surface waters could be significantly influenced by the surrounding environment.

18.
Huan Jing Ke Xue ; 40(7): 3249-3256, 2019 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854725

RESUMO

To determine the removal efficiency of typical antibiotics in Guiyang wastewater treatment plants (WWTPs) and the impact of effluent on aquatic organisms in receiving waters, nine antibiotics in the influent, effluent, and receiving water of two WWTPs in Guiyang City were investigated. The concentrations of antibiotics in the influent and effluent ranged from 0 to 835.60 ng·L-1 and 0 to 286.60 ng·L-1, respectively, and the concentration of ofloxacin (OFX) was highest. Its concentration in the influent was 835.60 ng·L-1 and 539.00 ng·L-1 and in the effluent was 11.74 ng·L-1 and 286.60 ng·L-1, respectively. The removal rate of antibiotics in the WWTPs ranged from -42.29% to 100%, and tetracycline (TC) was completely removed. The concentrations of antibiotics in the influent and effluent of the WWTPs in Guiyang City was less than in other regions of China and in other counties. Through the analysis of the antibiotics in the receiving waters, it was found that the concentrations of OFX were higher than other antibiotics, and the WWTPs effluent was one source of antibiotics in the receiving waters. OFX showed a high risk (RQ>1) for aquatic organisms in the receiving waters, as determined by an ecological risk assessment.


Assuntos
Antibacterianos/análise , Ofloxacino/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise , China , Cidades , Monitoramento Ambiental , Medição de Risco , Eliminação de Resíduos Líquidos
19.
Sci Total Environ ; 650(Pt 1): 1122-1130, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308800

RESUMO

A total of 58 samples were collected from hospitals, municipal wastewater treatment plants (WWTPs), a receiving water body (Dagu Drainage Canal, DDC), and adjacent farmland in Tianjin City, China, in May and November 2013 and were analyzed for five common ß-blockers (atenolol, sotalol, metoprolol, propranolol, and nadolol) to elucidate their source, occurrence and fate in a typical city in China. The profiles of the enantiomers of the ß-blockers in some samples were examined. Sotalol, metoprolol and propranolol were frequently detected, atenolol was less frequently detected, and nadolol was mostly not detected. Generally, the concentrations in hospital wastewaters occurred from

Assuntos
Antagonistas Adrenérgicos beta/análise , Monitoramento Ambiental , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Atenolol/análise , China , Metoprolol/análise , Propranolol/análise , Solo , Estereoisomerismo
20.
PeerJ ; 6: e5281, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065879

RESUMO

In the context of future aquaculture intensification, a longitudinal ten-year evaluation of the current traditional rainbow trout production in Ireland was performed. Publically available and independent data obtained from local authorities were gathered and analysed. Inlet and outlet concentrations of parameters such as BOD5, ammonium, nitrite, dissolved oxygen and pH for four consecutive flow-through fish farms covering the four seasons over a ten-year period (2005-2015) were analysed. The objectives of the study were (i) to characterize the impact of each fish farm on water quality in function of their respective production and identify any seasonal variability, (ii) to quantify the cumulative impact of the four farms on the river quality and to check if the self-purification capacity of the river was enough to allow the river to reach back its background levels for the analysed parameters, (iii) to build a baseline study for Ireland in order to extrapolate as a dataset for expected climate change and production intensification. For most of the parameter analysed, no significant impact of the fish farming activity on water quality/river quality was observed. These results, the first ones generated in Ireland so far, will have to be completed by a survey on biodiversity and ecotoxicology and compared after production intensification and the likely future introduction of water treatment systems on the different sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA