Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 39(2): 62, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36577912

RESUMO

The biochemical parameters of solid-state fermented peeled and unpeeled cassava roots (Manihot esculenta Crantz) and their application in broiler feed formulations were investigated. Fermentation occurred at room temperature for 72 h (pH 3-9). The samples utilized for five (5) broiler starter feeds were labeled: control, unfermented unpeeled cassava (UUC), unfermented peeled cassava (UPC), fermented unpeeled cassava (FUC), and fermented peeled cassava (FPC). Formulations were made by substituting fermented/non-fermented cassava roots at pH 7 for maize (w/w%). Fermentation-induced changes included increased soluble and total protein concentrations (69.3 and 334.5 mg/g) and (9.6 and 10.8%), respectively, in cultures prepared with peeled and unpeeled cassava at pH 7 compared to the control (p < 0.05), and a reduction (p < 0.01) in cyanide concentration from 44.4 to 78.7 mg/kg in the control to 8.5 and 13.7 mg/kg in fermented cassava at pH 7. Birds fed FUC and FPC meal (0.6 and 0.5 kg) gained significantly more weight (p < 0.05) than those fed the control (0.3 kg). The biochemical parameters aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, and urea levels in broiler serum did not differ significantly (p > 0.05) for birds fed with fermented peeled and unpeeled cassava. Conversely, serum albumin and calcium levels were significantly lower (p < 0.05) for birds fed with the control feed compared to birds fed with fermented feeds. The results imply that fermented peeled and unpeeled cassava roots could be a safe and nutritionally beneficial replacement for maize in broiler diet.


Assuntos
Manihot , Animais , Manihot/química , Manihot/metabolismo , Galinhas , Dieta/veterinária , Cianetos/metabolismo , Fermentação , Verduras , Zea mays , Ração Animal/análise
2.
Food Technol Biotechnol ; 59(4): 530-542, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35136376

RESUMO

RESEARCH BACKGROUND: Legumes are superior sources of macro- and micronutrients which can be further enhanced by fermentation. This can assist in addressing the food security concerns. The present study aims to determine the effect of fermentation by Rhizopus oligosporus on nutritional and antinutritional composition of some commonly consumed legumes. EXPERIMENTAL APPROACH: Chickpea (kabuli and desi), pigeon pea and soybean were fermented with Rhizopus oligosporus (at 34 °C for 52 h), dried at 45 °C for 16-18 h and milled. Antioxidant potential, phenolic composition, antinutrients, mineral composition and FTIR spectra of fermented and unfermented flour samples were evaluated. RESULTS AND CONCLUSIONS: Fermentation significantly (p<0.05) enhanced the total phenolic and flavonoid contents, and antioxidant properties (radical scavenging activity, reducing power, ferric reducing antioxidant power and metal chelation) of kabuli and desi chickpeas, and soybean. Although fermented pigeon pea exhibited excellent antioxidant properties, the effect of fermentation on such properties was either minimal or insignificant. Additionally, quantification of specific phenolics using HPLC showed higher mass fractions of certain compounds such as chlorogenic, p-hydroxybenzoic, gallic and vanillic acids in fermented legumes. Mass fraction of phytic acid in all the fermented legumes was reduced (p<0.05), while trypsin inhibition increased (p<0.05). In kabuli and desi chickpeas, and pigeon pea, saponin mass fraction increased (p<0.05) while it decreased in soybean. Tannin mass fraction increased (p<0.05) in desi chickpea, pigeon pea and soybean and decreased (p<0.05) in kabuli chickpea. Furthermore, fermentation enhanced the content and estimated bioavailability of minerals. FTIR spectrum of fermented and unfermented legumes showed the presence of several functional groups and modifications in the molecular structure after fermentation. NOVELTY AND SCIENTIFIC CONTRIBUTION: To our knowledge, this is the first study where legume (kabuli and desi chickpeas, pigeon pea and soybean) fermentation by Rhizopus oligosporus has been assessed for nutritional and antinutritional profile and FTIR spectra. We concluded that the treatment resulted in an optimal balance of nutrients and antinutrients. The process proved to be a potential tool for tackling the concerns of nutritional security, and thus can be proposed for the development of novel legume-based functional foods.

3.
Molecules ; 25(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365963

RESUMO

We conducted this study to investigate the beneficial effects of Rhizopus oligosporus fermentation of wild ginseng on ginsenosides, l-carnitine contents and its biological activity. The Rhizopus oligosporus fermentation of wild ginseng was carried out at 30 °C for between 1 and 14 days. Fourteen ginsenosides and l-carnitine were analyzed in the fermented wild ginseng by the ultra high pressure liquid chromatography-mass spectrometry (UPLC-MS) system. Our results showed that the total amount of ginsenosides in ginseng increased from 3,274 to 5,573 mg/kg after 14 days of fermentation. Among the 14 ginsenosides tested, the amounts of 13 ginsenosides (Rg1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg2, Rg3, Rh1, compound K, F1 and F2) increased, whereas ginsenoside Rb1 decreased, during the fermentation. Furthermore, l-carnitine (630 mg/kg) was newly synthesized in fermented ginseng extract after 14 days. In addition, both total phenol contents and DPPH radical scavenging activities showed an increase in the fermented ginseng with respect to non-fermented ginseng. These results show that the fermentation process reduced the cytotoxicity of wild ginseng against RAW264.7 cells. Both wild and fermented wild ginseng showed anti-inflammatory activity via inhibition of nitric oxide synthesis in RAW264.7 murine macrophage cells.


Assuntos
Carnitina/química , Fermentação , Ginsenosídeos/química , Panax/química , Rhizopus/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Compostos Férricos/química , Estrutura Molecular , Óxido Nítrico/química
4.
J Sci Food Agric ; 97(9): 2891-2897, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27790703

RESUMO

BACKGROUND: The potential of fermented buckwheat as a feed additive was studied to increase l-carnitine and γ-aminobutyric acid (GABA) in designer eggs. Buckwheat contains high levels of lysine, methionine and glutamate, which are precursors for the synthesis of l-carnitine and GABA. Rhizopus oligosporus was used for the fermentation of buckwheat to produce l-carnitine and GABA that exert positive effects such as enhanced metabolism, antioxidant activities, immunity and blood pressure control. RESULTS: A novel analytical method for simultaneously detecting l-carnitine and GABA was developed using liquid chromatography/mass spectrometry (LC/MS) and LC/MS/MS. The fermented buckwheat extract contained 4 and 34 times more l-carnitine and GABA respectively compared with normal buckwheat. Compared with the control, the fermented buckwheat extract-fed group showed enriched l-carnitine (13.6%) and GABA (8.4%) in the yolk, though only l-carnitine was significantly different (P < 0.05). Egg production (9.4%), albumen weight (2.1%) and shell weight (5.8%) were significantly increased (P < 0.05). There was no significant difference in yolk weight, and total cholesterol (1.9%) and triglyceride (4.9%) in the yolk were lowered (P < 0.05). CONCLUSION: Fermented buckwheat as a feed additive has the potential to produce l-carnitine- and GABA-enriched designer eggs with enhanced nutrition and homeostasis. These designer eggs pose significant potential to be utilized in superfood production and supplement industries. © 2016 Society of Chemical Industry.


Assuntos
Ração Animal/análise , Carnitina/metabolismo , Galinhas/metabolismo , Ovos/análise , Fagopyrum/química , Fagopyrum/microbiologia , Aditivos Alimentares/química , Rhizopus/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Carnitina/análise , Fagopyrum/metabolismo , Feminino , Fermentação , Aditivos Alimentares/metabolismo , Espectrometria de Massas em Tandem , Ácido gama-Aminobutírico/análise
5.
Appl Microbiol Biotechnol ; 100(18): 8105-20, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27260288

RESUMO

Yupingfeng (YPF) is a kind of Astragali radix-based ancient Chinese herbal supplemented with Atractylodis Macrocephalae Rhizoma and Radix Saposhnikoviae. Increasing evidence has proven the beneficial immunomodulating activity of YPF. However, the action mechanism(s) of it is not known. Here, we explored the immunomodulatory activity of unfermented Yupingfeng polysaccharides (UYP) and fermented Yupingfeng polysaccharides (FYP) obtained using Rhizopus oligosporus SH in weaning Rex rabbits. The results showed that both UYP and FYP exhibited notable growth-promoting and immune-enhancing activities, improvement of the intestinal flora homeostasis, and maintenance of intestinal barrier integrity and functionality. Notably, compared with UYP, FYP effectively enhanced average daily gain, organ indices, interleukin-2 (IL-2), IL-4, IL-10, tumor necrosis factor-alpha (TNF-α), TLR2, and TLR4 mRNA levels in spleen, IL-1, IL-2, IL-4, IL-6, IL-10, IL-12, TNF-α, and IFN-γ protein concentrations in serum, and TLR2 and TLR4 mRNA expressions in the gastrointestinal tract (GIT). Moreover, FYP exhibited greater beneficial effects in improving the intestinal flora, including augment flora diversity and the abundance of cellulolytic bacteria, reduction the abundance of Streptococcus spp. and Enterococcus spp. in the GIT, particularly the foregut and maintaining the intestinal barrier integrity and functionality by upregulating zonula occludens 1, claudin, polymeric immunoglobulin receptor, trefoil factor, and epidermal growth factor mRNA levels in the jejunum and ileum. Our results indicated the immunoenhancement effect of FYP is superior over that of UYP, which is probably related with the amelioration of the intestinal microflora and intestinal barrier in the foregut.


Assuntos
Medicamentos de Ervas Chinesas/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Fatores Imunológicos/metabolismo , Polissacarídeos/metabolismo , Animais , Sangue/imunologia , Fermentação , Íleo/fisiologia , Mucosa Intestinal/fisiologia , Jejuno/fisiologia , Prebióticos , Coelhos , Baço/imunologia
6.
J Sci Food Agric ; 96(11): 3779-86, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26676892

RESUMO

BACKGROUND: A plastic composite support (PCS) bioreactor was implemented to evaluate the effects on isoflavone deglycosylation in black soymilk fermented by Rhizopus oligosporus NTU 5. RESULTS: Evaluation for the optimal PCS for mycelia immobilisation was conducted, which led to the significant results that the most mycelium weight (0.237 g per PCS, P < 0.05) is held by an S-type PCS; therefore, it was selected for black soymilk fermentation. It was found that the PCS fermentation system without pH control exhibits better efficiency of isoflavone bioconversion (daidzin to daidzein, and genistin to genistein) than the one with pH control at pH 6.5. As for the long-run fermentation, those without pH control indeed accelerate the isoflavone bioconversion by continuously releasing ß-glucosidase into soymilk. Deglycosylation can be completed in 8 to 24 h and sustained for at least 34 days as 26 batches. The non-pH-control fermentation system also exhibits the highest total phenolic content (ranged from 0.147 to 0.340 mg GAE mL(-1) sample) when compared to the pH-controlled and suspended ones. Meanwhile, the black soymilk from the 22nd batch with 8 h fermentation demonstrated the highest DPPH radical scavenging effect (54.7%). CONCLUSION: A repeated-batch PCS fermentation system was established to accelerate the deglycosylation rate of isoflavone in black soymilk. © 2015 Society of Chemical Industry.


Assuntos
Fermentação , Manipulação de Alimentos/métodos , Isoflavonas/metabolismo , Rhizopus/metabolismo , Leite de Soja/metabolismo , Antioxidantes/farmacologia , Compostos de Bifenilo/metabolismo , Genisteína/metabolismo , Glicosídeos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Picratos/metabolismo , beta-Glucosidase/metabolismo
7.
J Food Sci Technol ; 51(11): 3253-60, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26396318

RESUMO

The raw and processed (cooked and cooked + solid-state fermented with Rhizopus oligosporus) split beans of two landraces of coastal sand dune wild legumes (Canavalia cathartica and Canavalia maritima) of the southwest coast of India were examined for bioactive compounds (total phenolics, tannins and vitamin C) and antioxidant potential (total antioxidant activity, ferrous-ion chelating capacity, DPPH free radical-scavenging activity and reducing activity). One-way ANOVA revealed significant elevation of bioactive compounds as well as antioxidant activities in fermented beans compared to raw and cooked beans in both legumes (p < 0.001). The EC50 values in fermented beans of both legumes were significantly lowest compared to raw and cooked beans (p < 0.001). In principal component analysis, total phenolics along with antioxidant activities (total antioxidant, ferrous-ion chelating and free radical-scavenging activities) of fermented beans of C. cathartica, while total antioxidant and free radical-scavenging activities of fermented beans of C. maritima were clustered. The present study demonstrated that split beans of coastal sand dune Canavalia fermented by R. oligosporus endowed with high bioactive principles as well as antioxidant potential and thus serve as future nutraceutical source.

8.
Food Sci Technol Int ; : 10820132241264443, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39033430

RESUMO

The combination of Saccharomyces cerevisiae and Rhizopus oligosporus liquid inoculum has been successfully used to ferment soybeans into tempeh that contains ß-glucan. However, using the liquid inoculum of these two microbes as a starter is impractical; so, developing an instant tempeh dry inoculum in powdered form, called the Mosaccha inoculum powder, for ease of use is necessary. This study aimed to determine the best concentration of instant Mosaccha inoculum powder to produce high-quality Mosaccha tempeh. The study used a Complete Randomized Block Design with seven different levels of instant Mosaccha inoculum powder percentage, ranging from 0.3% to 1.8% (w/w). A commercial tempeh inoculum, RAPRIMA, amounting to 0.2%, was used as control. Then, the microbiological (total mold and total yeast) and sensory (color, aroma, texture, and taste) properties were evaluated. The data obtained was analyzed statistically using analysis of variance (ANOVA) and Honestly Significant Difference (HSD) tests at the 5% level. The results showed that the percentage of instant Mosaccha inoculum powder significantly affected the microbiological and sensory properties of Mosaccha tempeh. A concentration of Mosaccha inoculum powder between 0.6% to 1.8% could produce good quality Mosaccha tempeh, but the best Mosaccha tempeh was produced with 1.5% instant Mosaccha inoculum powder, which met the Indonesian National Standards (SNI) 3144:2015, had a very favorable taste, and contained 0.49% ß-glucan. Therefore, Mosaccha inoculum in powdered form can be developed and used as a starter in making high-quality tempeh that contains ß-glucan.

9.
Food Sci Biotechnol ; 33(11): 2585-2596, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39144202

RESUMO

Maca (Lepidium meyenii Walp) is renowned for its phytochemicals, including amino acids, saponins, and macamides, confer nutritional and medicinal benefits. This study analyzed the bioactive constituents of maca via solid-state fermentation with Rhizopus oligosporus for 0-15 days. After fermentation, the l-carnitine content reached 157.3 µg/g. A 93% increase in macamide B was recorded after 7-day fermentation. Total flavonoid and saponin contents increased by 88.2% and 110.3%, respectively. The fermentation process significantly enhanced the physicochemical attributes of maca; in particular, its water retention and cholesterol-binding capacities increased by 1.73- and 4.30-fold, respectively, compared with the non-fermented maca. Moreover, fermented maca exhibited stronger antioxidant and α-glucosidase-inhibiting effects than non-fermented maca. Finally, the neuroprotective effect of maca on HT-22 cells increased by 23% after 5-day fermentation. These findings demonstrate the potential of fermented maca as a novel ingredient for foods, beverages, and pharmaceuticals. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01508-6.

10.
Metabolites ; 14(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39057682

RESUMO

Wheat bran (WB) is a low-value by-product of the wheat milling industry. Solid-state fermentation with Rhizopus oligosporus is performed to improve WB's nutritional quality (RH). Twenty-five mice (11-week-old C57BL/6N male mice) were divided into three groups. The first group was fed a control diet (n = 8), the second group a 10% WB-supplemented diet (n = 8), and the last group had a 10% RH-supplemented diet (n = 9). The diet treatment was administered for 4 days before dextran sodium sulfate (DSS, 3% in drinking water) was administered for 9 days. RH supplementation prevented bodyweight loss and reduced the disease activity index in mice. An increase in the level of SCFAs in mouse intestines was detected post-RH supplementation, suggesting that SCFAs might have contributed to its anti-colitis effect. Metabolome analysis was conducted to explore other bioactive compounds in RH. R. oligosporus fermentation significantly increased the amounts of ergothioneine, arginine, branched-chain amino acids, and adenosine in wheat bran. All of these compounds are known to have antioxidant and anti-inflammatory capacities. These bioactive compounds might also have contributed to the RH's ability to ameliorate DSS-induced colitis.

11.
Nutrients ; 16(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542820

RESUMO

Brewers' spent grain (BSG) is a fibre and protein-rich by-product of beer-brewing. Fermenting BSG with Rhizopus oligosporus can further increase its content of soluble fibre, protein and certain antioxidants. Since nutrients rich in BSG can improve postprandial glycaemic response, this study assessed the postprandial glucose response (PPGR) and postprandial insulin response (PPIR) controlling effect of consuming 30% wheat flour substituted biscuits with autoclaved BSG (ABSG) or fermented BSG (FBSG) in individuals with metabolic syndrome (MetS). The effect on postprandial lipid panel, breath hydrogen (H2) and methane (CH4) concentration and subjective appetite response was also examined. Fifteen subjects with MetS participated in this crossover randomised controlled trial, and blood was collected at 9 time-points for 4 h after consumption of control biscuits (Control), ABSG and FBSG. A significant interaction effect was observed (Pinteraction = 0.013) for the glucose time-points concentration. At 180 min, the glucose concentration was lowered after the consumption of ABSG (p = 0.010) and FBSG (p = 0.012) compared to the Control. Moreover, the FBSG resulted in a significantly lower glucose incremental area under curve (iAUC) compared to the Control (p = 0.028). Insulin level was also lowered at 180 min after the ABSG (p = 0.010) and FBSG (p = 0.051) consumption compared to the Control. However, no difference was noted for postprandial lipid panel, breath H2 and CH4 concentration and subjective appetite response. In conclusion, the consumption of BSG-incorporated biscuits can attenuate PPGR, and fermented BSG incorporation conferred a further PPGR controlling benefit.


Assuntos
Insulinas , Síndrome Metabólica , Humanos , Farinha , Triticum , Grão Comestível , Glucose , Lipídeos , Estudos Cross-Over
12.
AMB Express ; 13(1): 94, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689820

RESUMO

Solid-state fermentation (SSF) was used to enhance the bioactive compounds and biological properties of food materials, such as buckwheat, turmeric, and ginseng. This study was investigated the effects of SSF for up to 10 days using Rhizopus oligosporus on Yerba mate (Ilex paraguariensis St. Hilaire). The total phenolic content of Yerba mate rose to 20% after 1 day fermentation. The saponin contents of Yerba mate rose to 38% after 7 day fermentation. Furthermore, chlorogenic acid, caffeic acid, and caffeine levels were increased up to 27.74% by fermentation, as determined by UPLC-MS analysis. ORAC and FRAP assays showed that the antioxidant activities of Yerba mate were enhanced 1.9- and 1.14-fold after 1 day fermentation. In addition, its inhibitory activities against yeast α-glucosidase and nitric oxide release in LPS-stimulated RAW264.7 cells were higher than in the unfermented Yerba mate. Moreover, taste sensory analysis using an electronic tongue sensory system showed that the flavor of Yerba mate after 1 day fermentation was similar to that of the unfermented Yerba mate. These results suggested that solid fermentation using R. oligosporus is conducive to producing Yerba mate with enhanced biological properties.

13.
J Biosci Bioeng ; 135(4): 306-312, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36803861

RESUMO

Tempe is a fermented food prepared by fermenting soybeans with Rhizopus species. However, there have recently been concerns about the stable supply of raw soybeans due to global warming and other factors. Moringa is a plant whose cultivation area is expected to expand in the future, and its seeds contain abundant proteins and lipids, and thus could be used as an alternative to soybeans. To develop a novel functional Moringa food, we fermented dehulled Moringa seeds with Rhizopus oligosporus and Rhizopus stolonifer using the solid fermentation method of tempe and investigated changes in the functional components, such as free amino acids and polyphenols, of the respective obtained Moringa tempe Rm and Rs. After 45 h of fermentation, the total content of free amino acids, mainly including gamma-aminobutyric acid and l-glutamic acid, in Moringa tempe Rm was about three times higher, while that in Moringa tempe Rs was almost the same, compared to that in unfermented Moringa seeds. Moreover, after 70 h of fermentation, both Moringa tempe Rm and Rs had approximately four times higher polyphenol content and significantly higher antioxidant activity than did unfermented Moringa seeds. Further, the content of each residual chitin-binding protein of defatted Moringa tempe Rm and Rs was almost the same as that of unfermented Moringa seeds. Taken together, Moringa tempe was rich in free amino acids and polyphenols, exhibited better antioxidant activity, and retained the levels of its chitin-binding proteins, suggesting that Moringa seeds could be used as an alternative to soybean for tempe preparation.

14.
Food Res Int ; 168: 112707, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120190

RESUMO

The study utilized fresh fourth-day Chenopodium formosanum sprouts as the substrate for Rhizopus oligosporus fermentation. The resultant products showed higher antioxidant capacity than those from C. formosanum grains. Compared to traditional plate fermentation (PF), fermentation in a bioreactor (BF) (35 °C, 0.4 vvm aeration at 5 rpm) led to higher free peptide content (99.56 ± 7.77 mg casein tryptone/g) and enzyme activity (amylase, glucosidase, and proteinase are 2.21 ± 0.01, 54.57 ± 10.88, and 40.81 ± 6.52 U/g, respectively) than traditional plate fermentation (PF). Using mass spectrometry analysis, two peptides TDEYGGSIENRFMN and DNSMLTFEGAPVQGAAAITEK were predicted to possess high bioactive properties as DPP IV and ACE inhibitors. Additionally, over twenty new metabolites (aromatics, amines, fatty acids, and carboxylic acids) were discovered in the BF system compared to its PF counterpart. Results suggest that using a BF system to ferment C. formosanum sprouts is an appropriate method to scale-up fermentation and enhance nutritional values as well as bioactivities.


Assuntos
Chenopodium , Fermentação , Chenopodium/química , Reatores Biológicos , Antioxidantes , Espectrometria de Massas
15.
J Fungi (Basel) ; 8(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36294630

RESUMO

The aim of the present study was to evaluate the use of supercritical CO2 combined with cosolvent for the recovery of bioactive compounds of soybean fermented with Rhizopus oligosporus NRRL 2710. Soxhlet extractions using seven different organic solvents (n-hexane, petroleum ether, ethyl acetate, acetone, ethanol, methanol, and water) were initially performed for comparative purposes. The extracts obtained were characterized by physicochemical, antioxidant, total phenolic, and oxidative proprieties. For the Soxhlet extractions, the highest and lowest yields obtained were 45.24% and 15.56%, using methanol and hexane, respectively. The extraction using supercritical CO2 combined with ethanol as a static modifier (scCO2 + EtOH) presented, at a high pressure (25 MPa) and temperature (80 °C), a phenolic compound content of 1391.9 µg GAE g-1 and scavenging of 0.17 g, reaching a 42.87% yield. The extracts obtained by sCO2 + EtOH were characterized by high contents of essential fatty acids (linoleic acid and oleic acid) and bioactive compounds (gallic acid, trans-cinnamic acid, daidzein, and genistein). These extracts also showed a great potential for inhibiting hyaluronidase enzymes (i.e., anti-inflammatory activity). Thermogravimetric analyses of the samples showed similar profiles, with oil degradation values in the range from 145 to 540 °C, indicating progressive oil decomposition with a mass loss ranging from 93 to 98.7%. In summary, this study demonstrated the flexibility of scCO2 + EtOH as a green technology that can be used to obtain high-value-added products from fermented soybean.

16.
Appl Biochem Biotechnol ; 194(6): 2620-2631, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35230606

RESUMO

The utilization of solid-state fermentation (SSF) of cassava stem, "Manihot esculenta Crantz-MEC", is central in this study for its biochemical characterization and formulation of a new poultry feed using a starter culture of Rhizopus oligosporus strain at specified experimental conditions (26 ± 1 °C, 72 h and pH 6). The coupling of R. oligosporus strain to SSF of cassava stem caused significant increase (p < 0.05) in glucose, total reducing sugar (TRS) and total soluble protein (TSP) concentrations at variable but marked effect at 10% inoculum size of the fermented cassava stem, as compared with the unfermented type. Further evaluations of DPPH-radical scavenging activity, total phenolic and flavonoid contents (TPC and TFC), as indices of correlation to antioxidant activity in both fermented and unfermented cassava stems showed marked significant difference with prominence at 10% inoculum size (p < 0.05). Results of high α-amylase activities were observed in fermented cassava stem when compared with the unfermented type (p < 0.05) at increasing inoculum sizes (5-15%) but with marked dominance at 10%. Broiler chicks fed with formulated feed showed marked increase in weight gain at 10% inoculum size of the fermented cassava stem relative to a typical poultry feed. Also, examination of alkaline phosphatase (ALP) and alanine and aspartate aminotransferases (ALT and AST) showed no marked difference in their activities for fermented feed at increasing inoculum sizes when compared with typical poultry feed, respectively (p > 0.05). The study hereby suggests the use of fermented cassava stem as an alternative raw material during formulation of livestock feeds.


Assuntos
Manihot , Animais , Galinhas , Fermentação , Manihot/química , Aves Domésticas , Verduras
17.
Food Chem X ; 13: 100198, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35499023

RESUMO

This study investigated the effect of solid-state fermentation of wild turmeric (Curcuma aromatica) with Rhizopus oligosporus, a common fungus found in fermented soy tempeh, on phytochemical and biological properties. Ultra-performance liquid chromatography-tandem mass spectrometry showed that fermented wild turmeric has higher concentrations of curcumin, demethoxycurcumin, bisdemethoxycurcumin, phenolic compounds and total flavonoid-curcuminoid after fermentation for 1-, 3-, and 5-day relative to non-fermented turmeric. The l-carnitine content reached 242 µg g-1 extract after fermentation for 7-day. Wild turmeric had 1.47- and 2.25-fold increases in ORAC and FRAP, respectively, after 3-day fermentation. The inhibitory effects of fermented wild turmeric on lipid accumulation from 3T3-L1 cells, nitric oxide production from lipopolysaccharide-stimulated RAW264.7 murine macrophages, and melanin formation by B16F10 mouse melanoma cells with α-MSH increased 1.08-, 1.44-, and 1.52-fold, respectively, after 3-day fermentation. Based on these results, fermented wild turmeric product can be used as a functional ingredient in the cosmeceutical and nutraceutical industries.

18.
J Fungi (Basel) ; 8(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35448563

RESUMO

Being the second-largest country in the production of palm oil, Malaysia has a massive amount of palm kernel expeller (PKE) leftover. For that purpose, black soldier fly larvae (BSFL) are thus employed in this study to valorize the PKE waste. More specifically, this work elucidated the effects of the pre-fermentation of PKE via different amounts of Rhizopus oligosporus to enhance PKE palatability for the feeding of BSFL. The results showed that fermentation successfully enriched the raw PKE and thus contributed to the better growth of BSFL. BSFL grew to be 34% heavier at the optimum inoculum volume of 0.5 mL/10 g dry weight of PKE as compared to the control. Meanwhile, excessive fungal inoculum induced competition between BSFL and R. oligosporus, resulting in a reduction in BSFL weight. Under optimum feeding conditions, BSFL also registered the highest lipid yield (24.7%) and protein yield (44.5%). The biodiesel derived from BSFL lipid had also shown good compliance with the European biodiesel standard EN 14214. The high saturated fatty acid methyl esters (FAMEs) content (C12:0, C14:0, C16:0) in derived biodiesel made it highly oxidatively stable. Lastly, the superior degradation rate of PKE executed by BSFL further underpinned the sustainable conversion process in attaining valuable larval bioproducts.

19.
Life (Basel) ; 12(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36362870

RESUMO

Soy isoflavones possess antioxidative, anti-inflammatory, anti-diabetic and phytoestrogenic properties. Soybean residue contains a fair amount of nutrients such as glycosylated isoflavones, minerals and dietary fibers, and is a substantial waste product produced from soymilk and tofu manufacturing. A solid-state fermentation of soybean residue by Rhizopus oligosporus or co-inoculated with Lactiplantibacillus plantarum improves the availability of isoflavones and GABA content which is attributed to ameliorated hyperglycemic symptoms in STZ-induced hyperglycemic mice. The effortless solid-state fermentation with present microbial manipulation supports an anti-hyperglycemia value-added application of soybean residue for functional food development. Background: Due to an awareness of the food crisis and with a rapidly rising prevalence of diabetes, recycling the substantial fibrous soybean residue disposed from soy industries has received consideration. Methods: Lactiplantibacillus plantarum was previously screened for active glutamate decarboxylase, and ß-glucosidase activities were adopted for the fermenting of soybean residue using a traditional tempeh solid-state fermenting process with fungal Rhizopus oligosporus. Fermented soybean residue was chemically analyzed and functionally assessed in in vitro and in vivo hyperglycemic conditions. Results: A 48 h longer solid-state fermentation of the soybean residue co-inoculated with R. oligosporus and L. plantarum showed improved contents of isoflavone aglycones and GABA which were attributed to augmented antioxidative capacity, lowered ROS level, improved blood biochemistry, and better blood glucose homeostasis in STZ-induced hyperglycemic mice. Conclusion: The advantages of a food industrial effortless fermentation process, and a health nutritional endorsing anti-hyperglycemic value-added property offer a practical alternative in recycled soybean residue.

20.
Braz J Microbiol ; 41(4): 1124-32, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24031595

RESUMO

The present investigation deals with the kinetics of submerged extracellular lipases fermentation by both wild and mutant strains of Rhizopus oligosporus var.microsporus in a laboratory scale stirred fermentor. Other parameters studied were inoculum size, pH, agitation and rate of aeration. It was found that the growth and lipases production was increased gradually and reached its maximum 9.07± 0.42(a) U mL(-1) (W) and 42.49 ± 3.91(a) U mL(-1) (M) after 30h of fermentation for both wild and mutant strain. There is overall increase of 109% (W) and 124% (M) in the production of extracellular lipases as compared to shake flask. Another significant finding of the present study is that the fermentation period is reduced to 30 h in case of wild and 23 h in case of mutant from 48 h in shake flask studies. The specific productivity of mutant strain (qp = 377.3 U/g cells/h) was several folds higher than wild strain. The specific production rate and growth coefficient revealed the hyperproducibility of extracellular lipases using mutant IIB-63NTG-7.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA