Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474463

RESUMO

Developing a green, low-carbon, and circular economic system is the key to achieving carbon neutrality. This study investigated the organics removal efficiency in a three-dimensional electrode reactor (3DER) constructed from repurposed industrial solid waste, i.e., Mn-loaded steel slag, as the catalytic particle electrodes (CPE). The CPE, a micron-grade material consisting primarily of transition metals, including Fe and Mn, exhibited excellent electric conductivity, catalytic ability, and recyclability. High rhodamine B (RhB) removal efficiency in the 3DER was observed through a physical modelling experiment. The optimal operating condition was determined through a single-factor experiment in which 5.0 g·L-1 CPE and 3 mM peroxymonosulfate (PMS) were added to a 200 mL solution of 10 mM RhB under a current intensity of 0.5 A and a 1.5 to 2.0 cm distance between the 2D electrodes. When the initial pH value of the simulated solution was 3 to 9, the RhB removal rate exceeded 96% after 20 min reaction. In addition, the main reactive oxidation species in the 3DER were determined. The results illustrated that HO• and SO4•- both existed, but that the contribution of SO4•- to RhB removal was much lower than that of HO• in the 3DER. In summary, this research provides information on the potential of the 3DER for removing refractory organics from water.

2.
Waste Manag Res ; 41(10): 1584-1593, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37154233

RESUMO

Heterogeneous combinations of organic compounds (humic acid (HA) and fulvic acid) are the prime factor for the high concentration of colour and chemical oxygen demand (COD) in semi-aerobic stabilized landfill leachate. These organics are less biodegradable and cause a severe threat to environmental elements. Microfiltration and centrifugation processes were applied in this study to investigate the HA removal from stabilized leachate samples and its corresponding interference with COD and colour. The three-stage extraction process recovered a maximum of 1412 ± 2.5 mg/L (Pulau Burung landfill site (PBLS) leachate), 1510 ± 1.5 mg/L (Alor Pongsu landfill site (APLS leachate) at pH 1.5 and 1371 ± 2.5 mg/L (PBLS) and 1451 ± 1.5 mg/L (APLS) of HA (about 42% of the total COD concentration) at pH 2.5, which eventually indicates the process efficiency. Comparative characteristics analysis of recovered HA by scanning electron microscopy, energy-dispersive X-ray, X-ray photoelectron spectroscopy, and Fourier transform infrared significantly indicate the existence of identical elements in the recovered HA compared with the previous studies. The higher reduction (around 37%) in ultraviolet (UV) absorbance values (UV254 and UV280) in the final effluent indicates the elimination of aromaticity and conjugated double-bond compounds from leachate. Moreover, 36 and 39% COD and 39 and 44% colour removal exhibit substantial interference.


Assuntos
Substâncias Húmicas , Poluentes Químicos da Água , Substâncias Húmicas/análise , Análise da Demanda Biológica de Oxigênio , Cor , Poluentes Químicos da Água/análise
3.
Waste Manag Res ; 41(5): 1004-1013, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36472338

RESUMO

Landfill leachate contains a large amount of refractory organic matter, which will cause harm to the environment if not appropriately treated. In this study, the refractory organic matter in landfill leachate has been treated by in situ electrogenerated H2O2 combined with an Fe0 Fenton-like process, aiming to explore a cleaner and more efficient process for leachate treatment. The results showed that the current, initial pH and oxygen flow rate have significant influences on H2O2 production. The current and oxygen flow rate are positively correlated with H2O2 production, and neutral conditions are more favourable. Under the conditions of a current of 200 mA, an initial pH of 7.0 and an oxygen flow rate of 0.3 L/min, H2O2 production reached 2.81 mM, the current efficiency was close to 80% and the highest removal efficiency of organic matter reached 40.70%. The absorbance at 280 nm (E280) decreased from 0.1669 to 0.1180, and the ratios E240/E420, E250/E365 and E300/E400 in the UV and visible regions changed from 0.7825, 5.4492 and 0.2422 to 1.3135, 7.3745 and 0.2966, respectively. The maximum fluorescence intensities due to humic-like acid and fulvic-like acid substances decreased from 1275 and 1246 to 595.9 and 711.0, respectively. Spectral analysis further showed that the complex structure of refractory organic matter in the landfill leachate was obviously destroyed, and the relative content of humus decreased significantly. This study may provide a theoretical basis for the effective treatment of refractory organic matter in landfill leachate by in situ electrogenerated H2O2 combined with a Fenton-like process.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/análise , Oxigênio , Solo , Oxirredução
4.
Environ Res ; 183: 109249, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32311906

RESUMO

Leachate concentrates, an effluent produced from nanofiltration and/or reverse osmosis, contains a high amount of salts and dissolved organics especially refractory organics. Thus, the treatment of leachate concentrates would consume high energy or a large amount of chemicals. The present study is to develop an effective treatment method by using coupled electrochemical methods with the least possible energy consumption. The leachate concentrates was pretreated by electrocoagulation (EC), with aluminum or iron electrodes as anodes, to decrease the dissolved organic content. EC with Al electrode was found to be more efficient by consuming 1.25 kWh/m3 energy to remove 70% of total organic carbon (TOC). EC effluent was further subjected to a novel simultaneous electro-oxidation and in-situ peroxone process, which used a Ti-based nickel and antimony doped tin dioxide (NATO) as anode and a carbon nanotube coated carbon-polytetrafluoroethylene (CNT-C/PTFE) as cathode for oxygen reduction reaction (ORR). Compared with a traditional EO with cathode for hydrogen evolution reaction (HER-EO), ORR-EO obtained higher efficiency and an energy consumption of 26.25 kWh/m3, which was much lower than 35.5 kWh/m3 for HER-EO. Results showed that after ORR-EO, a final TOC of 57.3 mg/L was obtained. Thus, EC in tandem with ORR-EO process has an excellent capability and economic merit in the field of treating leachate concentrates.


Assuntos
Eletrocoagulação , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Eletrodos , Peróxido de Hidrogênio , Ferro , Oxirredução
5.
Chemosphere ; 354: 141754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508464

RESUMO

The emission of recalcitrant wastewater poses serious threats to the environment. In this study, an integrated approach combining electrocatalytic oxidation (EC) for pretreatment and microbial fuel cells (MFC) for thorough pollutant degradation is proposed to ensure efficient degradation of target substances, with low energy input and enhanced bioavailability of refractory organics. When phenol was used as the pollutant, an initial concentration of 2000 mg/L phenol solution underwent EC treatment under constant current-exponential attenuation power supply mode, resulting in a COD removal rate of 54.53%, and a phenol degradation rate of 99.83%. Intermediate products such as hydroquinone and para-diphenol were detected in the solution. After subsequent MFC treatment, only minor amounts of para-diphenol were left, and the degradation rate of phenol and its intermediate products reached 100%, with an output power density of 110.4 mW m-2. When coal chemical wastewater was used as the pollutant, further examination of the EC-MFC system performance showed a COD removal rate of 49.23% in the EC section, and a 76.21% COD removal rate in the MFC section, with an output power density of 181.5 mW m-2. Microbiological analysis revealed typical electrogenic bacteria (such as Pseudomonas and Geobacter), and specific degrading functional bacteria (such as Stenotrophomonas, Delftia, and Brevundimonas). The dominant microbial communities and their proportions adapted to environmental changes in response to the variation of carbon sources.


Assuntos
Fontes de Energia Bioelétrica , Poluentes Ambientais , Fontes de Energia Bioelétrica/microbiologia , Águas Residuárias , Eletricidade , Fenol , Fenóis , Eletrodos
6.
Bioresour Technol ; 395: 130390, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301944

RESUMO

In this study, H2O2 (0.1 ‰) and NH2-MIL-101(Fe)-driven (150 mg/L) photo-Fenton-coupled anammox were proposed to simultaneously improve the removal efficiency of nitrogen and humic acid. Long-term experiments showed that the total nitrogen removal efficiency was increased by the photo-Fenton reaction to 91.9 ± 1.5 % by altering the bioavailability of refractory organics. Correspondingly, the total organic carbon removal efficiency was significantly increased. Microbial community analyses indicated that Candidatus_Brocadia maintained high activity during photo-Fenton reaction and was the most abundant genus in the reactor. Dissimilatory nitrate reduction to ammonium process and denitrification process were enhanced, resulting in reduced NO3--N production. The establishment of electron transfer between microorganisms and NH2-MIL-101 (Fe) improved the charge separation efficiency of the quantum dots and increased the intracellular adenosine triphosphate content of anammox bacteria. These results indicated that photo-Fenton-anammox process promoted the removal of nitrogen and refractory organics in one reactor which had good economic value and application prospects.


Assuntos
Compostos de Amônio , Desnitrificação , Estruturas Metalorgânicas , Oxirredução , Nitrogênio , Peróxido de Hidrogênio , Oxidação Anaeróbia da Amônia , Elétrons , Reatores Biológicos/microbiologia , Esgotos
7.
J Hazard Mater ; 455: 131514, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37150099

RESUMO

The removal of diverse refractory organics from complex industrial wastewater continues to be a challenge. Although biological treatments are commonly employed, only partial degradation and increasing emergence of nitrogenous compounds, i.e., nitrate (NO3) and nitrite (NO2) would pose severe toxicity to the intact microbes. Herein, an efficient biocatalytic microbial ecosystem (BCME) was designed over a porous bio-carrier made of a functional polyurethane sponge (FPUS). The BCME comprised a unique set of organisms (RODMs) with novel metabolism, efficiently degrading highly-concentrated aromatics. Strategic enzyme immobilization was utilized to introduce in-situ production and aggregation of the oxidation and reduction enzymes (In-PAOREs) onto the FPUS, thereby ensuing sustained functions of the RODMs community. The developed FPUS@RODMs@In-PAOREs system was found to enhance the refractory organics removal rate to 4 kg/m3/day, and it would be attributed to the enzymatic catalysis of refractory organics (2000 mg/L) accompanied by the removal of COD (1200 mg/L) and nitrogenous compounds (200 mg/L). Besides, the fluctuating concentration of extra polymeric substances (EPS) played a dual role through enhancing adhesion, promoting the development of a functional microbial ecosystem, and creating an EPS gradient within the FPUS bio-carrier. This differential distribution of enzymes was established to significantly boost biocatalysis activity reaching 400 U/g VSS.


Assuntos
Ecossistema , Poliuretanos , Biocatálise , Águas Residuárias , Compostos Orgânicos , Reatores Biológicos , Nitrogênio
8.
Waste Manag ; 172: 117-126, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37913689

RESUMO

Membrane concentrated landfill leachate has been characterized by complex component and degradation resistant. In this work, a new catalytic ceramic membrane (CuCM) was developed by in-situ integrating copper oxide in the membrane and used in combination with peroxymonosulfate (PMS) for leachate concentrate treatment. The performance and key factors of the CuCM/PMS system were systematically studied. Results showed that the CuCM/PMS system experienced promising efficiency in the pH range of 3 âˆ¼ 11. The highest COD, TOC, UV254 and Color removal efficiency achieved by the CuCM-3/PMS system under the conditions of pH = 7.0 and CPMS = 10 mM, which reached up to 63.4%, 50.5%, 75.1% and 90.2%, respectively. The possible mechanism of leachate remediation was proposed and non-free radicals (Cu(Ⅲ), 1O2) played an important role in the CuCM/PMS system for leachate remediation. The fluorescence spectrum and GC-MS analysis showed that the refractory organics with a high molecular weight in the leachate concentrate were mostly oxidized into small molecules, which also alleviated the membrane fouling. In addition, the slight decrease in COD (7.4%) and TOC (9.7%) after 6 cycles revealed the good catalytic stability and reusability of CuCM-3/PMS. This work provides a feasible strategy for leachate concentrate remediation via a nonradical oxidation process.


Assuntos
Peróxidos , Poluentes Químicos da Água , Oxirredução , Cerâmica , Poluentes Químicos da Água/análise
9.
Chemosphere ; 332: 138871, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37172628

RESUMO

With rapid industrial development, millions of tons of industrial wastewater are produced that contain highly toxic, carcinogenic, mutagenic compounds. These compounds may consist of high concentration of refractory organics with plentiful carbon and nitrogen. To date, a substantial proportion of industrial wastewater is discharged directly to precious water bodies due to the high operational costs associated with selective treatment methods. For example, many existing treatment processes rely on activated sludge-based treatments that only target readily available carbon using conventional microbes, with limited capacity for nitrogen and other nutrient removal. Therefore, an additional set-up is often required in the treatment chain to address residual nitrogen, but even after treatment, refractory organics persist in the effluents due to their low biodegradability. With the advancements in nanotechnology and biotechnology, novel processes such as adsorption and biodegradation have been developed, and one promising approach is integration of adsorption and biodegradation over porous substrates (bio-carriers). Regardless of recent focus in a few applied researches, the process assessment and critical analysis of this approach is still missing, and it highlights the urgency and importance of this review. This review paper discussed the development of the simultaneous adsorption and catalytic biodegradation (SACB) over a bio-carrier for the sustainable treatment of refractory organics. It provides insights into the physico-chemical characteristics of the bio-carrier, the development mechanism of SACB, stabilization techniques, and process optimization strategies. Furthermore, the most efficient treatment chain is proposed, and its technical aspects are critically analysed based on updated research. It is anticipated that this review will contribute to the knowledge of academia and industrialist for sustainable upgradation of existing industrial wastewater treatment plants.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Adsorção , Esgotos/química , Nitrogênio , Carbono , Purificação da Água/métodos , Poluentes Químicos da Água/química , Eliminação de Resíduos Líquidos/métodos
10.
Bioresour Technol ; 371: 128601, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36632852

RESUMO

The aim of this study was to remove the refractory organics from high-temperature anaerobic digestate food waste effluent by the coupling system of hydrolysis-acidification and denitrification. Iron-based materials (magnetite, zero-valent iron, and iron-carbon) were used to enhance the performance of thermophilic hydrolysis-acidification. Compared with the control group, magnetite had the best strengthening effect, increasing volatile fatty acids concentration and fluorescence intensity of easily biodegradable organics in the effluent by 47.6 % and 108.4 %, respectively. The coupling system of magnetite-enhanced thermophilic hydrolysis-acidification and denitrification achieved a nitrate removal efficiency of 91.2 % (influent NO3--N was 150 mg L-1), and reduced the fluorescence intensity of refractory organics by 33.8 %, compared with influent. Microbiological analysis indicated that magnetite increased the relative abundance of thermophilic hydrolytic acidifying bacteria, and coupling system enriched some genera simultaneously removing nitrate and refractory organics. This study provided fresh information on refractory organics and nitrogen removal of thermophilic wastewater biologically.


Assuntos
Eliminação de Resíduos , Eliminação de Resíduos Líquidos , Desnitrificação , Óxido Ferroso-Férrico , Alimentos , Hidrólise , Anaerobiose , Nitratos , Reatores Biológicos , Nitrogênio , Ferro , Concentração de Íons de Hidrogênio , Esgotos/microbiologia
11.
Water Environ Res ; 94(11): e10801, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36307975

RESUMO

The removal efficiency and mechanism of the ultraviolet/nanoscale Fe0 /H2 O2 (UV/nFe0 /H2 O2 ) system for refractory organics in membrane bioreactor effluent were investigated. The most effective removal of organics was achieved at initial pH = 3.0, H2 O2 dosage = 50 mM, nFe0 dosage = 1.0 g/L, and UV power = 15 W, with a reaction time of 60 min. Under these conditions, the absorbance at 254 nm, chromaticity, and total organic carbon removal efficiencies were 65.13%, 79.67%, and 61.51%, respectively, and the aromaticity, humification, molecular weight, and polymerization of organics were all significantly reduced. The surface morphology and elemental valence analysis of nano zero-valent iron (nFe0 ) before and after the reaction revealed the formation of iron-based (hydrated) oxides, such as Fe2 O3 , Fe3 O4 , FeOOH, and Fe (OH)3 , on the surface of the nFe0 . Refractory organics were removed by Fenton-like reactions in the homogeneous and heterogeneous adsorption-precipitation of iron-based colloids. At the same time, UV radiation accelerated the formation of Fe2+ on the nFe0 surface and promoted the Fe3+ /Fe2+ redox cycle to a certain extent, enhancing the removal of refractory organics. The results provide a theoretical basis for the application of the UV/nFe0 /H2 O2 system to remove refractory organics in the effluent produced by the biological treatment of landfill leachate. PRACTITIONER POINTS: The UV/nFe0 /H2 O2 process is effective in refractory organics removal in leachate treatment. Humus in leachate was largely destroyed and mineralized by the UV/nFe0 /H2 O2 process. Active nFe0 material participated in the Fenton-like process and was promoted by UV. The effects of nFe0 material and UV introduction were investigated.


Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/química , Raios Ultravioleta , Peróxido de Hidrogênio/química , Ferro/química , Oxirredução
12.
J Hazard Mater ; 434: 128923, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35447532

RESUMO

Recently, carbon nanotubes coated carbon black and polytetrafluoroethylene (CNTs-C/PTFE) gas diffusion electrode was used as an air-cathode in an electro-oxidation (EO) system for effectively generating hydrogen peroxide (H2O2) through a 2-electron oxygen reduction reaction (ORR). This ORR-EO system not only lowered applied voltage and conserved energy, but the synergistic peroxone (O3/H2O2) reaction could increase hydroxyl radicals (•OH) generation for organics elimination. However, a significant proportion of H2O2 was left in the effluent of ORR-EO, which was a loss of resources and energy. In this study, a Fenton-like reaction for in-situ H2O2 decomposition to generate active oxidation species was inserted by introducing MnO2 into the cathodic catalyst layer, and the sole MnO2/CNTs-C/PTFE air-cathode could accomplish 90% of phenol degradation. When MnO2/CNTs-C/PTFE air-cathode combined with Ti/NATO anode in an ORR-EO system, all anodic oxidation, Fenton-like reaction, and peroxone took place to successfully generate •OH and singlet oxygen (1O2). Over 95% of TOC in phenol and landfill leachate bio-effluent was effectively eliminated, with 20% energy savings compared to the ORR-EO with CNTs-C/PTFE air cathode.

13.
Chemosphere ; 303(Pt 3): 135157, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35640692

RESUMO

The novel cascaded catalytic ozonation-enhanced coagulation process (FeCeAC/O3-PAC) was developed with much success towards second effluent organic matter (EfOM) in chemical industrial wastewater. Compared with the conventional techniques, FeCeAC/O3-PAC exhibited remarkable performances in the advanced removal of EfOM. The characteristics of EfOM and interactivities of reaction process played the crucial roles. Especially, the removal rate constant of soluble microbial products (SMPs) with FeCeAC/O3-PAC exceeded 55.38% versus FeCeAC/O3. The outstanding synergistic effect was contributed to the enhanced generation of active oxygen species by FeCeAC and PAC, which increased the content of oxygen-containing functional groups of EfOM and thus facilitated the interaction between PAC and EfOM. As the result, the larger-sized flocs could be formed and separated easily. Herein, this work found a far more effective way to remove EfOM especially low-coagulability refractory organics (LCRO) in chemical sewage plant.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Ozônio/química , Esgotos/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos
14.
Water Res ; 212: 118082, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35123382

RESUMO

Lignin, a biological resource with great potential, can be as high as ∼16% of the total organics in the waste activated sludge (WAS). This work therefore aims to fill the knowledge gap about the effect of lignin on short-chain fatty acids (SCFAs) production from anaerobic fermentation of sludge. Experimental results showed that lignin promoted rather than inhibited SCFAs production. Specifically, the presence of 15% lignin promoted the SCFAs production from 129.1 ± 6.5 to 223.14 ± 7.8 mg COD/g VSS compared with the control, and the proportion of acetic increased by 61.8%, while that of propionic decreased by 44.9%. Mechanism exploration revealed that lignin improved the solubilization of biodegradable substrates due to its hydrophobic characteristics. In addition, lignin enhanced the acidogenesis process, possibly by perfecting the electron transfer chain in the fermentation system, and the quinone structure in lignin may compete electrons with methanogens to inhibit the consumption of SCFAs. Microbiological analysis showed that the abundance of microorganisms related to acidogenesi, especially the acetogenesis, including Proteiniclasticum sp., Acetoanaerobium sp., in the fermenter with lignin increased, which caused the community to shift towards specialized and diverse SCFAs production.


Assuntos
Lignina , Esgotos , Anaerobiose , Ácidos Graxos Voláteis , Fermentação , Concentração de Íons de Hidrogênio
15.
Environ Sci Pollut Res Int ; 29(1): 332-348, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34669132

RESUMO

The sludge resource utilization and the high value-added development are environmentally friendly means for sludge treatment. With its rich organic substances and metals content, sludge can replace activated carbon and become a widely used carbon-based material, such as sludge-based activated carbon (SBAC). Meanwhile, as a heterogeneous catalyst, sludge-based catalyst (SBC) can solve the requirements of traditional Fenton catalysts for pH, metal ion leaching, and catalyst recycling. In this paper, combining the properties of SBAC/SBCs, the characteristics of the three methods of activation, support, and hydrothermal preparation of SBAC/SBCs are reviewed. In general, it is necessary to select an appropriate preparation method based on pollutants and environmental treatment goals. Furthermore, compared with other catalysts, SBC heterogeneous oxidation has obvious advantages in refractory organic pollutants. And the reaction mechanism usually involves SO4·-, ·OH, O2·-, and 1O2 processes. Finally, some possible directions for future research involving environmentally friendly SBAC/SBCs are proposed.


Assuntos
Esgotos , Purificação da Água , Catálise , Carvão Vegetal , Oxirredução , Tecnologia , Águas Residuárias
16.
Sci Total Environ ; 818: 151672, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34793791

RESUMO

Azo dyes in wastewater have great threats to environment and human health. White-rot fungi (WRF) have broad-spectrum potential for such refractory organics bioremediation; however, their applications are largely restrained by the poor viability owning to microbial invasion under non-sterile conditions. In this study, short-term pre-exposure to silver ion (Ag+) was demonstrated to be a practical, economic, and green method to enhance the perdurability of azo dyes decoloration by WRF Phanerochaete chrysosporium under non-sterile conditions. In control (without Ag+ pre-exposure), decoloration deactivated since cycle 7 (<10%), whereas in Ag+ pre-exposure groups, the decoloration ratios remained 91.5%-94.7% after 7 cycles. Variations in decoloration-related extracellular lignin enzyme activities were consistent with the decoloration effectiveness. The enhanced decoloration capability in Ag+ pre-exposure groups under non-sterile conditions could be ascribed to the selectively antimicrobial action by Ag+. The released Ag+ from the self-assembled silver nanoparticles (AgNPs) could selectively "stimulate" the proliferation and viability of P. chrysosporium, and simultaneously inhibit the growths of invasive microorganisms. The pyrosequencing results indicated that genus Sphingomonas (24.1%-31.3%) was the main invasive bacteria in Ag+ pre-exposure groups after long-term operation owing to the AgNPs passivation. As control, the invasive fungi (Asterotremella humicola) and bacteria (Burkholderia spp.) occurred in control after short-term operation, and genus Burkholderia (74.9%) dominated after long-term operation, leading to decoloration deactivation. Overall, these findings offer a new insight into the bio-nano interactions between WRF and invasive microorganisms in response to Ag+ or biogenic AgNPs, and could extend WRF application perspective under non-sterile conditions in future.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Phanerochaete , Anti-Infecciosos/metabolismo , Biodegradação Ambiental , Fungos , Humanos , Nanopartículas Metálicas/toxicidade , Phanerochaete/metabolismo , Prata/metabolismo
17.
Sci Total Environ ; 848: 157737, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35926627

RESUMO

A combined process of anaerobic digestion (UASB), shortcut nitrification-denitrification (A/O), and semi-anoxic co-metabolism (operated by an up-flow semi-anoxic sludge bed; USSB) was constructed for the treatment of old landfill leachate (>10 years). The performance and mechanism of refractory organics degradation by the combined process (UASB-A/O-USSB) were investigated. The results showed that the semi-anoxic co-metabolism contributes 57 % of the totally degraded refractory organics. Specific microorganisms and their corresponding metabolic functions drive the degradation of refractory organics in each unit of the UASB-A/O-USSB process. In detail, organics with simple molecular structures were preferentially degraded by anaerobic digestion and shortcut denitrification, whereas those with complex structures were subsequently degraded in the oxic tanks and USSB reactor by shortcut nitrification and semi-anoxic co-metabolism. The structural equation model showed that the combined process of shortcut nitrification and semi-anoxic co-metabolism had a better effect on the degradation of recalcitrant organics than the single process. These findings provide information on how refractory organics are metabolically degraded in a combined process.


Assuntos
Poluentes Químicos da Água , Reatores Biológicos , Desnitrificação , Nitrogênio , Esgotos/química , Poluentes Químicos da Água/metabolismo
18.
Environ Technol ; : 1-14, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36039399

RESUMO

Refractory substances (humus) and salts (chloride (Cl-) and sulphate (SO42-) ions) remain in the biotreated landfill leachate treatment, and it is necessary to carry out further treatments by a suitable method before discharge. In this study, the effect and operational mechanism of a combination of the coagulation Fe0/H2O2 and ultra-high lime aluminium (UHLA) processes for the treatment of refractory organic substances and salts in the leachate effluent of a semi-aerobic aged refuse biofilter (SAARB) were investigated. The results showed that polyferric sulphate is a relatively efficient coagulant comparing to FeCl3, Al2(SO)4, and polyaluminium chloride. The Fe0/H2O2 process further removed refractory organics from wastewater, achieving 49.8% of total organic carbon removed. Further treatment by the UHLA process was carried. The results demonstrated that the amount of precipitant, reaction duration, and temperature had a significant impact on the Cl- and SO42- removals. After three treatments, the cumulative SO42- and Cl- removal efficiencies were 98% and 80%, respectively. The SO42- and Cl- were removed in the form of precipitates such as UHLA, specific components of which included calcium alumina, Fremy's salt of calcium, aluminium chloride, and calcium hydroxide. Overall, the UV254, CN, Cl-, and SO42- removal efficiencies from the SAARB effluent were 94.08%, 98.73%, 79.96%, and 98.44%, respectively, for the combined coagulation Fe0/H2O2 and UHLA processes. Therefore, the combined processes could effectively remove residual pollutants in the biologically-treated landfill leachate, and the study provides a useful reference for the removal of refractory organic matter and salts in landfill leachate.

19.
Water Environ Res ; 94(1): e1677, 2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34897880

RESUMO

In practice, mature landfill leachate and incineration (young) leachate are mixed to improve the biodegradability and enhance biological treatment performance. However, the ratio of mature-to-young leachates greatly influences MBR treatment efficiency and microbial community structure. This study investigated the treatment efficiency and microbial community structure of full-scale MBR systems operated under two mix ratios, mature leachate: young leachate = 7:3 (v/v, denoted as LL) and 3:7 (v/v, denoted as IL). LL group showed lower Cl- and COD concentrations but a higher aromatic organic content comparing to IL group, and the COD and UV254 removals for LL were significantly lower than those for IL by MBR treatment. Microbial community structures were similar in both groups at phylum level, with dominant phyla being Proteobacteria (23.8%-32.3%), Bacteroidetes (15.25%-20.7%), Chloroflexi (10.5%-23.1%), and Patescibacteria (9.9%-13.2%). However, the richness and diversity of LL group were lower, and differences were observed at lower taxonomy levels. Results indicated that salinity mainly changed the structure of microbial community, resulting in greater abundance of salt-tolerant microbials, while refractory organics affected microbial community structure, and also led to decreased diversity and metabolic activity. Therefore, in mixed leachates biological treatment, a higher young leachate ratio is recommended for better organics removal performance. PRACTITIONER POINTS: The trade-off between refractory organics and salinity in mixed leachate treatment should be paid attention. Refractory organics reduced alpha and functional diversities of microorganisms. Mixed leachate with a higher young leachate ratio reached a better organic removal.

20.
Environ Pollut ; 274: 115800, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33234369

RESUMO

In this work, two deep subsurface wastewater infiltration systems (SWISs) were constructed and fed with domestic sewage (control system, S1) and mixed wastewater consisting of old landfill leachate and domestic sewage (experimental system, S2). S1 and S2 exhibited favorable removal efficiencies, with TP (98.8%, 98.7%), COD (87.6%, 86.9%), NH4+-N (99.8%, 99.9%) and TN (99.2%, 98.9%). Even when increasing the pollutant load in S2 by adding old landfill leachate, the almost complete removal performance could be maintained in terms of low effluent concentrations and even increased in terms of load removal capabilities, which included COD (19.4, 25.9 g∙m-2·d-1), NH4+-N (8.2, 19.9 g∙m-2·d-1), TN (8.9, 20.6 g∙m-2·d-1). To investigate the transformation of dissolved organic matter along depth, Three-Dimensional Excitation Emission Matrix fluorescence spectroscopy combined with Fluorescence Regional Integration analysis was applied. The results showed that PⅠ,n and PⅡ,n (the proportions of biodegradable fractions) increased gradually from 6.59% to 21.8% at S2_20 to 10.8% and 27.7% at S2_110, but PⅢ,n and PⅤ,n (the proportions of refractory organics) declined from 23.1% to 27.8% at S2_20 to 21.1% and 16.4% at S2_110, respectively. In addition, high-throughput sequencing technology was employed to observe the bacterial community at different depths, and the predicted functional potential of the bacterial community was analyzed by PICRUSt. The results showed that the genera Flavobacterium, Pseudomonas, Vogesella, Acinetobacter and Aquabacterium might be responsible for refractory organic degradation and that their products might serve as the carbon source for denitrifiers to achieve simultaneous nitrate and refractory organic removal. PICRUSt further demonstrated that there was a mutual response between refractory organic degradation and denitrification. Overall, the combined treatment of domestic sewage and old leachate in rural areas by SWIS is a promising approach to achieve comprehensive treatment.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Reatores Biológicos , Desnitrificação , Nitrogênio/análise , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA