Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 703
Filtrar
1.
Cell ; 187(4): 831-845.e19, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301645

RESUMO

The paraneoplastic Ma antigen (PNMA) proteins are associated with cancer-induced paraneoplastic syndromes that present with an autoimmune response and neurological symptoms. Why PNMA proteins are associated with this severe autoimmune disease is unclear. PNMA genes are predominantly expressed in the central nervous system and are ectopically expressed in some tumors. We show that PNMA2, which has been co-opted from a Ty3 retrotransposon, encodes a protein that is released from cells as non-enveloped virus-like capsids. Recombinant PNMA2 capsids injected into mice induce autoantibodies that preferentially bind external "spike" PNMA2 capsid epitopes, whereas a capsid-assembly-defective PNMA2 protein is not immunogenic. PNMA2 autoantibodies in cerebrospinal fluid of patients with anti-Ma2 paraneoplastic disease show similar preferential binding to spike capsid epitopes. PNMA2 capsid-injected mice develop learning and memory deficits. These observations suggest that PNMA2 capsids act as an extracellular antigen, capable of generating an autoimmune response that results in neurological deficits.


Assuntos
Antígenos de Neoplasias , Neoplasias , Proteínas do Tecido Nervoso , Síndromes Paraneoplásicas do Sistema Nervoso , Animais , Humanos , Camundongos , Autoanticorpos , Capsídeo/metabolismo , Epitopos , Neoplasias/complicações , Síndromes Paraneoplásicas do Sistema Nervoso/metabolismo , Síndromes Paraneoplásicas do Sistema Nervoso/patologia , Antígenos de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo
2.
Cell ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981481

RESUMO

All-RNA-mediated targeted gene integration methods, rendering reduced immunogenicity, effective deliverability with non-viral vehicles, and a low risk of random mutagenesis, are urgently needed for next-generation gene addition technologies. Naturally occurring R2 retrotransposons hold promise in this context due to their site-specific integration profile. Here, we systematically analyzed the biodiversity of R2 elements and screened several R2 orthologs capable of full-length gene insertion in mammalian cells. Robust R2 system gene integration efficiency was attained using combined donor RNA and protein engineering. Importantly, the all-RNA-delivered engineered R2 system showed effective integration activity, with efficiency over 60% in mouse embryos. Unbiased high-throughput sequencing demonstrated that the engineered R2 system exhibited high on-target integration specificity (99%). In conclusion, our study provides engineered R2 tools for applications based on hit-and-run targeted DNA integration and insights for further optimization of retrotransposon systems.

3.
Cell ; 187(4): 814-830.e23, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364788

RESUMO

Myelin, the insulating sheath that surrounds neuronal axons, is produced by oligodendrocytes in the central nervous system (CNS). This evolutionary innovation, which first appears in jawed vertebrates, enabled rapid transmission of nerve impulses, more complex brains, and greater morphological diversity. Here, we report that RNA-level expression of RNLTR12-int, a retrotransposon of retroviral origin, is essential for myelination. We show that RNLTR12-int-encoded RNA binds to the transcription factor SOX10 to regulate transcription of myelin basic protein (Mbp, the major constituent of myelin) in rodents. RNLTR12-int-like sequences (which we name RetroMyelin) are found in all jawed vertebrates, and we further demonstrate their function in regulating myelination in two different vertebrate classes (zebrafish and frogs). Our study therefore suggests that retroviral endogenization played a prominent role in the emergence of vertebrate myelin.


Assuntos
Bainha de Mielina , Retroelementos , Animais , Expressão Gênica , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Retroelementos/genética , RNA/metabolismo , Peixe-Zebra/genética , Anuros
4.
Cell ; 186(13): 2865-2879.e20, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37301196

RESUMO

Retroelements are the widespread jumping elements considered as major drivers for genome evolution, which can also be repurposed as gene-editing tools. Here, we determine the cryo-EM structures of eukaryotic R2 retrotransposon with ribosomal DNA target and regulatory RNAs. Combined with biochemical and sequencing analysis, we reveal two essential DNA regions, Drr and Dcr, required for recognition and cleavage. The association of 3' regulatory RNA with R2 protein accelerates the first-strand cleavage, blocks the second-strand cleavage, and initiates the reverse transcription starting from the 3'-tail. Removing 3' regulatory RNA by reverse transcription allows the association of 5' regulatory RNA and initiates the second-strand cleavage. Taken together, our work explains the DNA recognition and RNA supervised sequential retrotransposition mechanisms by R2 machinery, providing insights into the retrotransposon and application reprogramming.


Assuntos
RNA , Retroelementos , RNA/metabolismo , Clivagem do DNA , DNA Polimerase Dirigida por RNA/metabolismo , Transcrição Reversa
5.
Cell ; 185(11): 1986-2005.e26, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35525246

RESUMO

Unlike copy number variants (CNVs), inversions remain an underexplored genetic variation class. By integrating multiple genomic technologies, we discover 729 inversions in 41 human genomes. Approximately 85% of inversions <2 kbp form by twin-priming during L1 retrotransposition; 80% of the larger inversions are balanced and affect twice as many nucleotides as CNVs. Balanced inversions show an excess of common variants, and 72% are flanked by segmental duplications (SDs) or retrotransposons. Since flanking repeats promote non-allelic homologous recombination, we developed complementary approaches to identify recurrent inversion formation. We describe 40 recurrent inversions encompassing 0.6% of the genome, showing inversion rates up to 2.7 × 10-4 per locus per generation. Recurrent inversions exhibit a sex-chromosomal bias and co-localize with genomic disorder critical regions. We propose that inversion recurrence results in an elevated number of heterozygous carriers and structural SD diversity, which increases mutability in the population and predisposes specific haplotypes to disease-causing CNVs.


Assuntos
Inversão Cromossômica , Duplicações Segmentares Genômicas , Inversão Cromossômica/genética , Variações do Número de Cópias de DNA/genética , Genoma Humano , Genômica , Humanos
6.
Cell ; 184(22): 5506-5526, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34715021

RESUMO

Endogenous cytoplasmic DNA (cytoDNA) species are emerging as key mediators of inflammation in diverse physiological and pathological contexts. Although the role of endogenous cytoDNA in innate immune activation is well established, the cytoDNA species themselves are often poorly characterized and difficult to distinguish, and their mechanisms of formation, scope of function and contribution to disease are incompletely understood. Here, we summarize current knowledge in this rapidly progressing field with emphases on similarities and differences between distinct cytoDNAs, their underlying molecular mechanisms of formation and function, interactions between cytoDNA pathways, and therapeutic opportunities in the treatment of age-associated diseases.


Assuntos
Envelhecimento/metabolismo , Citoplasma/metabolismo , DNA/metabolismo , Doença , Animais , Humanos , Micronúcleo Germinativo/metabolismo , Retroelementos/genética
7.
Cell ; 184(18): 4697-4712.e18, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34363756

RESUMO

Animals face both external and internal dangers: pathogens threaten from the environment, and unstable genomic elements threaten from within. C. elegans protects itself from pathogens by "reading" bacterial small RNAs, using this information to both induce avoidance and transmit memories for four generations. Here, we found that memories can be transferred from either lysed animals or from conditioned media to naive animals via Cer1 retrotransposon-encoded virus-like particles. Moreover, Cer1 functions internally at the step of transmission of information from the germline to neurons and is required for learned avoidance. The presence of the Cer1 retrotransposon in wild C. elegans strains correlates with the ability to learn and inherit small-RNA-induced pathogen avoidance. Together, these results suggest that C. elegans has co-opted a potentially dangerous retrotransposon to instead protect itself and its progeny from a common pathogen through its inter-tissue signaling ability, hijacking this genomic element for its own adaptive immunity benefit.


Assuntos
Elementos de DNA Transponíveis/genética , Transferência Genética Horizontal/genética , Padrões de Herança/genética , Memória/fisiologia , Animais , Aprendizagem da Esquiva , Comportamento Animal , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Vesículas Extracelulares/metabolismo , Regulação da Expressão Gênica , Genoma , Células Germinativas/metabolismo , RNA/metabolismo , Interferência de RNA , Vírion/metabolismo
8.
Cell ; 177(4): 837-851.e28, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30955886

RESUMO

L1 retrotransposon-derived sequences comprise approximately 17% of the human genome. Darwinian selective pressures alter L1 genomic distributions during evolution, confounding the ability to determine initial L1 integration preferences. Here, we generated high-confidence datasets of greater than 88,000 engineered L1 insertions in human cell lines that act as proxies for cells that accommodate retrotransposition in vivo. Comparing these insertions to a null model, in which L1 endonuclease activity is the sole determinant dictating L1 integration preferences, demonstrated that L1 insertions are not significantly enriched in genes, transcribed regions, or open chromatin. By comparison, we provide compelling evidence that the L1 endonuclease disproportionately cleaves predominant lagging strand DNA replication templates, while lagging strand 3'-hydroxyl groups may prime endonuclease-independent L1 retrotransposition in a Fanconi anemia cell line. Thus, acquisition of an endonuclease domain, in conjunction with the ability to integrate into replicating DNA, allowed L1 to become an autonomous, interspersed retrotransposon.


Assuntos
Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Linhagem Celular , Endonucleases/genética , Endonucleases/metabolismo , Genoma Humano/genética , Estudo de Associação Genômica Ampla/métodos , Genômica , Células HeLa , Humanos , Mutagênese Insercional/genética
9.
Cell ; 172(1-2): 275-288.e18, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29328916

RESUMO

The neuronal gene Arc is essential for long-lasting information storage in the mammalian brain, mediates various forms of synaptic plasticity, and has been implicated in neurodevelopmental disorders. However, little is known about Arc's molecular function and evolutionary origins. Here, we show that Arc self-assembles into virus-like capsids that encapsulate RNA. Endogenous Arc protein is released from neurons in extracellular vesicles that mediate the transfer of Arc mRNA into new target cells, where it can undergo activity-dependent translation. Purified Arc capsids are endocytosed and are able to transfer Arc mRNA into the cytoplasm of neurons. These results show that Arc exhibits similar molecular properties to retroviral Gag proteins. Evolutionary analysis indicates that Arc is derived from a vertebrate lineage of Ty3/gypsy retrotransposons, which are also ancestors to retroviruses. These findings suggest that Gag retroelements have been repurposed during evolution to mediate intercellular communication in the nervous system.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Exossomos/metabolismo , Produtos do Gene gag/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Animais , Células Cultivadas , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Endocitose , Feminino , Produtos do Gene gag/química , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia
10.
Cell ; 172(5): 897-909.e21, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474918

RESUMO

X-linked Dystonia-Parkinsonism (XDP) is a Mendelian neurodegenerative disease that is endemic to the Philippines and is associated with a founder haplotype. We integrated multiple genome and transcriptome assembly technologies to narrow the causal mutation to the TAF1 locus, which included a SINE-VNTR-Alu (SVA) retrotransposition into intron 32 of the gene. Transcriptome analyses identified decreased expression of the canonical cTAF1 transcript among XDP probands, and de novo assembly across multiple pluripotent stem-cell-derived neuronal lineages discovered aberrant TAF1 transcription that involved alternative splicing and intron retention (IR) in proximity to the SVA that was anti-correlated with overall TAF1 expression. CRISPR/Cas9 excision of the SVA rescued this XDP-specific transcriptional signature and normalized TAF1 expression in probands. These data suggest an SVA-mediated aberrant transcriptional mechanism associated with XDP and may provide a roadmap for layered technologies and integrated assembly-based analyses for other unsolved Mendelian disorders.


Assuntos
Distúrbios Distônicos/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Genoma Humano , Transcriptoma/genética , Processamento Alternativo/genética , Elementos Alu/genética , Sequência de Bases , Sistemas CRISPR-Cas/genética , Estudos de Coortes , Família , Feminino , Loci Gênicos , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Íntrons/genética , Masculino , Repetições Minissatélites/genética , Modelos Genéticos , Degeneração Neural/genética , Degeneração Neural/patologia , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos Nucleotídeos Curtos e Dispersos , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo
11.
Cell ; 172(1-2): 262-274.e11, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29328915

RESUMO

Arc/Arg3.1 is required for synaptic plasticity and cognition, and mutations in this gene are linked to autism and schizophrenia. Arc bears a domain resembling retroviral/retrotransposon Gag-like proteins, which multimerize into a capsid that packages viral RNA. The significance of such a domain in a plasticity molecule is uncertain. Here, we report that the Drosophila Arc1 protein forms capsid-like structures that bind darc1 mRNA in neurons and is loaded into extracellular vesicles that are transferred from motorneurons to muscles. This loading and transfer depends on the darc1-mRNA 3' untranslated region, which contains retrotransposon-like sequences. Disrupting transfer blocks synaptic plasticity, suggesting that transfer of dArc1 complexed with its mRNA is required for this function. Notably, cultured cells also release extracellular vesicles containing the Gag region of the Copia retrotransposon complexed with its own mRNA. Taken together, our results point to a trans-synaptic mRNA transport mechanism involving retrovirus-like capsids and extracellular vesicles.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Produtos do Gene gag/genética , Corpos Multivesiculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Terminações Pré-Sinápticas/metabolismo , RNA Mensageiro/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Produtos do Gene gag/química , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular/metabolismo , Plasticidade Neuronal , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Terminações Pré-Sinápticas/fisiologia , Ligação Proteica , Domínios Proteicos , Retroelementos/genética
12.
Annu Rev Neurosci ; 47(1): 123-143, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38663088

RESUMO

Over 40% of the human genome is composed of retrotransposons, DNA species that hold the potential to replicate via an RNA intermediate and are evolutionarily related to retroviruses. Retrotransposons are most studied for their ability to jump within a genome, which can cause DNA damage and novel insertional mutations. Retrotransposon-encoded products, including viral-like proteins, double-stranded RNAs, and extrachromosomal circular DNAs, can also be potent activators of the innate immune system. A growing body of evidence suggests that retrotransposons are activated in age-related neurodegenerative disorders and that such activation causally contributes to neurotoxicity. Here we provide an overview of retrotransposon biology and outline evidence of retrotransposon activation in age-related neurodegenerative disorders, with an emphasis on those involving TAR-DNA binding protein-43 (TDP-43) and tau. Studies to date provide the basis for ongoing clinical trials and hold promise for innovative strategies to ameliorate the adverse effects of retrotransposon dysregulation in neurodegenerative disorders.


Assuntos
Envelhecimento , Retrovirus Endógenos , Doenças Neurodegenerativas , Retroelementos , Humanos , Doenças Neurodegenerativas/genética , Retroelementos/genética , Retrovirus Endógenos/genética , Animais , Envelhecimento/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
13.
Cell ; 170(1): 61-71.e11, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666125

RESUMO

Transposon reactivation is an inherent danger in cells that lose epigenetic silencing during developmental reprogramming. In the mouse, long terminal repeat (LTR)-retrotransposons, or endogenous retroviruses (ERV), account for most novel insertions and are expressed in the absence of histone H3 lysine 9 trimethylation in preimplantation stem cells. We found abundant 18 nt tRNA-derived small RNA (tRF) in these cells and ubiquitously expressed 22 nt tRFs that include the 3' terminal CCA of mature tRNAs and target the tRNA primer binding site (PBS) essential for ERV reverse transcription. We show that the two most active ERV families, IAP and MusD/ETn, are major targets and are strongly inhibited by tRFs in retrotransposition assays. 22 nt tRFs post-transcriptionally silence coding-competent ERVs, while 18 nt tRFs specifically interfere with reverse transcription and retrotransposon mobility. The PBS offers a unique target to specifically inhibit LTR-retrotransposons, and tRF-targeting is a potentially highly conserved mechanism of small RNA-mediated transposon control.


Assuntos
Inativação Gênica , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/metabolismo , Retroviridae/genética , Células-Tronco/virologia , Animais , Células HeLa , Humanos , Camundongos , Sequências Repetidas Terminais
14.
Mol Cell ; 84(9): 1637-1650.e10, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38604171

RESUMO

Long interspersed element-1 (LINE-1 or L1) comprises 17% of the human genome, continuously generates genetic variations, and causes disease in certain cases. However, the regulation and function of L1 remain poorly understood. Here, we uncover that L1 can enrich RNA polymerase IIs (RNA Pol IIs), express L1 chimeric transcripts, and create contact domain boundaries in human cells. This impact of L1 is restricted by a nuclear matrix protein scaffold attachment factor B (SAFB) that recognizes transcriptionally active L1s by binding L1 transcripts to inhibit RNA Pol II enrichment. Acute inhibition of RNA Pol II transcription abolishes the domain boundaries associated with L1 chimeric transcripts, indicating a transcription-dependent mechanism. Deleting L1 impairs domain boundary formation, and L1 insertions during evolution have introduced species-specific domain boundaries. Our data show that L1 can create RNA Pol II-enriched regions that alter genome organization and that SAFB regulates L1 and RNA Pol II activity to preserve gene regulation.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Proteínas de Ligação à Região de Interação com a Matriz , RNA Polimerase II , Receptores de Estrogênio , Transcrição Gênica , Humanos , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas Associadas à Matriz Nuclear/genética , Regulação da Expressão Gênica , Ligação Proteica , Células HEK293 , Genoma Humano
15.
Genes Dev ; 38(11-12): 554-568, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38960717

RESUMO

Retrotransposon control in mammals is an intricate process that is effectuated by a broad network of chromatin regulatory pathways. We previously discovered ChAHP, a protein complex with repressive activity against short interspersed element (SINE) retrotransposons that is composed of the transcription factor ADNP, chromatin remodeler CHD4, and HP1 proteins. Here we identify ChAHP2, a protein complex homologous to ChAHP, in which ADNP is replaced by ADNP2. ChAHP2 is predominantly targeted to endogenous retroviruses (ERVs) and long interspersed elements (LINEs) via HP1ß-mediated binding of H3K9 trimethylated histones. We further demonstrate that ChAHP also binds these elements in a manner mechanistically equivalent to that of ChAHP2 and distinct from DNA sequence-specific recruitment at SINEs. Genetic ablation of ADNP2 alleviates ERV and LINE1 repression, which is synthetically exacerbated by additional depletion of ADNP. Together, our results reveal that the ChAHP and ChAHP2 complexes function to control both nonautonomous and autonomous retrotransposons by complementary activities, further adding to the complexity of mammalian transposon control.


Assuntos
Retroelementos , Animais , Humanos , Camundongos , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Retrovirus Endógenos/genética , Regulação da Expressão Gênica/genética , Histonas/metabolismo , Histonas/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Ligação Proteica , Retroelementos/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Complexos Multiproteicos/metabolismo
16.
Mol Cell ; 83(24): 4479-4493.e6, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38096826

RESUMO

4.5SH RNA is a highly abundant, small rodent-specific noncoding RNA that localizes to nuclear speckles enriched in pre-mRNA-splicing regulators. To investigate the physiological functions of 4.5SH RNA, we have created mutant mice that lack the expression of 4.5SH RNA. The mutant mice exhibited embryonic lethality, suggesting that 4.5SH RNA is an essential species-specific noncoding RNA in mice. RNA-sequencing analyses revealed that 4.5SH RNA protects the transcriptome from abnormal exonizations of the antisense insertions of the retrotransposon SINE B1 (asB1), which would otherwise introduce deleterious premature stop codons or frameshift mutations. Mechanistically, 4.5SH RNA base pairs with complementary asB1-containing exons via the target recognition region and recruits effector proteins including Hnrnpm via its 5' stem loop region. The modular organization of 4.5SH RNA allows us to engineer a programmable splicing regulator to induce the skipping of target exons of interest. Our results also suggest the general existence of splicing regulatory noncoding RNAs.


Assuntos
Splicing de RNA , Pequeno RNA não Traduzido , Camundongos , Animais , Splicing de RNA/genética , Éxons/genética , Retroelementos/genética , Códon sem Sentido , Processamento Alternativo
17.
Annu Rev Cell Dev Biol ; 31: 429-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26393776

RESUMO

Transposable elements (TEs) account for at least 50% of the human genome. They constitute essential motors of evolution through their ability to modify genomic architecture, mutate genes and regulate gene expression. Accordingly, TEs are subject to tight epigenetic control during the earliest phases of embryonic development via histone and DNA methylation. Key to this process is recognition by sequence-specific RNA- and protein-based repressors. Collectively, these mediators are responsible for silencing a very broad range of TEs in an evolutionarily dynamic fashion. As a consequence, mobile elements and their controllers exert a marked influence on transcriptional networks in embryonic stem cells and a variety of adult tissues. The emerging picture is not that of a simple arms race but rather of a massive and sophisticated enterprise of TE domestication for the evolutionary benefit of the host.


Assuntos
Elementos de DNA Transponíveis/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Evolução Biológica , Células-Tronco Embrionárias/fisiologia , Epigênese Genética/genética , Humanos , Transcrição Gênica/genética
18.
Mol Cell ; 80(5): 915-928.e5, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33186547

RESUMO

Transposable elements (TEs) drive genome evolution and are a notable source of pathogenesis, including cancer. While CpG methylation regulates TE activity, the locus-specific methylation landscape of mobile human TEs has to date proven largely inaccessible. Here, we apply new computational tools and long-read nanopore sequencing to directly infer CpG methylation of novel and extant TE insertions in hippocampus, heart, and liver, as well as paired tumor and non-tumor liver. As opposed to an indiscriminate stochastic process, we find pronounced demethylation of young long interspersed element 1 (LINE-1) retrotransposons in cancer, often distinct to the adjacent genome and other TEs. SINE-VNTR-Alu (SVA) retrotransposons, including their internal tandem repeat-associated CpG island, are near-universally methylated. We encounter allele-specific TE methylation and demethylation of aberrantly expressed young LINE-1s in normal tissues. Finally, we recover the complete sequences of tumor-specific LINE-1 insertions and their retrotransposition hallmarks, demonstrating how long-read sequencing can simultaneously survey the epigenome and detect somatic TE mobilization.


Assuntos
Metilação de DNA , Elementos de DNA Transponíveis , DNA de Neoplasias , Epigênese Genética , Epigenoma , Regulação Neoplásica da Expressão Gênica , Elementos Nucleotídeos Longos e Dispersos , Sequenciamento por Nanoporos , Neoplasias , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Neoplasias/genética , Neoplasias/metabolismo , Especificidade de Órgãos
19.
Trends Genet ; 40(2): 175-186, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37957036

RESUMO

Telomeres and their associated proteins protect the ends of chromosomes to maintain genome stability. Telomeres undergo progressive shortening with each cell division in mammalian somatic cells without telomerase, resulting in genome instability. When telomeres reach a critically short length or are recognized as a damage signal, cells enter a state of senescence, followed by cell cycle arrest, programmed cell death, or immortalization. This review provides an overview of recent advances in the intricate relationship between telomeres and genome instability. Alongside well-established mechanisms such as chromosomal fusion and telomere fusion, we will delve into the perspective on genome stability by examining the role of retrotransposons. Retrotransposons represent an emerging pathway to regulate genome stability through their interactions with telomeres.


Assuntos
Retroelementos , Telomerase , Animais , Telômero/metabolismo , Instabilidade Genômica , Divisão Celular , Senescência Celular , Mamíferos
20.
Trends Genet ; 40(1): 39-51, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37949723

RESUMO

Despite being the predominant genetic elements in mammalian genomes, retrotransposons were often dismissed as genomic parasites with ambiguous biological significance. However, recent studies reveal their functional involvement in early embryogenesis, encompassing crucial processes such as zygotic genome activation (ZGA) and cell fate decision. This review underscores the paradigm shift in our understanding of retrotransposon roles during early preimplantation development, as well as their rich functional reservoir that is exploited by the host to provide cis-regulatory elements, noncoding RNAs, and functional proteins. The rapid advancement in long-read sequencing, low input multiomics profiling, advanced in vitro systems, and precise gene editing techniques encourages further dissection of retrotransposon functions that were once obscured by the intricacies of their genomic footprints.


Assuntos
Genoma , Retroelementos , Animais , Retroelementos/genética , Zigoto , Desenvolvimento Embrionário/genética , Mamíferos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA