Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Ecotoxicol Environ Saf ; 281: 116617, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38905940

RESUMO

Hydrogen sulphide (H2S) is considered an immunotoxicant, and its presence in the water can influence the mucosal barrier functions of fish. However, there is a significant knowledge gap on how fish mucosa responds to low environmental H2S levels. The present study investigated the consequences of prolonged exposure to sub-lethal levels of H2S on the mucosal defences of Atlantic salmon (Salmo salar). Fish were continuously exposed to two levels of H2S (low: 0.05 µM; and high: 0.12 µM) for 12 days. Unexposed fish served as control. Molecular and histological profiling focused on the changes in the skin, gills and olfactory rosette. In addition, metabolomics and proteomics were performed on the skin and gill mucus. The gene expression profile indicated that the gills and olfactory rosette were more sensitive to H2S than the skin. The olfactory rosette showed a dose-dependent response, but not the gills. Genes related to stress responses were triggered at mucosal sites by H2S. Moreover, H2S elicited strong inflammatory responses, particularly in the gills. All mucosal organs demonstrated the key molecular repertoire for sulphide detoxification, but their temporal and spatial expression was not substantially affected by sub-lethal H2S levels. Mucosal barrier integrity was not considerably affected by H2S. Mucus metabolomes of the skin and gills were unaffected, but a matrix-dependent response was identified. Comparing the high-concentration group's skin and gills mucus metabolomes identified altered amino acid biosynthesis and metabolism pathways. The skin and gill mucus exhibited distinct proteomic profiles. Enrichment analysis revealed that proteins related to immunity and metabolism were affected in both mucus matrices. The present study expands our knowledge of the defence mechanisms against H2S at mucosal sites in Atlantic salmon. The findings offer insights into the health and welfare consequences of sub-lethal H2S, which can be incorporated into the risk assessment protocols in salmon land-based farms.


Assuntos
Brânquias , Sulfeto de Hidrogênio , Salmo salar , Pele , Poluentes Químicos da Água , Animais , Salmo salar/genética , Sulfeto de Hidrogênio/toxicidade , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Poluentes Químicos da Água/toxicidade , Mucosa/efeitos dos fármacos , Muco/metabolismo , Muco/efeitos dos fármacos
2.
Ecotoxicol Environ Saf ; 270: 115897, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38176182

RESUMO

Atlantic salmon (Salmo salar) might encounter toxic hydrogen sulphide (H2S) gas during aquaculture production. Exposure to this gas can be acute or chronic, with heightened levels often linked to significant mortality rates. Despite its recognised toxicity, our understanding of the physiological implications of H2S on salmon remains limited. This report details the mucosal and systemic physiological consequences in post-smolt salmon reared in brackish water at 12 ppt after prolonged exposure to elevated H2S levels over 4 weeks. The fish were subjected to two concentrations of H2S: 1 µg/L (low group) and 5 µg/L (high group). An unexposed group at 0 µg/L served as the control. Both groups exposed to H2S exhibited incremental mortality, with cumulative mortality rates of 4.7 % and 16 % for the low and high groups, respectively. Production performance, including weight and condition factors, were reduced in the H2S-exposed groups, particularly in the high group. Mucosal response of the olfactory organ revealed higher tissue damage scores in the H2S-exposed groups, albeit only at week 4. The high group displayed pronounced features such as increased mucus cell density and oedema-like vacuoles. Transcriptome analysis of the olfactory organ unveiled that the effects of H2S were more prominent at week 4, with the high group experiencing a greater magnitude of change than the low group. Genes associated with the extracellular matrix were predominantly downregulated, while the upregulated genes primarily pertained to immune response. H2S-induced alterations in the metabolome were more substantial in plasma than skin mucus. Furthermore, the number of differentially affected circulating metabolites was higher in the low group compared to the high group. Five core pathways were significantly impacted by H2S regardless of concentration, including the phenylalanine, tyrosine, and tryptophan biosynthesis. The plasma levels of phenylalanine and tyrosine were reduced following exposure to H2S. While there was a discernible distinction in the skin mucus metabolomes among the three treatment groups, only one metabolite - 4-hydroxyproline - was significantly impacted by H2S. Furthermore, this metabolite was significantly reduced in the plasma and skin mucus of H2S-exposed fish. This study underscores that prolonged exposure to H2S, even at concentrations previously deemed sub-lethal, has discernible physiological implications that manifest across various organisational levels. Given these findings, prolonged exposure to H2S poses a welfare risk, and thus, its presence must be maintained at low levels (<1 µg/L) in salmon land-based rearing systems.


Assuntos
Sulfeto de Hidrogênio , Salmo salar , Animais , Aquicultura , Fenilalanina , Tirosina
3.
Microb Cell Fact ; 22(1): 142, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528356

RESUMO

Malachite Green (MG) dye of the triphenylmethane group is a toxic compound used in the aquaculture industry as an antifungal agent, however, it can accumulate in fish and pose toxicity. The present work aims to remove MG in Microbial Fuel Cell (MFC) as a sustainable and eco-friendly solution. Out of six samples, the highest malachite green degradation was obtained by a sample obtained from Robiki tannery site in agar plates in 24 h at 37 °C. Robiki sample was used to inoculate the anodic chamber in Microbial Fuel cell, the resulting average electricity production was 195.76 mV for two weeks. The decolorization average was almost 88%. The predominant bacteria responsible for MG decolorization and electricity production were identified using 16S rRNA as Shewanella chilikensis strain MG22 (Accession no. OP795826) and formed a heavy biofilm on the anode. At the end of the decolorization process, MG was added again for re-use of water. The results showed efficiency for re-use 3 times. To ensure the sterility of treated water for re-use, both UV and filter sterilization were used, the latter proved more efficient. The obtained results are promising, MFC can be used as recirculating aquaculture system (RAS). The same aquaculture water can be treated multiple times which provides a sustainable solution for water conservation.


Assuntos
Fontes de Energia Bioelétrica , Shewanella , Animais , Fontes de Energia Bioelétrica/microbiologia , RNA Ribossômico 16S/genética , Eletricidade , Eletrodos , Aquicultura , Água
4.
Sensors (Basel) ; 23(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36905041

RESUMO

It is crucial to monitor the status of aquaculture objects in recirculating aquaculture systems (RASs). Due to their high density and a high degree of intensification, aquaculture objects in such systems need to be monitored for a long time period to prevent losses caused by various factors. Object detection algorithms are gradually being used in the aquaculture industry, but it is difficult to achieve good results for scenes with high density and complex environments. This paper proposes a monitoring method for Larimichthys crocea in a RAS, which includes the detection and tracking of abnormal behavior. The improved YOLOX-S is used to detect Larimichthys crocea with abnormal behavior in real time. Aiming to solve the problems of stacking, deformation, occlusion, and too-small objects in a fishpond, the object detection algorithm used is improved by modifying the CSP module, adding coordinate attention, and modifying the part of the structure of the neck. After improvement, the AP50 reaches 98.4% and AP50:95 is also 16.2% higher than the original algorithm. In terms of tracking, due to the similarity in the fish's appearance, Bytetrack is used to track the detected objects, avoiding the ID switching caused by re-identification using appearance features. In the actual RAS environment, both MOTA and IDF1 can reach more than 95% under the premise of fully meeting real-time tracking, and the ID of the tracked Larimichthys crocea with abnormal behavior can be maintained stably. Our work can identify and track the abnormal behavior of fish efficiently, and this will provide data support for subsequent automatic treatment, thus avoiding loss expansion and improving the production efficiency of RASs.


Assuntos
Perciformes , Animais , Peixes , Aquicultura/métodos
5.
Metabolomics ; 16(4): 49, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32274659

RESUMO

INTRODUCTION: The production of the whiteleg shrimp Litopenaeus vannamei now accounts for approximately 75% of the total shrimp production in Indonesia. The techniques used to produce whiteleg shrimp in Indonesia are still dominated by conventional rearing strategies using open-pond systems, which often contribute to unpredictable culture performance and weak sustainability. Alternative production strategies of closed aquaculture systems, including the recirculating aquaculture system (RAS) and hybrid zero water discharge-recirculating aquaculture system (hybrid system), have been developed and implemented for higher productivity, stability and sustainability of whiteleg shrimp grow-out production in Indonesia. Despite the positive aspects of the application of closed aquaculture systems in shrimp aquaculture, the differences in the characteristics of shrimp grown in closed RAS and hybrid systems compared to open-pond systems remain unclear. OBJECTIVE: This study aims to investigate the differences in the metabolite profiles of shrimp grown in intensive closed aquaculture systems, including an RAS and hybrid system, compared to those of shrimp grown in a semi-intensive, open, earthen pond system by means of non-targeted GC-MS metabolite profiling. METHODS: Shrimp cultured in the closed systems (RAS and hybrid system) and an open system (pond) were harvested and subjected to GC-MS non-targeted metabolomics analysis. A total of 112 metabolites were annotated from shrimp samples and subjected to principal component analysis (PCA). RESULTS: The metabolites annotated from GC-MS mainly included organic compounds, proteinogenic and non-proteinogenic amino acids, sugars, nucleosides and fatty acids. The results of principal component analysis showed several metabolites with high variable importance in projection (VIP) scores, including shikimic acid, ß-alanine, uric acid, hypoxanthine, inosine, homocysteine, methionine, phenylalanine, tryptophan and lysine, as the main metabolites differentiating the shrimp grown in the three production systems. CONCLUSION: Our findings showed that shrimp cultured in different aquaculture systems exhibited distinct metabolite profiles, and the metabolites showing high VIP scores, including shikimic acid, ß-alanine, uric acid, hypoxanthine, inosine, homocysteine, methionine, phenylalanine, tryptophan and lysine, may serve as candidate markers to indicate the differences in shrimp from different production systems.


Assuntos
Aquicultura , Metabolômica , Penaeidae/metabolismo , Água/metabolismo , Animais
6.
Fish Shellfish Immunol ; 92: 756-764, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31288098

RESUMO

Tiger puffer (Takifugu rubripes) is one of the major aquaculture fish species in China due to its high economic value. In this study, the transcriptions of hepatic antioxidant enzyme, stress, apoptosis, and immune-related genes of sub-adult tiger puffers (Takifugu rubripes) were evaluated under two different rearing systems [offshore sea cage aquaculture system (OSCS) and recirculating aquaculture system (RAS)]. Results showed that the mRNA expression levels of the antioxidant enzyme (mn-sod, cu/zn-sod, gpx, and gr) and stress-related (hsp70 and hsp90) genes of male tiger puffers reared in the OSCS were significantly higher than female fish reared in the OSCS and fish reared in the RAS. The anti-apoptotic gene bcl2 exhibited the similar results. By contrast, the mRNAs of the pro-apoptotic genes (p53, caspase8, caspase9, and caspase3) of male tiger puffers reared in the OSCS were significantly lower than female fish reared in the OSCS and fish reared in the RAS. Male tiger puffers reared in the OSCS displayed significantly higher complement components (c3) and inflammatory cytokine (il-6) mRNAs, whereas B-cell activating factor (baf) and tumor necrosis factor α (tnf-α) mRNAs remained unchanged. Meanwhile, the mRNA levels of pro-apoptotic (bax, caspase8) and immunity-related (c3, il-6 and il-7) genes of female tiger puffers reared in the OSCS were significantly lower and higher than female fish reared in the RAS, respectively. In conclusion, the hepatic antioxidant, anti-apoptosis, and innate immunity of tiger puffers reared in the OSCS were better than fish in the RAS, male tiger puffer obtained the best values. These results expand the knowledge on the combined RAS and OSCS alternative aquaculture model for tiger puffers and aid in their management in captive.


Assuntos
Apoptose/genética , Aquicultura/métodos , Expressão Gênica/imunologia , Imunidade Inata/genética , Estresse Oxidativo/genética , Takifugu/genética , Animais , Feminino , Perfilação da Expressão Gênica , Masculino , RNA Mensageiro/genética , Takifugu/imunologia
7.
Ecotoxicol Environ Saf ; 184: 109631, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31514079

RESUMO

Microplastics and antibiotic resistance genes (ARGs) are two kinds of emerging contaminants with frequent detection in coastal regions. However, rare information on co-occurrence of microplastics and ARGs in coastal recirculating aquaculture system (RAS) is available. This study performed field sampling and laboratory analysis to investigate the distribution of microplastics and ARGs in a typical RAS farm. The results showed that microplastics were detected in all water samples with the abundances ranging from 58 to 72 items/m3. Absolute abundances of total 10 ARGs in water samples ranged from 3.24 × 105 to 7.83 × 105 copies/mL while those on microplastic samples were in the range of 1.59 × 109-1.83 × 109 copies/g. Microbial communities of microplastics and water showed significant difference at both phylum and genus levels. Microbial community diversity of microplastics was higher than that of water. ARGs including tetG, qnrS, sul1, sul2, and ermF possessed relatively more active relationships with bacterial community in water and on microplastics of the RAS farm. The results suggested that microplastics might be an important reservoir of ARGs in RAS farms. The findings of this study will provide useful information on pollution control and environmental management for both microplastics and ARGs in coastal aquaculture systems.


Assuntos
Aquicultura , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Plásticos/análise , Poluentes Químicos da Água/análise , Bactérias/efeitos dos fármacos , Bactérias/genética , Microbiota/efeitos dos fármacos , Microbiota/genética
8.
Aquaculture ; 503: 198-206, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30778266

RESUMO

An experimental recirculating aquaculture system was constructed under ambient seawater conditions to compare microbial community diversity of nitrifying and denitrifying biofilters that were derived from a commercial inoculum used for aquarium applications. Next generation sequencing revealed distinct and diverse microbial communities in samples analyzed from the commercial inoculant and the denitrification and nitrification biofilters. In all samples, communities were represented by a few dominant operational taxonomic units (OTUs). Bacteria having the capacity to carry out ammonia and nitrite oxidation were more abundant in the nitrification biofilter. Similarly, the proportion of the bacterial taxa known to carry out heterotrophic and autotrophic denitrification and participate in sulfur cycling were found in the denitrification bioreactor, and likely originated from the ambient environmental water source. Our results indicated that environmental seawater can be a favorable enhancement to the bacterial consortium of recirculating aquaculture systems biofilters.

9.
J Environ Manage ; 245: 255-263, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31158677

RESUMO

The present research attempted to address a key industry-level question amidst Recirculating Aquaculture System (RAS) waste throughput and aquaponics limitations controversies. Nutrient throughput of three operational RAS farms with progressive size proportions (16, 130, 1400 m3), aquaculture intensity (24, 62, 86 kg stock m-3) were studied. Results suggest - daily total efflux and potency of nutrients in effluents should not be generalized, extreme variability exists. Consistencies of nutrients in wastewater (except N, Ca and Na) are higher than in sludge. Asynchrony between patterns of nutrient loading and effluent nutrient concentrations exist for secondary macronutrients and micronutrients (S, Mg, Fe, Cu, Zn, B, Mo). Macronutrient output generally increases with increasing farm size and culture intensity but same cannot be said for micronutrients. Deficiency in wastewater can be completely masked using raw or mineralized sludge, usually containing 3-17 times higher nutrient concentrations. RAS effluents (wastewater and sludge combined) contain adequate N, P, Mg, Ca, S, Fe, Zn, Cu, Ni to meet most aquaponic crop needs. K is generally deficient requiring a full-fledged fertilization. Micronutrients B, Mo are partly sufficient and can be easily ameliorated by increasing sludge release. The presumption surrounding 'definite' phyto-toxic Na levels in RAS effluents should be reconsidered - practical solutions available too. No threat of heavy metal accumulation or discharge was observed. Most of the 'well-known' operational influences failed to show any significant predictable power in deciding nutrient throughput from RAS systems. Calibration of nutrient output from operational RAS farms may be primarily focused around six predictors we identified. Despite inherent complexity of effluents, the conversion of RAS farms to semi-commercial aquaponics should not be deterred by nutrient insufficiency or nutrient safety arguments. Incentivizing RAS farm wastes through semi-commercial aquaponics should be encouraged - sufficient and safe nutrients are available.


Assuntos
Aquicultura , Nutrientes , Fazendas , Esgotos , Águas Residuárias
10.
Glob Chang Biol ; 23(6): 2141-2148, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27762490

RESUMO

Exponentially rising CO2 (currently ~400 µatm) is driving climate change and causing acidification of both marine and freshwater environments. Physiologists have long known that CO2 directly affects acid-base and ion regulation, respiratory function and aerobic performance in aquatic animals. More recently, many studies have demonstrated that elevated CO2 projected for end of this century (e.g. 800-1000 µatm) can also impact physiology, and have substantial effects on behaviours linked to sensory stimuli (smell, hearing and vision) both having negative implications for fitness and survival. In contrast, the aquaculture industry was farming aquatic animals at CO2 levels that far exceed end-of-century climate change projections (sometimes >10 000 µatm) long before the term 'ocean acidification' was coined, with limited detrimental effects reported. It is therefore vital to understand the reasons behind this apparent discrepancy. Potential explanations include 1) the use of 'control' CO2 levels in aquaculture studies that go beyond 2100 projections in an ocean acidification context; 2) the relatively benign environment in aquaculture (abundant food, disease protection, absence of predators) compared to the wild; 3) aquaculture species having been chosen due to their natural tolerance to the intensive conditions, including CO2 levels; or 4) the breeding of species within intensive aquaculture having further selected traits that confer tolerance to elevated CO2 . We highlight this issue and outline the insights that climate change and aquaculture science can offer for both marine and freshwater settings. Integrating these two fields will stimulate discussion on the direction of future cross-disciplinary research. In doing so, this article aimed to optimize future research efforts and elucidate effective mitigation strategies for managing the negative impacts of elevated CO2 on future aquatic ecosystems and the sustainability of fish and shellfish aquaculture.


Assuntos
Aquicultura , Dióxido de Carbono , Mudança Climática , Oceanos e Mares , Animais , Ecossistema , Água do Mar
12.
Biodegradation ; 27(2-3): 165-78, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27125529

RESUMO

A solid-phase denitrification (SPD) reactor packed with poly (3-hydroxybutyrate-co-3-hydroxyvalerate) as a carbon source was incorporated into a recirculating aquaculture system (RAS) to remove accumulated nitrate. Bacterial community structures in different parts of the RAS, including biofilter unit, SPD reactor, and culture water, were analyzed using Illumina MiSeq sequencing technology. The data showed that nitrate levels decreased remarkably in the RAS connected with SPD reactor (RAS-DR). In contrast, nitrate levels increased continuously in the conventional RAS without SPD reactor (RAS-CK). Biofilter unit and culture water in RAS-DR developed lower species richness and higher bacterial community diversity than that in RAS-CK. The bacterial community structure of RAS was significantly affected by the SPD process and the changes included an increase in the proportion of Proteobacteria and Firmicutes and a decrease in Nitrospira abundance in RAS-DR. Firmicutes was the most abundant phylum (56.9 %) and mainly consisted of Clostridium sensu stricto (48.3 %) in SPD reactor.


Assuntos
Aquicultura , Bactérias/metabolismo , Reatores Biológicos , Desnitrificação , Nitratos/metabolismo , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Nitratos/isolamento & purificação
13.
J Environ Sci (China) ; 43: 147-152, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27155419

RESUMO

Nitrate-nitrogen (NO3(-)-N) always accumulates in commercial recirculating aquaculture systems (RASs) with aerobic nitrification units. The ability to reduce NO3(-)-N consistently and confidently could help RASs to become more sustainable. The rich dissolved oxygen (DO) content and sensitive organisms stocked in RASs increase the difficulty of denitrifying technology. A denitrifying process using biologically degradable polymers as an organic carbon source and biofilm carrier was proposed because of its space-efficient nature and strong ability to remove NO3(-)-N from RASs. The effect of dissolved oxygen (DO) levels on heterotrophic denitrification in fixed-film reactors filled with polycaprolactone (PCL) was explored in the current experiment. DO conditions in the influent of the denitrifying reactors were set up as follows: the anoxic treatment group (Group A, average DO concentration of 0.28±0.05mg/L), the low-oxygen treatment DO group (Group B, average DO concentration of 2.50±0.24mg/L) and the aerated treatment group (Group C, average DO concentration of 5.63±0.57mg/L). Feeding with 200mg/L of NO3(-)-N, the NO3(-)-N removal rates were 1.53, 1.60 and 1.42kg/m(3) PCL/day in Groups A, B and C, respectively. No significant difference in NO3(-)-N removal rates was observed among the three treatments. It was concluded that the inhibitory effects of DO concentrations lower than 6mg/L on heterotrophic denitrification in the fixed-film reactors filled with PCL can be mitigated.


Assuntos
Reatores Biológicos/microbiologia , Nitratos/análise , Oxigênio , Poluentes Químicos da Água/análise , Biofilmes , Desnitrificação , Ciclo do Nitrogênio , Poliésteres
14.
Sci Total Environ ; 953: 176097, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39245379

RESUMO

A novel near-zero-discharge recirculating aquaculture system was successfully set up and ran for six months or above. A uniquely designed and 3D printed poly (lactic acid) (PLA) structure was applied as carbon source. The system achieved over 50 % daily nitrogen removal capability and maintained a low NO3-N level of <0.5 mg/L. Steady water quality was observed throughout the experiment period. Microbial distribution was studied and top abundant microorganisms and their general functions in carbon and nitrogen utilization were discussed. Denitrification and L-glutamate formation were identified as two main nitrogen pathways. The cooccurrence network connecting various genera and multiple functions was revealed. Subtilisin was one important PLA degrading enzymes in the system.


Assuntos
Aquicultura , Carbono , Nitrogênio , Poliésteres , Impressão Tridimensional , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Desnitrificação
15.
Front Physiol ; 15: 1403391, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938746

RESUMO

Monopterus albus is one of China's renowned and superior aquaculture species, with its seedlings mainly sourced from wild capture. One of the bottlenecks in M. albus aquaculture is the high mortality rate and low feeding initiation rate from stocking wild fry to the initiation of feeding. In production, trash fish is commonly used to wean M. albus juveniles onto feeding. In this study, we introduced three other natural feeds, earthworms (EW), yellow mealworms (YMW), and fly maggots (FM), with frozen trash fish (TF) serving as the control group, to evaluate the effects of these four natural feeds on the survival rate, feeding initiation, antioxidant enzymes activity, and body composition of M. albus juveniles under recirculating water aquaculture conditions. The experiment comprised four treatments, each with three replicates. Each replicate consisted of stocking 150 M. albus juveniles weighing 10.02 ± 0.89 g in size, raised for 5 weeks. The survival rate of the YMW group was 73.33%-85.33%, which was significantly higher than that of the other three bait groups (p < 0.05). The four bait groups showed no significant differences in final body weight and specific growth rate (SGR) (p > 0.05). The EW group showed the highest final body weight, with an average SGR of 2.73, whereas the YMW group had an average SGR of 1.87. The average daily feeding amount was significantly higher in EW and YMW groups than in the other two groups (p < 0.05). The percentage of feeding amount to fish weight in the EW group reached 7.3% in the fifth week. After 5 weeks of cultivation, NO2 --N content was significantly higher in the waters of the TF and EW groups than in the waters of the FM and YMW groups (p < 0.05), there was no significant difference in TAN content among the treatment groups (p > 0.05). Liver malondialdehyde content was significantly higher in the TF group than in the other bait groups (p < 0.05). GSH-Px activity was significantly higher in the EW group than in the FM group and YMW group. No significant differences in SOD and CAT activity and T-AOC were observed among the bait groups (p > 0.05). The increase in crude protein content was significantly higher in the TF group than in the FM group, but the increase in crude ash content was significantly lower in the TFgroup. In conclusion, Tenebrio molitor could potentially serve as one of the alternative feeds during the initial stages of M. albus juveniles stocking.

16.
Water Res ; 252: 121218, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330713

RESUMO

The structure and function of the water microbial community can change dramatically between different rearing modes. Yet investigations into the relationships between microbial community and water quality remain obscure. We provide the first evidence that rearing modes alter bacterial community and water quality in the rearing water of the mud crab (Scylla paramamosain) larvae. The juveniles in the recirculating aquaculture system (RAS) had a higher viability than those in the water exchange system (WES). RAS had the significantly lower levels of total ammonia nitrogen (TAN), NH3, NO2--N, total nitrogen (TN), total dissolved solids (TDS), and chemical oxygen demand than those of WES. The number of significantly different amplicon sequence variants between rearing modes increased as the larvae developed. NH3, TAN, TDS, NO2--N, and TN were closely related to the late alterations in water bacterial community. Both the FAPROTAX tool and quantitative PCR analysis showed enhanced nitrogen cycling functional potential of water bacterial community of RAS. Random forest analysis identified the enriched water bacteria especially heterotrophic bacteria such as Phaeodactylibacter, Tenacibaculum, and Hydrogenophaga, which were vital in removing nitrogenous compounds via simultaneous nitrification and denitrification. Notably, RAS could save 18.5 m3 of seawater relative to WES in larviculture on the scale of 2.5 m3. Together, these data indicate that RAS could function as microbial community and water quality management strategy in the larviculture of crab.


Assuntos
Braquiúros , Microbiota , Animais , Qualidade da Água , Dióxido de Nitrogênio , Aquicultura , Bactérias/genética , Nitrogênio
17.
Water Res ; 255: 121476, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38503181

RESUMO

Industrial mariculture, a vital means of providing high quality protein to humans, is a potential source of microplastics (MPs) which have recently received increasing attention. This study investigated the occurrence and distribution of microplastics in feed, source water and recirculating aquaculture system (RAS) with long & short operating times as well as in fish from typical industrial mariculture farms in China. Results showed that microplastics occurred in all samples with the average concentration of 3.53 ± 1.39 particles/g, 0.70 ± 0.17 particles/L, 1.53 ± 0.21 particles/L and 2.21 ± 0.62 particles/individual for feed, source water, RAS and fish, respectively. Microplastics were mainly fiber in shape, blue in color and 20-500 µm in size. Compared with short operated RAS, long operating time led to higher microplastic concentration in RAS, especially that of microplastic in 20-500 µm, granular and blue. Regardless of short or long operating time, microplastics in RAS mainly gathered in culture tank, tank before microfilter and fixed-bed biological filter, and the microfilter removed efficiently the microplastic with the shape of film, granule, fragment as well as those with size > 1000 µm. As for the polymer types, polyamide (PA, 71.9 %) and polyethylene terephthalate (PET, 65.7 %) dominated in feed and source water, respectively, which may be the reason for the high proportion of PA (38.8 % and 26.4 %) and PET (31.8 % and 30.2 %) in RAS and fish. In addition, polypropylene (PP) was also detected in RAS (18.7 %) and fish (22.6 %), indicating that other plastic facilities such as PP brush carrier also made a contribution. Positive matrix factorization (PMF) model revealed three sources of MP in RAS, namely plastic facilities, industrial sewage and plastic packaging products. Our results provided a theoretical basis for the management of MP in RAS.

18.
Materials (Basel) ; 17(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39063793

RESUMO

Recirculating aquaculture systems (RASs) offer significant advantages in aquaculture by markedly decreasing water usage and increasing culture density. A vital component within a RAS is the filler material, which serves as a surface for microbial colonization. Effective microbial treatment is crucial for the efficient operation of a RAS as it assists in purifying the wastewater generated within the system. Nevertheless, traditional fillers often show low efficiency in biofilm formation. The commercial silicon carbide used in this study is a foam ceramic filter with a density of about 0.4-0.55 g/cm3, a number of holes of about 10, and a through porosity of 80.9%, with a diameter of about 5 cm. This research investigates the utilization of a titanium dioxide-silicon carbide (TiO2-SiC) composite filler to improve the purification efficiency of ammonia nitrogen and chemical oxygen demand (COD) in aquaculture wastewater. The study involved the application of titanium dioxide films onto the surface of silicon carbide to produce the composite filler. This method takes advantage of the dipole interaction between titanium dioxide and microorganisms, which enhances biofilm culturing efficiency on the silicon carbide surface. The performance of three different fillers was assessed for their ability to purify aquaculture wastewater. Results showed that the TiO2-SiC composite filler was 1.67 times more effective in removing COD and 1.07 times more effective in removing ammonia nitrogen compared to using silicon carbide alone. These results demonstrate that the incorporation of a titanium dioxide coating substantially boosts the microbial colonization efficiency of silicon carbide, thereby enhancing the overall wastewater purification efficiency in RAS.

19.
Water Res ; 266: 122353, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39241380

RESUMO

Antimicrobial resistance (AMR) is a global challenge that has impacted aquaculture and surrounding marine environments. In this study, a year-long monitoring program was implemented to evaluate AMR in two different aquaculture settings (i.e., open cage farming, recirculating aquaculture system (RAS)) and surrounding marine environment within a tropical coastal region. The objectives of this study are to (i) investigate the prevalence and co-occurrence of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), antibiotics (AB) and various associated chemical compounds at these study sites; (ii) explore the contributing factors to development and propagation of AMR in the coastal environment; and (iii) assess the AMR risks from different perspectives based on the three AMR determinants (i.e., ARB, ARGs and AB). Key findings revealed a distinct pattern of AMR across the different aquaculture settings, notably a higher prevalence of antibiotic-resistant Vibrio at RAS outfalls, suggesting a potential accumulation of microorganisms within the treatment system. Despite the relative uniform distribution of ARGs across marine sites, specific genes such as qepA, blaCTX-M and bacA, were found to be abundant in fish samples, especially from the RAS. Variations in chemical contaminant prevalence across sites highlighted possible anthropogenic impacts. Moreover, environmental and seasonal variations were found to significantly influence the distribution of ARGs and chemical compounds in the coastal waters. Hierarchical cluster analysis that was based on ARGs, chemical compounds and environmental data, categorized the sites into three distinct clusters which reflected strong association with location, seasonality and aquaculture activities. The observed weak correlations between ARGs and chemical compounds imply that low environmental concentrations may be insufficient for resistance selection. A comprehensive risk assessment using methodologies such as the multiple antibiotic resistance (MAR) index, comparative AMR risk index (CAMRI) and Risk quotient (RQ) underscored the complexity of AMR risks. This research significantly contributes to the understanding of AMR dynamics in natural aquatic systems and provides valuable insights for managing and mitigating AMR risks in coastal environments.

20.
Mar Environ Res ; 197: 106413, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507984

RESUMO

The diversity, composition and performance of microbial communities within constructed wetlands (CW) were markedly influenced by spatio-temporal variations. A pilot-scale integrated vertical-flow constructed wetland (IVCW) as the biological purification unit within a recirculating aquaculture system (RAS) was established and monitored in this study. The investigation aimed to elucidate the responses of community structure, co-occurrence networks, and assembly mechanisms of the microbial community to spatial and temporal changes. Spatially, all a-diversity indices and microbial networks complexity were significantly higher in the upstream pool of the IVCW than in the downstream pool. Temporally, the richness increased over time, while the evenness showed a decreasing trend. The number of nodes and edges of microbial networks increased over time. Notably, the stable pollutant removal efficiencies were observed during IVCW operations, despite a-diversity and bacterial community networks exhibited significant variations across time. Functional redundancy emerged as a likely mechanism contributing to the stability of microbial ecosystem functions. Null model and neutral model analyses revealed the dominance of deterministic processes shaping microbial communities over time, with deterministic influences being more pronounced at lower a-diversity levels. DO and inorganic nitrogen emerged as the principal environmental factor influencing microbial community dynamics. This study provides a theoretical foundation for the regulation of microbial communities and environmental factors within the context of IVCW.


Assuntos
Microbiota , Áreas Alagadas , Águas Residuárias , Bactérias , Aquicultura , Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA