Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.824
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 178(5): 1260-1272.e14, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442410

RESUMO

Infectious disease is both a major force of selection in nature and a prime cause of yield loss in agriculture. In plants, disease resistance is often conferred by nucleotide-binding leucine-rich repeat (NLR) proteins, intracellular immune receptors that recognize pathogen proteins and their effects on the host. Consistent with extensive balancing and positive selection, NLRs are encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define a nearly complete species-wide pan-NLRome in Arabidopsis thaliana based on sequence enrichment and long-read sequencing. The pan-NLRome largely saturates with approximately 40 well-chosen wild strains, with half of the pan-NLRome being present in most accessions. We chart NLR architectural diversity, identify new architectures, and quantify selective forces that act on specific NLRs and NLR domains. Our study provides a blueprint for defining pan-NLRomes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas NLR/genética , Alelos , Proteínas de Arabidopsis/metabolismo , Resistência à Doença/genética , Variação Genética , Genoma de Planta , Proteínas NLR/metabolismo , Doenças das Plantas/genética , Imunidade Vegetal , Especificidade da Espécie
2.
Trends Genet ; 40(7): 555-557, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38688811

RESUMO

Bacteriophages and plasmids drive horizontal gene transfer (HGT) in bacteria. Phage-plasmids (P-Ps) are hybrids of plasmid and phages. Pfeifer and Rocha recently demonstrated that P-Ps can serve as intermediates in gene exchanges between these two types of elements, identified categories of preferentially transferred genes, and reconstructed gene flows involving phage P1-like P-Ps.


Assuntos
Bacteriófagos , Transferência Genética Horizontal , Plasmídeos , Bactérias/genética , Bactérias/virologia , Bacteriófagos/genética , Transferência Genética Horizontal/genética , Plasmídeos/genética
3.
Plant Cell ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922300

RESUMO

Plants' complex immune systems include nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins, which help recognize invading pathogens. In solanaceous plants, the NRC (NLR required for cell death) family includes helper NLRs that form a complex genetic network with multiple sensor NLRs to provide resistance against pathogens. However, the evolution and function of NRC networks outside solanaceous plants are currently unclear. Here, we conducted phylogenomic and macroevolutionary analyses comparing NLRs identified from different asterid lineages and found that NRC networks expanded significantly in most lamiids but not in Ericales and campanulids. Using transient expression assays in Nicotiana benthamiana, we showed that NRC networks are simple in Ericales and campanulids, but have high complexity in lamiids. Phylogenetic analyses grouped the NRC helper NLRs into three NRC0 subclades that are conserved, and several family-specific NRC subclades of lamiids that show signatures of diversifying selection. Functional analyses revealed that members of the NRC0 subclades are partially interchangeable, whereas family-specific NRC members in lamiids lack interchangeability. Our findings highlight the distinctive evolutionary patterns of the NRC networks in asterids and provide potential insights into transferring disease resistance across plant lineages.

4.
Proc Natl Acad Sci U S A ; 120(29): e2305705120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428922

RESUMO

The assimilation of antibiotic resistance genes (ARGs) by pathogenic bacteria poses a severe threat to public health. Here, we reported a dual-reaction-site-modified CoSA/Ti3C2Tx (single cobalt atoms immobilized on Ti3C2Tx MXene) for effectively deactivating extracellular ARGs via peroxymonosulfate (PMS) activation. The enhanced removal of ARGs was attributed to the synergistic effect of adsorption (Ti sites) and degradation (Co-O3 sites). The Ti sites on CoSA/Ti3C2Tx nanosheets bound with PO43- on the phosphate skeletons of ARGs via Ti-O-P coordination interactions, achieving excellent adsorption capacity (10.21 × 1010 copies mg-1) for tetA, and the Co-O3 sites activated PMS into surface-bond hydroxyl radicals (•OHsurface), which can quickly attack the backbones and bases of the adsorbed ARGs, resulting in the efficient in situ degradation of ARGs into inactive small molecular organics and NO3. This dual-reaction-site Fenton-like system exhibited ultrahigh extracellular ARG degradation rate (k > 0.9 min-1) and showed the potential for practical wastewater treatment in a membrane filtration process, which provided insights for extracellular ARG removal via catalysts design.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Cobalto , Titânio/farmacologia , Adsorção , Águas Residuárias , Resistência Microbiana a Medicamentos/genética
5.
Plant Physiol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743633

RESUMO

The cultivated apple (Malus domestica Borkh.) is a cross-pollinated perennial fruit tree of great economic importance. Previous versions of apple reference genomes were unphased, fragmented, and lacked comprehensive insights into the highly heterozygous genome, which impeded genetic studies and breeding programs in apple. In this study, we assembled a haplotype-resolved telomere-to-telomere reference genome for the diploid apple cultivar Golden Delicious. Subsequently, we constructed a pangenome based on twelve assemblies from wild and cultivated apples to investigate different types of resistance gene analogs (RGAs). Our results revealed the dynamics of the gene gain and loss events during apple domestication. Compared with cultivated species, more gene families in wild species were significantly enriched in oxidative phosphorylation, pentose metabolic process, responses to salt, and abscisic acid biosynthesis process. Interestingly, our analyses demonstrated a higher prevalence of RGAs in cultivated apples than their wild relatives, partially attributed to segmental and tandem duplication events in certain RGAs classes. Other types of structural variations, mainly deletions and insertions, have affected the presence and absence of TIR-NB-ARC-LRR (TNL), NB-ARC-LRR (NL), and CC-NB-ARC-LRR (CNL) genes. Additionally, hybridization/introgression from wild species has also contributed to the expansion of resistance genes in domesticated apples. Our haplotype-resolved T2T genome and pangenome provide important resources for genetic studies of apples, emphasizing the need to study the evolutionary mechanisms of resistance genes in apple breeding programs.

6.
BMC Genomics ; 25(1): 216, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413855

RESUMO

BACKGROUND: Shewanella xiamenensis, widely distributed in natural environments, has long been considered as opportunistic pathogen. Recently, significant changes in the resistance spectrum have been observed in S. xiamenensis, due to acquired antibiotic resistance genes. Therefore, a pan-genome analysis was conducted to illuminate the genomic changes in S. xiamenensis. RESULTS: Phylogenetic analysis revealed three major clusters and three singletons, among which close relationship between several strains was discovered, regardless of their host and niches. The "open" genomes with diversity of accessory and strain-specific genomes took advantage towards diversity environments. The purifying selection pressure was the main force on genome evolution, especially in conservative genes. Only 53 gene families were under positive selection pressure. Phenotypic resistance analysis revealed 21 strains were classified as multi-drug resistance (MDR). Ten types of antibiotic resistance genes and two heavy metal resistance operons were discovered in S. xiamenensis. Mobile genetic elements and horizontal gene transfer increased genome diversity and were closely related to MDR strains. S. xiamenensis carried a variety of virulence genes and macromolecular secretion systems, indicating their important roles in pathogenicity and adaptability. Type IV secretion system was discovered in 15 genomes with various sequence structures, indicating it was originated from different donors through horizontal gene transfer. CONCLUSIONS: This study provided with a detailed insight into the changes in the pan-genome of S. xiamenensis, highlighting its capability to acquire new mobile genetic elements and resistance genes for its adaptation to environment and pathogenicity to human and animals.


Assuntos
Variação Genética , Genoma Bacteriano , Shewanella , Animais , Humanos , Virulência/genética , Filogenia , Resistência Microbiana a Medicamentos
7.
BMC Plant Biol ; 24(1): 144, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413860

RESUMO

BACKGROUND: Aphanomyces euteiches is a soil-borne oomycete that causes root rot in pea and other legume species. Symptoms of Aphanomyces root rot (ARR) include root discoloration and wilting, leading to significant yield losses in pea production. Resistance to ARR is known to be polygenic but the roles of single genes in the pea immune response are still poorly understood. This study uses transcriptomics to elucidate the immune response of two pea genotypes varying in their levels of resistance to A. euteiches. RESULTS: In this study, we inoculated roots of the pea (P. sativum L.) genotypes 'Linnea' (susceptible) and 'PI180693' (resistant) with two different A. euteiches strains varying in levels of virulence. The roots were harvested at 6 h post-inoculation (hpi), 20 hpi and 48 hpi, followed by differential gene expression analysis. Our results showed a time- and genotype-dependent immune response towards A. euteiches infection, involving several WRKY and MYB-like transcription factors, along with genes associated with jasmonic acid (JA) and abscisic acid (ABA) signaling. By cross-referencing with genes segregating with partial resistance to ARR, we identified 39 candidate disease resistance genes at the later stage of infection. Among the genes solely upregulated in the resistant genotype 'PI180693', Psat7g091800.1 was polymorphic between the pea genotypes and encoded a Leucine-rich repeat receptor-like kinase reminiscent of the Arabidopsis thaliana FLAGELLIN-SENSITIVE 2 receptor. CONCLUSIONS: This study provides new insights into the gene expression dynamics controlling the immune response of resistant and susceptible pea genotypes to A. euteiches infection. We present a set of 39 candidate disease resistance genes for ARR in pea, including the putative immune receptor Psat7g091800.1, for future functional validation.


Assuntos
Aphanomyces , Resistência à Doença , Resistência à Doença/genética , Locos de Características Quantitativas , Aphanomyces/genética , Pisum sativum/genética , Doenças das Plantas/genética , Perfilação da Expressão Gênica
8.
J Clin Microbiol ; 62(4): e0129623, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38456690

RESUMO

Early initiation of antimicrobial therapy targeting resistant bacterial pathogens causing sepsis and bloodstream infections (BSIs) is critical for a successful outcome. The T2Resistance Panel (T2R) detects the following resistance genes within organisms that commonly cause BSIs directly from patient blood samples: blaKPC, blaCTXM-14/15, blaNDM/bla/IMP/blaVIM, blaAmpC, blaOXA, vanA, vanB, and mecA/mecC. We conducted a prospective study in two major medical centers for the detection of circulating resistance genes by T2R in patients with BSIs. T2R reports were compared to antimicrobial susceptibility testing (AST), phenotypic identification, and standard molecular detection assays. Among 59 enrolled patients, 25 resistance genes were identified: blaKPC (n = 10), blaNDM/bla/IMP/blaVIM (n = 5), blaCTXM-14/15 (n = 4), blaAmpC (n = 2), and mecA/mecC (n = 4). Median time-to-positive-T2R in both hospitals was 4.4 hours [interquartile range (IQR): 3.65-4.97 hours] in comparison to that for positive blood cultures with final reporting of AST of 58.34 h (IQR: 45.51-111.2 hours; P < 0.0001). The sensitivity of T2R to detect the following genes in comparison to AST was 100% for blaCTXM-14/15, blaNDM/bla/IMP/blaVIM, blaAmpC, mecA/mecC and 87.5% for blaKPC. When monitored for the impact of significant antimicrobial changes, there were 32 events of discontinuation of unnecessary antibiotics and 17 events of escalation of antibiotics, including initiation of ceftazidime/avibactam in six patients in response to positive T2R results for blaKPC. In summary, T2R markers were highly sensitive for the detection of drug resistance genes in patients with bacterial BSIs, when compared with standard molecular resistance detection systems and phenotypic identification assays while significantly reducing by approximately 90% the time to detection of resistance compared to standard methodology and impacting clinical decisions for antimicrobial therapy. IMPORTANCE: This is the first reported study to our knowledge to identify key bacterial resistance genes directly from the bloodstream within 3 to 5 hours in patients with bloodstream infections and sepsis. The study further demonstrated a direct effect in modifying initial empirical antibacterial therapy in response to T2R signal to treat resistant bacteria causing bloodstream infections and sepsis.


Assuntos
Anti-Infecciosos , Bacteriemia , Infecções Bacterianas , Sepse , Humanos , Estudos Prospectivos , Bacteriemia/microbiologia , Projetos Piloto , Bactérias/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
9.
J Clin Microbiol ; 62(3): e0101123, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38363142

RESUMO

This study aimed to develop a method for standardized broth microdilution antimicrobial susceptibility testing (AST) of Avibacterium (Av.) paragallinarum, the causative agent of infectious coryza in chickens. For this, a total of 83 Av. paragallinarum isolates and strains were collected from 15 countries. To select unrelated isolates for method validation steps, macrorestriction analyses were performed with 15 Av. paragallinarum. The visible growth of Av. paragallinarum was examined in six broth media and growth curves were compiled. In Veterinary Fastidious Medium and cation-adjusted Mueller-Hinton broth (CAMHB) + 1% chicken serum + 0.0025% NADH (CAMHB + CS + NADH), visible growth of all isolates was detected and both media allowed adequate bacterial growth. Due to the better readability of Av. paragallinarum growth in microtiter plates, CAMHB + CS + NADH was chosen for AST. Repetitions of MIC testing with five epidemiologically unrelated isolates using a panel of 24 antimicrobial agents resulted in high essential MIC agreements of 96%-100% after 48-h incubation at 35 ± 2°C. Hence, the remaining 78 Av. paragallinarum were tested and demonstrated easily readable MICs with the proposed method. Differences in MICs were detected between isolates from different continents, with isolates from Africa showing lower MICs compared to isolates from America and Europe, which more often showed elevated MICs of aminoglycosides, quinolones, tetracyclines, and/or trimethoprim/sulfamethoxazole. PCR analyses of isolates used for method development revealed that isolates with elevated MICs of tetracyclines harbored the tetracycline resistance gene tet(B) but none of the other tested resistance genes were detected. Therefore, whole-genome sequencing data from 62 Av. paragallinarum were analyzed and revealed the presence of sequences showing nucleotide sequence identity to the genes aph(6)-Id, aph(3″)-Ib, blaTEM-1B, catA2, sul2, tet(B), tet(H), and mcr-like. Overall, the proposed method using CAMHB + CS + NADH for susceptibility testing with 48-h incubation time at 35 ± 2°C in ambient air was shown to be suitable for Av. paragallinarum. Due to a variety of resistance genes detected, the development of clinical breakpoints is highly recommended. IMPORTANCE: Avibacterium paragallinarum is an important pathogen in veterinary medicine that causes infectious coryza in chickens. Since antibiotics are often used for treatment and resistance of the pathogen is known, targeted therapy should be given after resistance testing of the pathogen. Unfortunately, there is currently no accepted method in standards that allows susceptibility testing of this fastidious pathogen. Therefore, we have worked out a method that allows harmonized susceptibility testing of the pathogen. The method meets the requirements of the CLSI and could be used by diagnostic laboratories.


Assuntos
Anti-Infecciosos , Doenças das Aves Domésticas , Animais , Galinhas/microbiologia , NAD , Antibacterianos , Tetraciclina , Testes de Sensibilidade Microbiana , Doenças das Aves Domésticas/microbiologia
10.
Proc Biol Sci ; 291(2025): 20240735, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889784

RESUMO

Antibiotic resistance genes (ARGs) benefit host bacteria in environments containing corresponding antibiotics, but it is less clear how they are maintained in environments where antibiotic selection is weak or sporadic. In particular, few studies have measured if the direct effect of ARGs on host fitness is fixed or if it depends on the host strain, perhaps marking some ARG-host combinations as selective refuges that can maintain ARGs in the absence of antibiotic selection. We quantified the fitness effects of six ARGs in 11 diverse Escherichia spp. strains. Three ARGs (blaTEM-116, cat and dfrA5, encoding resistance to ß-lactams, chloramphenicol, and trimethoprim, respectively) imposed an overall cost, but all ARGs had an effect in at least one host strain, reflecting a significant strain interaction effect. A simulation predicts these interactions can cause the success of ARGs to depend on available host strains, and, to a lesser extent, can cause host strain success to depend on the ARGs present in a community. These results indicate the importance of considering ARG effects across different host strains, and especially the potential of refuge strains to allow resistance to persist in the absence of direct selection, in efforts to understand resistance dynamics.


Assuntos
Antibacterianos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos
11.
Planta ; 259(2): 38, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227024

RESUMO

MAIN CONCLUSION: Silencing of an ascorbate oxidase (AO) gene in N. benthamiana enhanced disease severity from cucumber mosaic virus (CMV), showing higher accumulation and expansion of the spreading area of CMV. A Nicotiana benthamiana ascorbate oxidase (NbAO) gene was found to be induced upon cucumber mosaic virus (CMV) infection. Virus-induced gene silencing (VIGS) was employed to elucidate the function of AO in N. benthamiana. The tobacco rattle virus (TRV)-mediated VIGS resulted in an efficient silencing of the NbAO gene, i.e., 97.5% and 78.8% in relative quantification as compared to the control groups (TRV::eGFP- and the mock-inoculated plants), respectively. In addition, AO enzymatic activity decreased in the TRV::NtAO-silenced plants as compared to control. TRV::NtAO-mediated NbAO silencing induced a greater reduction in plant height by 15.2% upon CMV infection. CMV titer at 3 dpi was increased in the systemic leaves of NbAO-silenced plants (a 35-fold change difference as compared to the TRV::eGFP-treated group). Interestingly, CMV and TRV titers vary in different parts of systemically infected N. benthamiana leaves. In TRV::eGFP-treated plants, CMV accumulated only at the top half of the leaf, whereas the bottom half of the leaf was "occupied" by TRV. In contrast, in the NbAO-silenced plants, CMV accumulated in both the top and the bottom half of the leaf, suggesting that the silencing of the NbAO gene resulted in the expansion of the spreading area of CMV. Our data suggest that the AO gene might function as a resistant factor against CMV infection in N. benthamiana.


Assuntos
Cucumovirus , Infecções por Citomegalovirus , Nicotiana/genética , Ascorbato Oxidase , Folhas de Planta/genética
12.
Plant Biotechnol J ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593377

RESUMO

Fusarium head blight (FHB) and the presence of mycotoxin deoxynivalenol (DON) pose serious threats to wheat production and food safety worldwide. DON, as a virulence factor, is crucial for the spread of FHB pathogens on plants. However, germplasm resources that are naturally resistant to DON and DON-producing FHB pathogens are inadequate in plants. Here, detoxifying bacteria genes responsible for DON epimerization were used to enhance the resistance of wheat to mycotoxin DON and FHB pathogens. We characterized the complete pathway and molecular basis leading to the thorough detoxification of DON via epimerization through two sequential reactions in the detoxifying bacterium Devosia sp. D6-9. Epimerization efficiently eliminates the phytotoxicity of DON and neutralizes the effects of DON as a virulence factor. Notably, co-expressing of the genes encoding quinoprotein dehydrogenase (QDDH) for DON oxidation in the first reaction step, and aldo-keto reductase AKR13B2 for 3-keto-DON reduction in the second reaction step significantly reduced the accumulation of DON as virulence factor in wheat after the infection of pathogenic Fusarium, and accordingly conferred increased disease resistance to FHB by restricting the spread of pathogenic Fusarium in the transgenic plants. Stable and improved resistance was observed in greenhouse and field conditions over multiple generations. This successful approach presents a promising avenue for enhancing FHB resistance in crops and reducing mycotoxin contents in grains through detoxification of the virulence factor DON by exogenous resistance genes from microbes.

13.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35272349

RESUMO

The increasing prevalence of antibiotic resistance has become a global health crisis. For the purpose of safety regulation, it is of high importance to identify antibiotic resistance genes (ARGs) in bacteria. Although culture-based methods can identify ARGs relatively more accurately, the identifying process is time-consuming and specialized knowledge is required. With the rapid development of whole genome sequencing technology, researchers attempt to identify ARGs by computing sequence similarity from public databases. However, these computational methods might fail to detect ARGs due to the low sequence identity to known ARGs. Moreover, existing methods cannot effectively address the issue of multidrug resistance prediction for ARGs, which is a great challenge to clinical treatments. To address the challenges, we propose an end-to-end multi-label learning framework for predicting ARGs. More specifically, the task of ARGs prediction is modeled as a problem of multi-label learning, and a deep neural network-based end-to-end framework is proposed, in which a specific loss function is introduced to employ the advantage of multi-label learning for ARGs prediction. In addition, a dual-view modeling mechanism is employed to make full use of the semantic associations among two views of ARGs, i.e. sequence-based information and structure-based information. Extensive experiments are conducted on publicly available data, and experimental results demonstrate the effectiveness of the proposed framework on the task of ARGs prediction.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Redes Neurais de Computação
14.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36259361

RESUMO

Metagenomic sequencing analysis (mNGS) has been implemented as an alternative approach for pathogen diagnosis in recent years, which is independent of cultivation and is able to identify all potential antibiotic resistance genes (ARGs). However, current mNGS methods have to deal with low amounts of prokaryotic deoxyribonucleic acid (DNA) and high amounts of host DNA in clinical samples, which significantly decrease the overall microbial detection resolution. The recently released nanopore adaptive sampling (NAS) technology facilitates immediate mapping of individual nucleotides to a given reference as each molecule is sequenced. User-defined thresholds allow for the retention or rejection of specific molecules, informed by the real-time reference mapping results, as they are physically passing through a given sequencing nanopore. We developed a metagenomics workflow for ultra-sensitive diagnosis of bacterial pathogens and ARGs from clinical samples, which is based on the efficient selective 'human host depletion' NAS sequencing, real-time species identification and species-specific resistance gene prediction. Our method increased the microbial sequence yield at least 8-fold in all 21 sequenced clinical Bronchoalveolar Lavage Fluid (BALF) samples (4.5 h from sample to result) and accurately detected the ARGs at species level. The species-level positive percent agreement between metagenomic sequencing and laboratory culturing was 100% (16/16) and negative percent agreement was 100% (5/5) in our approach. Further work is required for a more robust validation of our approach with large sample size to allow its application to other infection types.


Assuntos
Antibacterianos , Nanoporos , Humanos , Fluxo de Trabalho , Farmacorresistência Bacteriana/genética , Metagenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Bactérias/genética , DNA
15.
Appl Environ Microbiol ; 90(4): e0175223, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38445903

RESUMO

Transcriptomic evidence is needed to determine whether composting is more effective than conventional stockpiling in mitigating the risk of resistome in livestock manure. The objective of this study is to compare composting and stockpiling for their effectiveness in reducing the risk of antibiotic resistance in beef cattle manure. Samples collected from the center and the surface of full-size manure stockpiling and composting piles were subject to metagenomic and metatranscriptomic analyses. While the distinctions in resistome between stockpiled and composted manure were not evident at the DNA level, the advantages of composting over stockpiling were evident at the transcriptomic level in terms of the abundance of antibiotic resistance genes (ARGs), the number of ARG subtypes, and the prevalence of high-risk ARGs (i.e., mobile ARGs associated with zoonotic pathogens). DNA and transcript contigs show that the pathogen hosts of high-risk ARGs included Escherichia coli O157:H7 and O25b:H4, Klebsiella pneumoniae, and Salmonella enterica. Although the average daily temperatures for the entire composting pile exceeded 55°C throughout the field study, more ARG and ARG transcripts were removed at the center of the composting pile than at the surface. This work demonstrates the advantage of composting over stockpiling in reducing ARG risk in active populations in beef cattle manure.IMPORTANCEProper treatment of manure before land application is essential to mitigate the spread of antibiotic resistance in the environment. Stockpiling and composting are two commonly used methods for manure treatment. However, the effectiveness of composting in reducing antibiotic resistance in manure has been debated. This work compared the ability of these two methods to reduce the risk of antibiotic resistance in beef cattle manure. Our results demonstrate that composting reduced more high-risk resistance genes at the transcriptomic level in cattle manure than conventional stockpiling. This finding not only underscores the effectiveness of composting in reducing antibiotic resistance in manure but also highlights the importance of employing RNA analyses alongside DNA analyses.


Assuntos
Compostagem , Esterco , Bovinos , Animais , Esterco/análise , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Antibacterianos/farmacologia , DNA
16.
Appl Environ Microbiol ; 90(2): e0171923, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38193672

RESUMO

Application of organic fertilizers is an important strategy for sustainable agriculture. The biological source of organic fertilizers determines their specific functional characteristics, but few studies have systematically examined these functions or assessed their health risk to soil ecology. To fill this gap, we analyzed 16S rRNA gene amplicon sequencing data from 637 soil samples amended with plant- and animal-derived organic fertilizers (hereafter plant fertilizers and animal fertilizers). Results showed that animal fertilizers increased the diversity of soil microbiome, while plant fertilizers maintained the stability of soil microbial community. Microcosm experiments verified that plant fertilizers were beneficial to plant root development and increased carbon cycle pathways, while animal fertilizers enriched nitrogen cycle pathways. Compared with animal fertilizers, plant fertilizers harbored a lower abundance of risk factors such as antibiotic resistance genes and viruses. Consequently, plant fertilizers might be more suitable for long-term application in agriculture. This work provides a guide for organic fertilizer selection from the perspective of soil microecology and promotes sustainable development of organic agriculture.IMPORTANCEThis study provides valuable guidance for use of organic fertilizers in agricultural production from the perspective of the microbiome and ecological risk.


Assuntos
Microbiota , Rizosfera , Animais , Fertilizantes , RNA Ribossômico 16S/genética , Microbiota/genética , Solo , Plantas/genética , Microbiologia do Solo , Raízes de Plantas
17.
Appl Environ Microbiol ; 90(3): e0162923, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38335112

RESUMO

We used quantitative microbial risk assessment to estimate ingestion risk for intI1, erm(B), sul1, tet(A), tet(W), and tet(X) in private wells contaminated by human and/or livestock feces. Genes were quantified with five human-specific and six bovine-specific microbial source-tracking (MST) markers in 138 well-water samples from a rural Wisconsin county. Daily ingestion risk (probability of swallowing ≥1 gene) was based on daily water consumption and a Poisson exposure model. Calculations were stratified by MST source and soil depth over the aquifer where wells were drilled. Relative ingestion risk was estimated using wells with no MST detections and >6.1 m soil depth as a referent category. Daily ingestion risk varied from 0 to 8.8 × 10-1 by gene and fecal source (i.e., human or bovine). The estimated number of residents ingesting target genes from private wells varied from 910 (tet(A)) to 1,500 (intI1 and tet(X)) per day out of 12,000 total. Relative risk of tet(A) ingestion was significantly higher in wells with MST markers detected, including wells with ≤6.1 m soil depth contaminated by bovine markers (2.2 [90% CI: 1.1-4.7]), wells with >6.1 m soil depth contaminated by bovine markers (1.8 [1.002-3.9]), and wells with ≤6.1 m soil depth contaminated by bovine and human markers simultaneously (3.1 [1.7-6.5]). Antibiotic resistance genes (ARGs) were not necessarily present in viable microorganisms, and ingestion is not directly associated with infection. However, results illustrate relative contributions of human and livestock fecal sources to ARG exposure and highlight rural groundwater as a significant point of exposure.IMPORTANCEAntibiotic resistance is a global public health challenge with well-known environmental dimensions, but quantitative analyses of the roles played by various natural environments in transmission of antibiotic resistance are lacking, particularly for drinking water. This study assesses risk of ingestion for several antibiotic resistance genes (ARGs) and the class 1 integron gene (intI1) in drinking water from private wells in a rural area of northeast Wisconsin, United States. Results allow comparison of drinking water as an exposure route for antibiotic resistance relative to other routes like food and recreational water. They also enable a comparison of the importance of human versus livestock fecal sources in the study area. Our study demonstrates the previously unrecognized importance of untreated rural drinking water as an exposure route for antibiotic resistance and identifies bovine fecal material as an important exposure factor in the study setting.


Assuntos
Antibacterianos , Água Potável , Animais , Humanos , Bovinos , Antibacterianos/farmacologia , Genes Bacterianos , Gado , Fezes , Solo , Medição de Risco , Resistência Microbiana a Medicamentos/genética , Ingestão de Alimentos
18.
BMC Microbiol ; 24(1): 47, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38302869

RESUMO

BACKGROUND: Candidatus Ornithobacterium hominis (O. hominis), which was identified in nasopharyngeal swabs from Egypt, has been associated with respiratory disorders in humans. O. hominis, a recently identified member of the Flavobacteriaceae family, belongs to the largest family within the Bacteroidetes phylum. This family includes hundreds of species and 90 genera, including major human pathogens such as Capnocytophaga canimorsus and Elizabethkingia meningoseptica. Herein, we presented two draft genome assemblies of O. hominis that were extracted from metagenomic data using the Illumina sequencing method. The alignment of reads against the O. hominis genome was accomplished using BLASTN, and the reads with significant hits were extracted using Seqtk and assembled using SPAdes. The primary goal of this study was to obtain a more profound understanding of the genomic landscape of O. hominis, with an emphasis on identifying the associated virulence, antimicrobial genes, and distinct defense mechanisms to shed light on the potential role of O. hominis in human respiratory infections. RESULTS: The genome size was estimated to be 1.84 Mb, including 1,931,660 base pairs (bp), with 1,837 predicted coding regions and a G+C content of 35.62%. Genes encoding gliding motility, antibiotic resistance (20 genes), and the toxA gene were all included in the genome assembly. Gliding motility lipoproteins (GldD, GldJ, GldN, and GldH) and the gliding motility-associated ABC transporter substrate-binding protein, which acts as a crucial virulence mechanism in Flavobacterium species, were identified. The genome contained unique genes encoding proteins, such as the ParE1 toxin that defend against the actions of quinolone and other antibiotics. The cobalt-zinc-cadmium resistance gene encoding the protein CzcB, which is necessary for metal resistance, urease regulation, and colonization, was also detected. Several multidrug resistance genes encoding proteins were identified, such as MexB, MdtK, YheI, and VanC. CONCLUSION: Our study focused on identifying virulence factors, and antimicrobial resistance genes present in the core genome of O. hominis. These findings provide valuable insights into the potential pathogenicity and antibiotic susceptibility of O. hominis.


Assuntos
Ornithobacterium , Humanos , Antibacterianos/farmacologia , Egito , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Genoma Bacteriano , Farmacorresistência Bacteriana Múltipla/genética
19.
BMC Microbiol ; 24(1): 202, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851699

RESUMO

BACKGROUND: Bacteroides fragilis group (BFG) species are the most significant anaerobic pathogens and are also the most antibiotic-resistant anaerobic species. Therefore, surveying their antimicrobial resistance levels and investigating their antibiotic resistance mechanisms is recommended. Since their infections are endogenous and they are important constituents of the intestinal microbiota, the properties of the intestinal strains are also important to follow. The aim of this study was to investigate the main antibiotic gene content of microbiota isolates from healthy people and compare them with the gene carriage of strains isolated from infections. RESULTS: We detected 13, mainly antibiotic resistance determinants of 184 intestinal BFG strains that were isolated in 5 European countries (Belgium, Germany, Hungary, Slovenia and Turkey) and compared these with values obtained earlier for European clinical strains. Differences were found between the values of this study and an earlier one for antibiotic resistance genes that are considered to be mobile, with higher degrees for cfxA, erm(F) and tet(Q) and with lower degrees for msrSA, erm(B) and erm(G). In addition, a different gene prevalence was found depending on the taxonomical groups, e.g., B. fragilis and NBFB. Some strains with both the cepA and cfiA ß-lactamase genes were also detected, which is thought to be exceptional since until now, the B. fragilis genetic divisions were defined by the mutual exclusion of these two genes. CONCLUSIONS: Our study detected the prevalences of a series of antibiotic resistance genes in intestinal Bacteroides strains which is a novelty. In addition, based on the current and some previous data we hypothesized that prevalence of some antibiotic resistance genes detected in the clinical and intestinal BFG strains were different, which could be accounted with the differential composition of the Bacteroides microbiota and/or the MGE mobilities at the luminal vs. mucosal sites of the intestine.


Assuntos
Antibacterianos , Infecções por Bacteroides , Bacteroides , Carbapenêmicos , Humanos , Europa (Continente) , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Infecções por Bacteroides/microbiologia , Bacteroides/genética , Bacteroides/efeitos dos fármacos , Bacteroides/isolamento & purificação , Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Testes de Sensibilidade Microbiana , Genes Bacterianos/genética , Intestinos/microbiologia , Proteínas de Bactérias/genética
20.
BMC Microbiol ; 24(1): 50, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326741

RESUMO

BACKGROUND: Bacillus cereus is implicated in severe foodborne infection in humans. This study intended to assess the occurrence, groEL gene sequencing, biofilm production, and resistance profiles of emerged multidrug resistant (MDR) B. cereus in meat and meat product samples. Moreover, this work highlights the virulence and toxigenic genes (hblABCD complex, nheABC complex, cytK, ces, and pc-plc) and antimicrobial resistance genes (bla1, tetA, bla2, tetB, and ermA). METHODS: Consequently, 200 samples (sausage, minced meat, luncheon, beef meat, and liver; n = 40 for each) were indiscriminately collected from commercial supermarkets in Port Said Province, Egypt, from March to May 2021. Subsequently, food samples were bacteriologically examined. The obtained isolates were tested for groEL gene sequence analysis, antibiotic susceptibility, biofilm production, and PCR screening of toxigenic and resistance genes. RESULTS: The overall prevalence of B. cereus among the inspected food samples was 21%, where the highest predominance was detected in minced meat (42.5%), followed by beef meat (30%). The phylogenetic analysis of the groEL gene exposed that the examined B. cereus strain disclosed a notable genetic identity with other strains from the USA and China. Moreover, the obtained B. cereus strains revealed ß-hemolytic activity, and 88.1% of the recovered strains tested positive for biofilm production. PCR evidenced that the obtained B. cereus strains usually inherited the nhe complex genes (nheA and nheC: 100%, and nheB: 83.3%), followed by cytK (76.2%), hbl complex (hblC and hblD: 59.5%, hblB: 16.6%, and hblA: 11.9%), ces (54.7%), and pc-plc (30.9%) virulence genes. Likewise, 42.9% of the examined B. cereus strains were MDR to six antimicrobial classes and encoded bla1, bla2, ermA, and tetA genes. CONCLUSION: In summary, this study highlights the presence of MDR B. cereus in meat and meat products, posing a significant public health risk. The contamination by B. cereus is common in minced meat and beef meat. The molecular assay is a reliable fundamental tool for screening emerging MDR B. cereus strains in meat and meat products.


Assuntos
Microbiologia de Alimentos , Produtos da Carne , Humanos , Animais , Bovinos , Enterotoxinas/genética , Bacillus cereus , Antibacterianos/farmacologia , Filogenia , Farmacorresistência Bacteriana/genética , Carne
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA