Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38994775

RESUMO

Super-enhancers (SEs) are expansive regions of genomic DNA that regulate the expression of genes involved in cell identity and cell fate. We recently identified developmental stage- and cell type-specific modules within the murine Vsx2 SE. Here, we show that the human VSX2 SE modules have similar developmental stage- and cell type-specific activity in reporter gene assays. By inserting the human sequence of one VSX2 SE module into a mouse with microphthalmia, eye size was rescued. To understand the function of these SE modules during human retinal development, we deleted individual modules in human embryonic stem cells and generated retinal organoids. Deleting one module results in small organoids, recapitulating the small-eyed phenotype of mice with microphthalmia, while deletion of the other module led to disruptions in bipolar neuron development. This prototypical SE serves as a model for understanding developmental stage- and cell type-specific effects of neurogenic transcription factors with complex expression patterns. Moreover, by elucidating the gene regulatory mechanisms, we can begin to examine how dysregulation of these mechanisms contributes to phenotypic diversity and disease.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Retina , Fatores de Transcrição , Animais , Humanos , Camundongos , Elementos Facilitadores Genéticos/genética , Evolução Molecular , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Microftalmia/genética , Microftalmia/patologia , Neurogênese/genética , Organoides/metabolismo , Retina/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Differentiation ; 135: 100743, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38147763

RESUMO

The fovea centralis (fovea) is a specialized region of the primate retina that plays crucial roles in high-resolution visual acuity and color perception. The fovea is characterized by a high density of cone photoreceptors and no rods, and unique anatomical properties that contribute to its remarkable visual capabilities. Early histological analyses identified some of the key events that contribute to foveal development, but the mechanisms that direct the specification of this area are not understood. Recently, the expression of the retinoic acid-metabolizing enzyme CYP26A1 has become a hallmark of some of the retinal specializations found in vertebrates, including the primate fovea and the high-acuity area in avian species. In chickens, the retinoic acid pathway regulates the expression of FGF8 to then direct the development of a rod-free area. Similarly, high levels of CYP26A1, CDKN1A, and NPVF expression have been observed in the primate macula using transcriptomic approaches. However, which retinal cells express these genes and their expression dynamics in the developing primate eye remain unknown. Here, we systematically characterize the expression patterns of CYP26A1, FGF8, CDKN1A, and NPVF during the development of the rhesus monkey retina, from early stages of development in the first trimester until the third trimester (near term). Our data suggest that some of the markers previously proposed to be fovea-specific are not enriched in the progenitors of the rhesus monkey fovea. In contrast, CYP26A1 is expressed at high levels in the progenitors of the fovea, while it localizes in a subpopulation of macular Müller glia cells later in development. Together these data provide invaluable insights into the expression dynamics of several molecules in the nonhuman primate retina and highlight the developmental advancement of the foveal region.


Assuntos
Galinhas , Retina , Animais , Macaca mulatta/genética , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Células Fotorreceptoras Retinianas Cones , Tretinoína
3.
Neurobiol Dis ; 194: 106463, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38485095

RESUMO

Mutations in NR2E3, a gene encoding an orphan nuclear transcription factor, cause two retinal dystrophies with a distinct phenotype, but the precise role of NR2E3 in rod and cone transcriptional networks remains unclear. To dissect NR2E3 function, we performed scRNA-seq in the retinas of wildtype and two different Nr2e3 mouse models that show phenotypes similar to patients carrying NR2E3 mutations. Our results reveal that rod and cone populations are not homogeneous and can be separated into different sub-classes. We identify a previously unreported cone pathway that generates hybrid cones co-expressing both cone- and rod-related genes. In mutant retinas, this hybrid cone subpopulation is more abundant and includes a subpopulation of rods transitioning towards a cone cell fate. Hybrid photoreceptors with high misexpression of cone- and rod-related genes are prone to regulated necrosis. Overall, our results shed light on the role of NR2E3 in modulating photoreceptor differentiation towards cone and rod fates and explain how different mutations in NR2E3 lead to distinct visual disorders in humans.


Assuntos
Receptores Nucleares Órfãos , Retina , Camundongos , Animais , Humanos , Receptores Nucleares Órfãos/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica
4.
Curr Issues Mol Biol ; 46(1): 612-620, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38248341

RESUMO

Fluorescence lifetime imaging microscopy (FLIM) is a technique that analyzes the metabolic state of tissues based on the spatial distribution of fluorescence lifetimes of certain interacting molecules. We used multiphoton FLIM to study the metabolic state of developing C57BL6/J and rd10 retinas based on the fluorescence lifetimes of free versus bound nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate (NAD(P)H), with free NAD(P)H percentages suggesting increased glycolysis and bound NAD(P)H percentages indicating oxidative phosphorylation. The mice were sacrificed and enucleated at various time points throughout their first 3 months of life. The isolated eyecups were fixed, sectioned using a polyacrylamide gel embedding technique, and then analyzed with FLIM. The results suggested that in both C57BL6/J mice and rd10 mice, oxidative phosphorylation initially decreased and then increased, plateauing over time. This trend, however, was accelerated in rd10 mice, with its turning point occurring at p10 versus the p30 turning point in C57BL6/J mice. There was also a noticeable difference in oxidative phosphorylation rates between the outer and inner retinas in both strains, with greater oxidative phosphorylation present in the latter. A greater understanding of rd10 and WT metabolic changes during retinal development may provide deeper insights into retinal degeneration and facilitate the development of future treatments.

5.
Development ; 148(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34143204

RESUMO

During retinal development, a large subset of progenitors upregulates the transcription factor Otx2, which is required for photoreceptor and bipolar cell formation. How these retinal progenitor cells initially activate Otx2 expression is unclear. To address this, we investigated the cis-regulatory network that controls Otx2 expression in mice. We identified a minimal enhancer element, DHS-4D, that drove expression in newly formed OTX2+ cells. CRISPR/Cas9-mediated deletion of DHS-4D reduced OTX2 expression, but this effect was diminished in postnatal development. Systematic mutagenesis of the enhancer revealed that three basic helix-loop-helix (bHLH) transcription factor-binding sites were required for its activity. Single cell RNA-sequencing of nascent Otx2+ cells identified the bHLH factors Ascl1 and Neurog2 as candidate regulators. CRISPR/Cas9 targeting of these factors showed that only the simultaneous loss of Ascl1 and Neurog2 prevented OTX2 expression. Our findings suggest that Ascl1 and Neurog2 act either redundantly or in a compensatory fashion to activate the DHS-4D enhancer and Otx2 expression. We observed redundancy or compensation at both the transcriptional and enhancer utilization levels, suggesting that the mechanisms governing Otx2 regulation in the retina are flexible and robust.


Assuntos
Sistema y+ de Transporte de Aminoácidos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Organogênese/genética , Fatores de Transcrição Otx/genética , Retina/metabolismo , Animais , Sequência de Bases , Elementos E-Box , Imunofluorescência , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Motivos de Nucleotídeos , Fatores de Transcrição Otx/metabolismo , Retina/embriologia
6.
Exp Eye Res ; 242: 109872, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514024

RESUMO

X-linked retinoschisis (XLRS) is an early onset degenerative retinal disease characterized by cystic lesions in the middle layers of the retina. These structural changes are accompanied by a loss of visual acuity and decreased contrast sensitivity. XLRS is caused by mutations in the gene Rs1 which encodes the secreted protein Retinoschisin 1. Young Rs1-mutant mouse models develop key hallmarks of XLRS including intraretinal schisis and abnormal electroretinograms. The electroretinogram (ERG) comprises activity of multiple cellular generators, and it is not known how and when each of these is impacted in Rs1 mutant mice. Here we use an ex vivo ERG system and pharmacological blockade to determine how ERG components generated by photoreceptors, ON-bipolar, and Müller glial cells are impacted in Rs1 mutants and to determine the time course of these changes. We report that ERG abnormalities begin near eye-opening and that all ERG components are involved.


Assuntos
Moléculas de Adesão Celular , Modelos Animais de Doenças , Eletrorretinografia , Proteínas do Olho , Retinosquise , Animais , Retinosquise/genética , Retinosquise/fisiopatologia , Camundongos , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Camundongos Endogâmicos C57BL , Mutação , Células Ependimogliais/patologia , Células Ependimogliais/metabolismo , Masculino , Células Bipolares da Retina/patologia , Células Bipolares da Retina/metabolismo
7.
Differentiation ; 132: 51-58, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37069005

RESUMO

Retinal development is initiated by multipotent retinal progenitor cells, which undergo several rounds of cell divisions and subsequently terminal differentiation. Retinal regeneration is usually considered as the recapitulation of retinal development, which share common mechanisms underlying the cell cycle re-entry of adult retinal stem cells and the differentiation of retinal neurons. However, how proliferative retinal progenitor cells perform a precise transition to postmitotic retinal cell types during the process of development and regeneration remains elusive. It is proposed that both the intrinsic and extrinsic programming are involved in the transcriptional regulation of the spatio-temporal fate commitment. Epigenetic modifications and the regulatory mechanisms at both DNA and chromatin levels are also postulated to play an important role in the timing of differentiation of specific retinal cells. In the present review, we have summarized recent knowledge of epigenetic regulation that underlies the commitment of retinal progenitor cells in the settings of retinal development and regeneration.


Assuntos
Epigênese Genética , Retina , Diferenciação Celular/genética , Células-Tronco , Neurônios
8.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474095

RESUMO

We recently identified PKN1 as a developmentally active gatekeeper of the transcription factor neuronal differentiation-2 (NeuroD2) in several brain areas. Since NeuroD2 plays an important role in amacrine cell (AC) and retinal ganglion cell (RGC) type formation, we aimed to study the expression of NeuroD2 in the postnatal retina of WT and Pkn1-/- animals, with a particular focus on these two cell types. We show that PKN1 is broadly expressed in the retina and that the gross retinal structure is not different between both genotypes. Postnatal retinal NeuroD2 levels were elevated upon Pkn1 knockout, with Pkn1-/- retinae showing more NeuroD2+ cells in the lower portion of the inner nuclear layer. Accordingly, immunohistochemical analysis revealed an increased amount of AC in postnatal and adult Pkn1-/- retinae. There were no differences in horizontal cell, bipolar cell, glial cell and RGC numbers, nor defective axon guidance to the optic chiasm or tract upon Pkn1 knockout. Interestingly, we did, however, see a specific reduction in SMI-32+ α-RGC in Pkn1-/- retinae. These results suggest that PKN1 is important for retinal cell type formation and validate PKN1 for future studies focusing on AC and α-RGC specification and development.


Assuntos
Retina , Células Ganglionares da Retina , Animais , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Células Amácrinas/metabolismo , Quiasma Óptico/metabolismo , Fatores de Transcrição/metabolismo
9.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396913

RESUMO

The intricate functionality of the vertebrate retina relies on the interplay between neurotransmitter activity and calcium (Ca2+) dynamics, offering important insights into developmental processes, physiological functioning, and disease progression. Neurotransmitters orchestrate cellular processes to shape the behavior of the retina under diverse circumstances. Despite research to elucidate the roles of individual neurotransmitters in the visual system, there remains a gap in our understanding of the holistic integration of their interplay with Ca2+ dynamics in the broader context of neuronal development, health, and disease. To address this gap, the present review explores the mechanisms used by the neurotransmitters glutamate, gamma-aminobutyric acid (GABA), glycine, dopamine, and acetylcholine (ACh) and their interplay with Ca2+ dynamics. This conceptual outline is intended to inform and guide future research, underpinning novel therapeutic avenues for retinal-associated disorders.


Assuntos
Cálcio , Retina , Retina/fisiologia , Ácido Glutâmico , Sinapses , Cálcio da Dieta , Neurotransmissores/fisiologia
10.
Dev Biol ; 481: 30-42, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34534525

RESUMO

The bipolar interneurons of the mammalian retina have evolved as a diverse set of cells with distinct subtype characteristics, which reflect specialized contributions to visual circuitry. Fifteen subtypes of bipolar interneurons have been identified in the mouse retina, each with characteristic gene expression, morphology, and light responses. This review provides an overview of the developmental events that underlie the generation of the diverse bipolar cell class, summarizing the current knowledge of genetic programs that establish and maintain bipolar subtype fates, as well as the events that shape the final distribution of bipolar subtypes. With much left to be discovered, bipolar interneurons present an ideal model system for studying the interplay between cell-autonomous and non-cell-autonomous mechanisms that influence neuronal subtype development within the central nervous system.


Assuntos
Diferenciação Celular , Sistema Nervoso Central/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese , Retina/embriologia , Células Bipolares da Retina/metabolismo , Animais , Camundongos
11.
Cell Tissue Res ; 394(1): 93-105, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37470839

RESUMO

Photoreceptor outer segments are surrounded by a carbohydrate-rich matrix, the interphotoreceptor matrix, necessary for physiological retinal function. Few roles for molecules characterizing the interphotoreceptor matrix have been clearly defined. Recent studies have found the presence of nonsense mutations in the interphotoreceptor matrix proteoglycan 2 (IMPG2) gene in patients affected by retinal dystrophies. IMPG2 encodes for a proteoglycan synthesized by photoreceptors and secreted in the interphotoreceptor matrix. Little is known about the structure and function of this protein, we thus decided to characterize zebrafish impg2. In zebrafish there are two Impg2 proteins, Impg2a and Impg2b. We generated a phylogenetic tree based on IMPG2 protein sequence similarity among vertebrates, showing a significant similarity between humans and teleosts. The human and zebrafish proteins share conserved domains, as also shown by homology models. Expression analyses of impg2a and impg2b show a continued expression in the photoreceptor layer starting from developmental stages and continuing through adulthood. Between 1 and 6 months post-fertilization, there is a significant shift of Impg2 expression toward the outer segment region, suggesting an increase in secretion. This raises intriguing hypotheses about its possible role(s) during retinal maturation, laying the groundwork for the generation of most needed models for the study of IMPG2-related inherited retinal dystrophies.


Assuntos
Proteoglicanas , Distrofias Retinianas , Animais , Humanos , Proteoglicanas/genética , Proteoglicanas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Filogenia , Retina/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(26): 15262-15269, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541022

RESUMO

Thyroid hormone (TH) signaling plays an important role in the regulation of long-wavelength vision in vertebrates. In the retina, thyroid hormone receptor ß (thrb) is required for expression of long-wavelength-sensitive opsin (lws) in red cone photoreceptors, while in retinal pigment epithelium (RPE), TH regulates expression of a cytochrome P450 enzyme, cyp27c1, that converts vitamin A1 into vitamin A2 to produce a red-shifted chromophore. To better understand how TH controls these processes, we analyzed the phenotype of zebrafish with mutations in the three known TH nuclear receptor transcription factors (thraa, thrab, and thrb). We found that no single TH nuclear receptor is required for TH-mediated induction of cyp27c1 but that deletion of all three (thraa-/-;thrab-/-;thrb-/- ) completely abrogates its induction and the resulting conversion of A1- to A2-based retinoids. In the retina, loss of thrb resulted in an absence of red cones at both larval and adult stages without disruption of the underlying cone mosaic. RNA-sequencing analysis revealed significant down-regulation of only five genes in adult thrb-/- retina, of which three (lws1, lws2, and miR-726) occur in a single syntenic cluster. In the thrb-/- retina, retinal progenitors destined to become red cones were transfated into ultraviolet (UV) cones and horizontal cells. Taken together, our findings demonstrate cooperative regulation of cyp27c1 by TH receptors and a requirement for thrb in red cone fate determination. Thus, TH signaling coordinately regulates both spectral sensitivity and sensory plasticity.


Assuntos
Visão de Cores/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Opsinas/metabolismo , Receptores dos Hormônios Tireóideos/fisiologia , Percepção Visual/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Visão de Cores/genética , Sistema Enzimático do Citocromo P-450/genética , Deleção de Genes , Regulação da Expressão Gênica , Opsinas/genética , Células Fotorreceptoras Retinianas Cones , Raios Ultravioleta , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
13.
Dev Biol ; 478: 144-154, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34260962

RESUMO

Throughout the central nervous system, astrocytes adopt precisely ordered spatial arrangements of their somata and arbors, which facilitate their many important functions. Astrocyte pattern formation is particularly important in the retina, where astrocytes serve as a template that dictates the pattern of developing retinal vasculature. Thus, if astrocyte patterning is disturbed, there are severe consequences for retinal angiogenesis and ultimately for vision - as seen in diseases such as retinopathy of prematurity. Here we discuss key steps in development of the retinal astrocyte population. We describe how fundamental developmental forces - their birth, migration, proliferation, and death - sculpt astrocytes into a template that guides angiogenesis. We further address the radical changes in the cellular and molecular composition of the astrocyte network that occur upon completion of angiogenesis, paving the way for their adult functions in support of retinal ganglion cell axons. Understanding development of retinal astrocytes may elucidate pattern formation mechanisms that are deployed broadly by other axon-associated astrocyte populations.


Assuntos
Astrócitos/fisiologia , Retina/crescimento & desenvolvimento , Retina/fisiologia , Animais , Axônios/fisiologia , Morte Celular , Diferenciação Celular , Movimento Celular , Proliferação de Células , Humanos , Neovascularização Fisiológica , Fibras Nervosas/fisiologia , Retina/citologia , Retina/embriologia , Células Ganglionares da Retina/fisiologia , Vasos Retinianos/embriologia , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/fisiologia , Retinopatia da Prematuridade/patologia , Retinopatia da Prematuridade/fisiopatologia
14.
Dev Biol ; 478: 41-58, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34146533

RESUMO

Recent advances in high throughput single-cell RNA sequencing (scRNA-seq) technology have enabled the simultaneous transcriptomic profiling of thousands of individual cells in a single experiment. To investigate the intrinsic process of retinal development, researchers have leveraged this technology to quantify gene expression in retinal cells across development, in multiple species, and from numerous important models of human disease. In this review, we summarize recent applications of scRNA-seq and discuss how these datasets have complemented and advanced our understanding of retinal progenitor cell competence, cell fate specification, and differentiation. Finally, we also highlight the outstanding questions in the field that advances in single-cell data generation and analysis will soon be able to answer.


Assuntos
Células-Tronco Multipotentes/citologia , RNA-Seq , Retina/crescimento & desenvolvimento , Neurônios Retinianos/citologia , Análise de Célula Única , Animais , Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células-Tronco Multipotentes/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Retina/citologia , Retina/embriologia , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Neurônios Retinianos/metabolismo , Transcriptoma
15.
Biochem Biophys Res Commun ; 636(Pt 2): 79-86, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36368158

RESUMO

During mammalian retinal development, the differentiation of multipotent progenitors depends on the coordinated action of a variety of intrinsic factors including non-coding RNAs (ncRNAs). To date, many small open reading frames have been identified in ncRNAs to encode micropeptides that function in diverse biological processes; however, it remains unclear whether they have a role in retinal development. Here we report that the 47-amino acid (AA) mitochondrial micropeptide Stmp1 encoded by the lncRNA 1810058I24Rik is involved in retinal differentiation. As the major protein product of 1810058I24Rik, Stmp1 promotes the differentiation of bipolar, amacrine and Müller cells as 1810058I24Rik does when overexpressed in neonatal murine retinas. Moreover, we have identified the 15-AA N-terminus of Stmp1 as its mitochondrion-targeting sequence as well as 5 conserved AA residues that affect protein stability and/or retinal cell differentiation. Together, our data reveal several novel characteristics of Stmp1 and uncover a role for Stmp1 in retinal cell differentiation perhaps through regulating mitochondrial function.


Assuntos
Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intracelular , Mitocôndrias , Proteínas Mitocondriais , Retina , Animais , Camundongos , Células Ependimogliais/citologia , Mitocôndrias/metabolismo , Neurônios/citologia , Retina/citologia , RNA não Traduzido/genética , Proteínas Mitocondriais/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia
16.
Development ; 146(17)2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399471

RESUMO

Retinal ganglion cells (RGCs), cone photoreceptors (cones), horizontal cells and amacrine cells are the first classes of neurons produced in the retina. However, an important question is how this diversity of cell states is transcriptionally produced. Here, we profiled 6067 single retinal cells to provide a comprehensive transcriptomic atlas showing the diversity of the early developing mouse retina. RNA velocities unveiled the dynamics of cell cycle coordination of early retinogenesis and define the transcriptional sequences at work during the hierarchical production of early cell-fate specification. We show that RGC maturation follows six waves of gene expression, with older-generated RGCs transcribing increasing amounts of guidance cues for young peripheral RGC axons that express the matching receptors. Spatial transcriptionally deduced features in subpopulations of RGCs allowed us to define novel molecular markers that are spatially restricted. Finally, the isolation of such a spatially restricted population, ipsilateral RGCs, allowed us to identify their molecular identity at the time they execute axon guidance decisions. Together, these data represent a valuable resource shedding light on transcription factor sequences and guidance cue dynamics during mouse retinal development.


Assuntos
Orientação de Axônios/fisiologia , Diferenciação Celular/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Ganglionares da Retina/metabolismo , Análise de Célula Única/métodos , Transcrição Gênica/genética , Animais , Axônios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cinética , Camundongos/embriologia , Camundongos Endogâmicos C57BL , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
17.
Ophthalmology ; 129(6): 708-718, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35157951

RESUMO

PURPOSE: To characterize the genotypic and phenotypic spectrum of foveal hypoplasia (FH). DESIGN: Multicenter, observational study. PARTICIPANTS: A total of 907 patients with a confirmed molecular diagnosis of albinism, PAX6, SLC38A8, FRMD7, AHR, or achromatopsia from 12 centers in 9 countries (n = 523) or extracted from publicly available datasets from previously reported literature (n = 384). METHODS: Individuals with a confirmed molecular diagnosis and availability of foveal OCT scans were identified from 12 centers or from the literature between January 2011 and March 2021. A genetic diagnosis was confirmed by sequence analysis. Grading of FH was derived from OCT scans. MAIN OUTCOME MEASURES: Grade of FH, presence or absence of photoreceptor specialization (PRS+ vs. PRS-), molecular diagnosis, and visual acuity (VA). RESULTS: The most common genetic etiology for typical FH in our cohort was albinism (67.5%), followed by PAX6 (21.8%), SLC38A8 (6.8%), and FRMD7 (3.5%) variants. AHR variants were rare (0.4%). Atypical FH was seen in 67.4% of achromatopsia cases. Atypical FH in achromatopsia had significantly worse VA than typical FH (P < 0.0001). There was a significant difference in the spectrum of FH grades based on the molecular diagnosis (chi-square = 60.4, P < 0.0001). All SLC38A8 cases were PRS- (P = 0.003), whereas all FRMD7 cases were PRS+ (P < 0.0001). Analysis of albinism subtypes revealed a significant difference in the grade of FH (chi-square = 31.4, P < 0.0001) and VA (P = 0.0003) between oculocutaneous albinism (OCA) compared with ocular albinism (OA) and Hermansky-Pudlak syndrome (HPS). Ocular albinism and HPS demonstrated higher grades of FH and worse VA than OCA. There was a significant difference (P < 0.0001) in VA between FRMD7 variants compared with other diagnoses associated with FH. CONCLUSIONS: We characterized the phenotypic and genotypic spectrum of FH. Atypical FH is associated with a worse prognosis than all other forms of FH. In typical FH, our data suggest that arrested retinal development occurs earlier in SLC38A8, OA, HPS, and AHR variants and later in FRMD7 variants. The defined time period of foveal developmental arrest for OCA and PAX6 variants seems to demonstrate more variability. Our findings provide mechanistic insight into disorders associated with FH and have significant prognostic and diagnostic value.


Assuntos
Albinismo Ocular , Albinismo Oculocutâneo , Albinismo , Defeitos da Visão Cromática , Albinismo Ocular/diagnóstico , Albinismo Ocular/genética , Albinismo Oculocutâneo/diagnóstico , Albinismo Oculocutâneo/genética , Defeitos da Visão Cromática/diagnóstico , Defeitos da Visão Cromática/genética , Proteínas do Citoesqueleto , Fóvea Central/anormalidades , Humanos , Proteínas de Membrana , Transtornos da Visão/diagnóstico
18.
Doc Ophthalmol ; 145(3): 175-184, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36199003

RESUMO

PURPOSE: To develop and validate a flicker electroretinogram (ERG) protocol in term-born neonates as a potential tool for assessing preterm infants at risk of developing retinopathy of prematurity. METHODS: A custom flicker ERG protocol was developed for use with the hand-held RETeval® electrophysiology device. Feasibility of measuring flicker ERG through closed eyelids and without mydriasis was established in a pilot study enabling optimisation of the test protocol. Following this, healthy term-born neonates (gestational age 37-42 weeks) were recruited at the Neonatology clinic of the University Hospital Zurich. Flicker ERG recordings were performed using proprietary disposable skin electrodes during the first four days of life when the infants were sleeping. Flicker stimuli were presented at 28.3 Hz for a stimulus series at 3, 6, 12, 30, and 50 cd·s/m2, with two measurements at each stimulus level. Results were analysed offline. Flicker ERG peak times and amplitudes were derived from the averaged measurements per stimulus level for each subject. RESULTS: 28 term-born neonates were included in the analysis. All infants tolerated the testing procedure well. Flicker ERG recording was achieved in all subjects with reproducible flicker ERG waveforms for 30 and 50 cd·s/m2 stimuli. Reproducible ERGs were recorded in the majority of infants for the weaker stimuli (with detectable ERGs in 20/28, 25/28, and 27/28 at 3, 6, and 12 cd·s/m2, respectively). Flicker ERG amplitudes increased with increasing stimulus strength, with peak times concurrently decreasing slightly. CONCLUSION: Flicker ERG recording is feasible and reliably recorded in sleeping neonates through closed eyelids using skin electrodes and without mydriasis. Flicker ERG amplitude decreases for lower luminance flicker but remains detectable for 3 cd·s/m2 flicker in the majority of healthy term-born neonates. These data provide a basis to study retinal function in premature infants using this protocol.


Assuntos
Eletrorretinografia , Midríase , Recém-Nascido , Lactente , Humanos , Eletrorretinografia/métodos , Projetos Piloto , Estimulação Luminosa/métodos , Recém-Nascido Prematuro , Retina
19.
Ecotoxicol Environ Saf ; 241: 113791, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35753272

RESUMO

Sodium propionate is widely used as a preservative in food. The widespread use of preservatives is known to cause both environmental and public health problems. This study aimed to investigate the effects of sodium propionate on the developmental behavior and glucose metabolism of zebrafish. Our results showed that sodium propionate had no significant effect on the embryonic morphological development of zebrafish embryos but changed the head eye area. Then we found sodium propionate disturbed the thigmotaxis behavior, impaired neural development. Moreover, changes in clock gene expression disrupted the circadian rhythm of zebrafish. Circadian genes regulated insulin sensitivity and secretion in various tissues. Then our results showed that the disorder of circadian rhythm in zebrafish affected glucose metabolism and insulin resistance, which damaged the development of retina. Therefore, the safety of propionate should be further evaluated.


Assuntos
Resistência à Insulina , Peixe-Zebra , Animais , Ritmo Circadiano , Glucose/metabolismo , Propionatos/toxicidade , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
20.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077087

RESUMO

Embryonic hyperglycemia negatively impacts retinal development, leading to abnormal visual behavior, altered timing of retinal progenitor differentiation, decreased numbers of retinal ganglion cells and Müller glia, and vascular leakage. Because synaptic disorganization is a prominent feature of many neurological diseases, the goal of the current work was to study the potential impact of hyperglycemia on retinal ribbon synapses during embryonic development. Our approach utilized reverse transcription quantitative PCR (RT-qPCR) and immunofluorescence labeling to compare the transcription of synaptic proteins and their localization in hyperglycemic zebrafish embryos, respectively. Our data revealed that the maturity of synaptic ribbons was compromised in hyperglycemic zebrafish larvae, where altered ribeye expression coincided with the delay in establishing retinal ribbon synapses and an increase in the immature synaptic ribbons. Our results suggested that embryonic hyperglycemia disrupts retinal synapses by altering the development of the synaptic ribbon, which can lead to visual defects. Future studies using zebrafish models of hyperglycemia will allow us to study the underlying mechanisms of retinal synapse development.


Assuntos
Hiperglicemia , Peixe-Zebra , Animais , Hiperglicemia/metabolismo , Retina/metabolismo , Sinapses/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA