RESUMO
Different phosphorus (P)-acquisition strategies may be relevant for species coexistence and plant performance in terrestrial communities on P-deficient soils. However, how interspecific P facilitation functions in natural systems is largely unknown. We investigated the root physiological activities for P mobilization across 19 coexisting plant species in steppe vegetation, and then grew plants with various abilities to mobilize sorbed P in a microcosm in a glasshouse. We show that P facilitation mediated by rhizosphere processes of P-mobilizing species promoted growth and increased P content of neighbors in a species-specific manner. When roots interacted with a facilitating neighbor, Cleistogenes squarrosa and Bromus inermis tended to show greater plasticity of root proliferation or rhizosheath acid phosphatase activity compared with other non-P-mobilizing species. Greater variation in these root traits was strongly correlated with increased performance in the presence of a facilitator. The results also show, for the first time, that P facilitation was an important mechanism underlying a positive complementarity effect. Our study highlights that interspecific P-acquisition facilitation requires that facilitated neighbors exhibit a better match of root traits with a facilitating species. It provides a better understanding of species coexistence in P-limited communities.
Assuntos
Fósforo , Solo , Fenótipo , Raízes de Plantas , Poaceae , RizosferaRESUMO
The potential impacts of biodegradable and nonbiodegradable microplastics (MPs) on rhizosphere microbial nitrogen (N) transformation processes remain ambiguous. Here, we systematically investigated how biodegradable (polybutylene succinate, PBS) MPs and nonbiodegradable (polyethylene, PE) MPs affect microbial N processes by determining rhizosphere soil indicators of typical Glycine max (soybean)-soil (i.e., red and brown soils) systems. Our results show that MPs altered soil pH and dissolved organic carbon in MP/soil type-dependent manners. Notably, soybean growth displayed greater sensitivity to 1% (w/w) PBS MP exposure in red soil than that in brown soil since 1% PBS acidified the red soil and impeded nutrient uptake by plants. In the rhizosphere, 1% PBS negatively impacted microbial community composition and diversity, weakened microbial N processes (mainly denitrification and ammonification), and disrupted rhizosphere metabolism. Overall, it is suggested that biodegradable MPs, compared to nonbiodegradable MPs, can more significantly influence the ecological function of the plant-soil system.
Assuntos
Plásticos Biodegradáveis , Biodegradação Ambiental , Glycine max , Microplásticos , Microbiologia do Solo , Solo , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/metabolismo , Concentração de Íons de Hidrogênio , Microplásticos/química , Microplásticos/metabolismo , Solo/química , Glycine max/química , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Glycine max/microbiologia , Nitrogênio/metabolismo , Rizosfera , Fenômenos Químicos , MicrobiotaRESUMO
Introduction: Phosphorus (P) fertilizer is critical to maintain a high yield and quality of alfalfa (Medicago sativa L.). There are several fertilizer types and soil types in China, and the application of a single type of P fertilizer may not be suitable for present-day alfalfa production. Methods: In order to select the optimal combination of alfalfa and soil type and fertilizer type for improving P utilization efficiency. We conducted a greenhouse pot experiment, calcium superphosphate (SSP), diammonium phosphate (DAP), ammonium polyphosphate (APP), potassium dihydrogen phosphate (KP), and no-fertilizer control treatments were applied to alfalfa in sandy and saline-alkali soils. The response of alfalfa root morphology and rhizosphere processes to different P fertilizers was investigated. Results and discussion: The results showed that shoot biomass of alfalfa was slightly higher in sandy soil than in saline-alkali soil. Shoot biomass of alfalfa increased by 223%-354% in sandy soil under P treatments compared with the control, and total root length increased significantly by 74% and 53% in DAP and SSP treatments, respectively. In saline-alkali soil, alfalfa shoot biomass was significantly increased by 229% and 275% in KP and DAP treatments, and total root length was increased by 109% only in DAP treatment. Net P uptake of alfalfa in DAP treatment was the highest in both soils, which were 0.73 and 0.54 mg plant-1, respectively. Alfalfa shoot P concentration was significantly positively correlated with shoot and root biomass (P < 0.05, 0.01 or 0.001) whereas negatively correlated with acid phosphatase concentration (P < 0.05). Improvement of plant growth and P uptake induced by P fertilizer application was greater in sandy soil than in saline-alkali soil. DAP and KP was the most efficient P fertilizers in both sandy soil and saline-alkali soil.
RESUMO
Microplastics (MPs) and heavy metals often coexist in soil, drawing significant attention to their interactions and the potential risks of biological accumulation in the soil-plant system. This paper comprehensively reviews the factors and biochemical mechanisms that influence the uptake of heavy metals by plants, in the existence of MPs, spanning from rhizospheric soil to the processes of root absorption and transport. The paper begins by introducing the origins and current situation of soil contamination with both heavy metals and MPs. It then discusses how MPs alter the physicochemical properties of rhizospheric soil, with a focus on parameters that affect the bioavailability of heavy metals such as aggregates, pH, Eh, and soil organic carbon (SOC). The paper also examines the effect of this pollution on soil organisms and plant growth and reviews the mechanisms by which MPs affect the bioavailability and movement-transformation of heavy metals in rhizospheric soil. This examination emphasizes the roles of rhizospheric microbes, soil fauna, and root physiological metabolism. Finally, the paper outlines the research progress on the mechanisms by which MPs influence the uptake and transport of heavy metals by plant roots. Through this comprehensive review, this paper provides aims to provide environmental managers with a detailed understanding of the potential impact of the coexistence of MPs and heavy metals on the soil-plant ecosystem.
Assuntos
Metais Pesados , Poluentes do Solo , Solo/química , Microplásticos , Plásticos , Ecossistema , Carbono , Metais Pesados/análise , Plantas/metabolismo , Poluentes do Solo/análiseRESUMO
Despite the enormous benefits that plastics bring to our daily lives, plastics accumulate in the environment, especially microplastics (MPs; defined as particles <5 mm), which can cause many problems and potential loss of ecosystem services. Current research has shown the significant impact of MPs on aquatic systems, but little is known about their effect on terrestrial systems, especially within agroecosystems. Here, we investigated the effect of MPs types (PS, PE and PVC) on plant growth, soil enzyme activities, and microbial communities. MPs had a positive, type-dependent influence on plant growth affecting both above and below-ground productivity. MPs, especially PVC increased dry weights (+69.51 and + 164.62), and root length (+54.81) relative to control. Although the activity of ß-glucosidase, alkaline phosphatase, cellobiohydrolase, leucine-aminopeptidase, and dehydrogenase was suppressed by MPs except urease activity which was enhanced by MPs addition. The type of MPs in soil significantly altered C flow through the soil-plant system, indicating that MPs adversely affect many C-dependent soil functions. However, MPs (especially PVC) enhanced microbial biomass carbon (+14.88%) and altered the structure and metabolic status of the microbial community. MPs addition (especially PVC) greatly enhanced soil microbial structure (+29.59%; indicated by PLFAs) compared to control. Here we provide evidence that MPs can have significant effects on key pools and fluxes within the terrestrial C cycle, with responses being MPs type-dependent. Therefore, we concluded that MPs in soil are not benign and every step should be taken to restrict their access to the soil-plant system and their potential to transfer into the food chain.
Assuntos
Microbiota , Poluentes do Solo , Microplásticos , Plásticos , Solo/química , Ecossistema , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , PlantasRESUMO
The inefficient utilization of nitrogen (N) in soil and drought stress seriously threatens agricultural and food production. Herein, soil application of carbon dots (CDs, 5 mg kg-1) promoted the growth and nutritional quality of soybeans by improving N bioavailability, which was beneficial to alleviate the economic losses caused by drought stress. Soil application of CDs enhanced the N-fixing ability of nodules, regulated rhizosphere processes, and ultimately enhanced N and water uptake in soybeans under drought stress. Compared to control (drought stress), the application of CDs under drought stress enhanced soybean nitrogenase activity by 8.6% and increased N content in soybean shoots and roots by 18.5% and 14.8%, respectively. CDs in soil promoted the secretion of root exudates (e.g., organic acids, fatty acids, and polyketides) and regulated beneficial microbial communities (e.g., Proteobacteria, Acidobacteria, Gemmatimonadetes, and Actinobacteria), thus enhancing the N release from soil. Besides, compared to control, the expression of GmNRT, GmAMT, GmLB, and GmAQP genes in roots were upregulated by 1.2-, 1.8-, 2.7-, and 2.3-fold respectively, implying enhanced N transport and water uptake. Furthermore, the proteins, fatty acids, and amino acids in soybean grains were improved by 3.4%, 6.9%, and 17.3%, respectively, as a result of improved N bioavailability. Therefore, CD-enabled agriculture is promising for improving the drought tolerance and quality of soybeans, which is of significance for food security in facing the crisis of global climate change.
Assuntos
Secas , Glycine max , Glycine max/metabolismo , Nitrogênio/metabolismo , Carbono , Disponibilidade Biológica , Solo , Água/metabolismo , Bactérias/metabolismo , Valor Nutritivo , Ácidos Graxos/metabolismo , Raízes de Plantas/metabolismoRESUMO
Clonal integration plays an important role in clonal plant adapting to heterogeneous habitats. It was postulated that clonal integration could exhibit positive effects on nitrogen cycling in the rhizosphere of clonal plant subjected to heterogeneous light conditions. An in-situ experiment was conducted using clonal fragments of Phyllostachys bissetii with two successive ramets. Shading treatments were applied to offspring or mother ramets, respectively, whereas counterparts were treated to full sunlight. Rhizomes between two successive ramets were either severed or connected. Extracellular enzyme activities and nitrogen turnover were measured, as well as soil properties. Abundance of functional genes (archaeal or bacterial amoA, nifH) in the rhizosphere of shaded, offspring or mother ramets were determined using quantitative polymerase chain reaction. Carbon or nitrogen availabilities were significantly influenced by clonal integration in the rhizosphere of shaded ramets. Clonal integration significantly increased extracellular enzyme activities and abundance of functional genes in the rhizosphere of shaded ramets. When rhizomes were connected, higher nitrogen turnover (nitrogen mineralization or nitrification rates) was exhibited in the rhizosphere of shaded offspring ramets. However, nitrogen turnover was significantly decreased by clonal integration in the rhizosphere of shaded mother ramets. Path analysis indicated that nitrogen turnover in the rhizosphere of shaded, offspring or mother ramets were primarily driven by the response of soil microorganisms to dissolved organic carbon or nitrogen. This unique in-situ experiment provided insights into the mechanism of nutrient recycling mediated by clonal integration. It was suggested that effects of clonal integration on the rhizosphere microbial processes were dependent on direction of photosynthates transport in clonal plant subjected to heterogeneous light conditions.