Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
FASEB J ; 37(9): e23161, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37638562

RESUMO

Yes-associated protein (YAP) is a transcriptional co-activator that controls the transcription of target genes and modulates the structures of various cytoskeletal architecture as mechanical responses. Although it has been known that YAP regulates actin-regulatory proteins, the detailed molecular mechanism of how they control and coordinate intracellular actin architecture remains elusive. Herein, we aimed to examine the structure and dynamics of intracellular actin architecture from molecular to cellular scales in normal and YAP-knockout (YAP-KO) cells utilizing high-speed atomic force microscopy (HS-AFM) for live-cell imaging and other microscope-based mechanical manipulation and measurement techniques. YAP-KO Madin-Darby canine kidney cells had a higher density and turnover of actin filaments in the cell cortex and a higher elastic modulus. Laser aberration assay demonstrated that YAP-KO cells were more resistant to damage than normal cells. We also found that Rho GTPase-activating protein 18 (ARHGAP18), a downstream factor of YAP, translocated from the cortex to the edge of sparsely cultured YAP-KO cells. It resulted in high RhoA activity and promotion of actin polymerization in the cell cortex and their reductions at the edge. HS-AFM imaging of live cell edge and a cell-migration assay demonstrated lower membrane dynamics and motility of YAP-KO cells than those of normal cells, suggesting lower actin dynamics at the edge. Together, these results demonstrate that a YAP-dependent pathway changes the intracellular distribution of RhoGAP and modulates actin dynamics in different parts of the cell, providing a mechanistic insight into how a mechano-sensitive transcription cofactor regulates multiple intracellular actin architecture and coordinates mechano-responses.


Assuntos
Actinas , Proteínas de Sinalização YAP , Animais , Cães , Proteínas Ativadoras de GTPase , Fatores de Transcrição , Microscopia de Força Atômica
2.
Neurobiol Dis ; 188: 106344, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37926169

RESUMO

Epilepsy, a common complication of diffuse low-grade gliomas (DLGGs; diffuse oligodendroglioma and astrocytoma collectively), severely compromises the quality of life of patients. DLGG epileptogenicity may primarily be generated by interactions between the tumor and the neocortex. Neuronal uptake of dysfunctional mitochondria from the extracellular environment can lead to abnormal neuronal discharge. Mitochondrial dysfunction is frequently observed in gliomas that can transmigrate across the plasma membranes. Here, we examined the role of the Rho GTPase-activating protein 44 (RICH2) in mitochondrial dynamics and DLGG-related epilepsy. We investigated the association between mitochondrial and RICH2 expression in human DLGG tissues using immunohistochemistry. We examined the association between RICH2 and epilepsy in nude mouse glioma models by electrophysiology. The effect of RICH2 on mitochondrial morphology and calcium motility were assessed by single cell fluorescence microscopy. Quantitative RT-PCR (qRT-PCR) and Western blot analysis were performed to characterize RICH2 induced expression changes in the genes related to mitochondrial dynamics, mitogenesis and mitochondrial function. We found that RICH2 expression was higher in oligodendroglioma than in astrocytoma and was correlated with better prognosis and higher epilepsy rate in patients. The expression of mitochondria may be associated with clinical DLGG-related epilepsy and reduced by RICH2 overexpression. And RICH2 could promote DLGG-related epilepsy in tumorigenic nude mice. RICH2 overexpression decreased calcium flow and the mitochondria released from glioma cells (SW1088 and U251) into the extracellular environment, potentially via downregulation of MFN-1/MFN-2 levels which suggests reduced mitochondrial fusion. In addition, we observed decreased mitochondrial trafficking into neurons (released from glioma cells and trafficked into neurons), which could explain the higher incidence of DLGG-related epilepsy due to reduced neuroprotection. Furthermore, RICH2 downregulated MAPK/ERK/HIF-1 pathway. In conclusion, these results suggest that RICH2 could promote epilepsy by (i) inhibiting mitochondrial fusion via MFN downregulation and Drp-1 upregulation; (ii) altering the MAPK/ERK/Hif-1 signaling axis. RICH2 may be a potential target in the treatment of DLGG-related epilepsy.


Assuntos
Astrocitoma , Glioma , Oligodendroglioma , Animais , Camundongos , Humanos , Cálcio , Camundongos Nus , Qualidade de Vida , Mitocôndrias
3.
Dev Dyn ; 251(11): 1897-1907, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36008362

RESUMO

BACKGROUND: During eye development the lens placode invaginates to form the lens pit. Further bending of lens epithelium and separation from ectoderm leads eventually to a spherical lens vesicle with enclosed extracellular fluid. Changes in epithelial morphology involve the actin cytoskeleton and its regulators. The myosin Myo9b is simultaneously an actin-based motor and Rho GTPase-activating protein that regulates actin cytoskeleton organization. Myo9b-deficient adult mice and embryos were analyzed for eye malformations and alterations in lens development. RESULTS: Myo9b-deficient mice showed a high incidence of microphthalmia and cataracts with occasional blepharitis. Formation of the lens vesicle during embryonic lens development was disordered in virtually all embryos. Lens placode invagination was less deep and gave rise to a conical structure instead of a spherical pit. At later stages either no lens vesicle was formed or a significantly smaller one that was not enclosed by the optic cup. Expression of the cell fate marker Pax6 was not altered. Staining of adherens junctions and F-actin was most intense at the tip of conical invaginations, suggesting that mechanical forces are not properly coordinated between epithelial cells that form the pit. CONCLUSIONS: Myo9b is a critical regulator of ocular lens vesicle morphogenesis during eye development.


Assuntos
Cristalino , Morfogênese , Miosinas , Animais , Camundongos , Actinas/fisiologia , Olho , Cristalino/embriologia , Miosinas/fisiologia
4.
Genet Med ; 24(12): 2501-2515, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178483

RESUMO

PURPOSE: The study aimed to identify novel genes for idiopathic hypogonadotropic hypogonadism (IHH). METHODS: A cohort of 1387 probands with IHH underwent exome sequencing and de novo, familial, and cohort-wide investigations. Functional studies were performed on 2 p190 Rho GTPase-activating proteins (p190 RhoGAP), ARHGAP35 and ARHGAP5, which involved in vivo modeling in larval zebrafish and an in vitro p190A-GAP activity assay. RESULTS: Rare protein-truncating variants (PTVs; n = 5) and missense variants in the RhoGAP domain (n = 7) in ARHGAP35 were identified in IHH cases (rare variant enrichment: PTV [unadjusted P = 3.1E-06] and missense [adjusted P = 4.9E-03] vs controls). Zebrafish modeling using gnrh3:egfp phenotype assessment showed that mutant larvae with deficient arhgap35a, the predominant ARHGAP35 paralog in the zebrafish brain, display decreased GnRH3-GFP+ neuronal area, a readout for IHH. In vitro GAP activity studies showed that 1 rare missense variant [ARHGAP35 p.(Arg1284Trp)] had decreased GAP activity. Rare PTVs (n = 2) also were discovered in ARHGAP5, a paralog of ARHGAP35; however, arhgap5 zebrafish mutants did not display significant GnRH3-GFP+ abnormalities. CONCLUSION: This study identified ARHGAP35 as a new autosomal dominant genetic driver for IHH and ARHGAP5 as a candidate gene for IHH. These observations suggest a novel role for the p190 RhoGAP proteins in GnRH neuronal development and integrity.


Assuntos
Hipogonadismo , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Hipogonadismo/genética , Hormônio Liberador de Gonadotropina/genética , Proteínas Repressoras , Fatores de Troca do Nucleotídeo Guanina , Proteínas Ativadoras de GTPase/genética
5.
J Cell Sci ; 132(11)2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31076513

RESUMO

Cancer cells degrade the extracellular matrix through actin-rich protrusions termed invadopodia. The formation of functional invadopodia requires polarized membrane trafficking driven by Rho GTPase-mediated cytoskeletal remodeling. We identify the Rho GTPase-activating protein deleted in liver cancer 3 (DLC3; also known as STARD8) as an integral component of the endosomal transport and sorting machinery. We provide evidence for the direct regulation of RhoB by DLC3 at endosomal membranes to which DLC3 is recruited by interacting with the sorting nexin SNX27. In TGF-ß-treated MCF10A breast epithelial cells, DLC3 knockdown enhanced metalloproteinase-dependent matrix degradation, which was partially rescued by RhoB co-depletion. This was recapitulated in MDA-MB-231 breast cancer cells in which early endosomes demonstrated aberrantly enriched F-actin and accumulated the metalloproteinase MT1-MMP (also known as MMP14) upon DLC3 knockdown. Remarkably, Rab4 (herein referring to Rab4A) downregulation fully rescued the enhanced matrix degradation of TGF-ß-treated MCF10A and MDA-MB-231 cells. In summary, our findings establish a novel role for DLC3 in the suppression of MT1-MMP-dependent matrix degradation by inactivating RhoB signaling at endosomal membranes. We propose that DLC3 function is required to limit endosomal actin polymerization, Rab4-dependent recycling of MT1-MMP and, consequently, matrix degradation mediated by invadopodial activity.


Assuntos
Endossomos/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Proteína rhoB de Ligação ao GTP/metabolismo , Actinas/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Matriz Extracelular/metabolismo , Feminino , Proteínas Ativadoras de GTPase/genética , Células HEK293 , Células HeLa , Humanos , Podossomos/fisiologia , Nexinas de Classificação/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Proteínas rab4 de Ligação ao GTP/metabolismo
6.
J Cell Biochem ; 120(6): 10106-10117, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30592323

RESUMO

The Rho family plays crucial roles in O2 -induced vasoconstriction, cell proliferation, and migration. Rho GTPase-activating protein 26 (ARHGAP26) is a GTPase-activating protein for the small GTPases of the Rho family. Our previous studies have demonstrated that ARHGAP26 expression was significantly downregulated in patent human ductus arteriosus (DA) tissue. However, its role underlying the maintenance of DA patency is unclear. In this study, patent (fetal) and constricted (newborn) mouse DA tissues were harvested to confirm the differences in the levels of expression of ARHGAP26. Human DA smooth muscle cells (DASMCs) were isolated and cultured in vitro and used to test the function of ARHGAP26. The expression of ARHGAP26 was significantly lower in patent (fetal) than constricted (newborn) mouse DA. ARHGAP26-knocked-down human DASMCs showed reduced proliferation and migration, which are both crucial to anatomic closure of DA. Moreover, after culturing under hypoxic conditions, the expression of ARHGAP26 in human DASMCs was significantly lower and hypoxia-induced ARHGAP26 deficiency activated the phosphorylation level of phosphatase and tensin homolog (PTEN) in DASMCs by mediating the activity of RhoA and RhoA-associated kinase 1 (ROCK1). Use of Y27632, an inhibitor of ROCK which further reduces the phospholipid activity of PTEN can reverse the inhibitory effect of PTEN on the proliferation and migration of human DASMCs. This provides insight into the molecular regulation of the RhoA-ROCK-PTEN pathway in DA smooth muscle cells, which may be a suitable therapeutic target or diagnostic biomarker for perinatal DA tone management.


Assuntos
Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Canal Arterial/metabolismo , Enzimas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Animais Recém-Nascidos , Hipóxia Celular , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Canal Arterial/citologia , Canal Arterial/embriologia , Permeabilidade do Canal Arterial/genética , Permeabilidade do Canal Arterial/metabolismo , Proteínas Ativadoras de GTPase/deficiência , Proteínas Ativadoras de GTPase/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/citologia , PTEN Fosfo-Hidrolase/metabolismo , Interferência de RNA , Transdução de Sinais/fisiologia , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
7.
J Cell Biochem ; 120(1): 439-451, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30216523

RESUMO

Gastric cancer (GC) is one of the main causes of cancer-related mortality worldwide. Epithelial-mesenchymal transition (EMT) is an important biological process involving the process by which malignant tumor cells obtain the ability of migration, invasion, resistance of apoptosis, and degradation in the extracellular matrix. The current study aimed at investigating whether bone marrow X kinase Rho GTPase activating protein 12 (BMX-ARHGAP) fusion gene affects GC. First, short hairpin RNA (shRNA) against BMX-ARHGAP or BMX-ARHGAP were introduced to treat SGC-7901 cells with the highest BMX-ARHGAP among the five GC cell lines (SGC-7901, MKN-45, NCI-N87, SNU-5, and AGS). Next, cell vitality, drug resistance, migration, and invasion of SGC-7901 cells, activities of Rho and JAK/STAT axis, as well as EMT and lymph node metastasis (LNM) were evaluated. The survival rate of the mice was then determined through the transfection of the specific pathogen-free NOD-SCID mice with treated SGC-7901 cells. The results showed that BMX-ARHGAP expression was associated with the infiltration degree of GC tumor and poor prognosis for patients with GC. BMX-ARHGAP silencing was found to play an inhibitory role in the Rho and JAK/STAT axis to reduce cell vitality, drug resistance, migration and invasion, reverse EMT process, as well as inhibit LNM. BMX-ARHGAP overexpression was observed to have induced effects on GC cells as opposed to those inhibited by BMX-ARHGAP silencing. The survival rate of mice was increased after transfection with silenced BMX-ARHGAP. These findings provided evidence that the suppression of BMX-ARHGAP resulted in the inhibition of RhoA to restraint the development of GC cells by blocking the JAK/STAT axis.


Assuntos
Transição Epitelial-Mesenquimal/genética , Proteínas Ativadoras de GTPase/genética , Janus Quinase 2/metabolismo , Proteínas Tirosina Quinases/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/patologia , Proteína rhoA de Ligação ao GTP/metabolismo , Adulto , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Sobrevivência Celular/genética , Feminino , Seguimentos , Proteínas Ativadoras de GTPase/metabolismo , Inativação Gênica , Humanos , Janus Quinase 2/antagonistas & inibidores , Metástase Linfática , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Prognóstico , Intervalo Livre de Progressão , Proteínas Tirosina Quinases/metabolismo , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/antagonistas & inibidores , Neoplasias Gástricas/mortalidade , Taxa de Sobrevida , Transfecção , Transplante Heterólogo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores
8.
J Cell Sci ; 129(19): 3583-3596, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27505894

RESUMO

The spatial regulation of cellular Rho signaling by GAP proteins is still poorly understood. By performing mass spectrometry, we here identify the polarity protein Scribble as a scaffold for the RhoGAP protein DLC3 (also known as StarD8) at cell-cell adhesions. This mutually dependent interaction is mediated by the PDZ domains of Scribble and a PDZ ligand (PDZL) motif in DLC3. Both Scribble depletion and PDZL deletion abrogated DLC3 junctional localization. Using a RhoA biosensor and a targeted GAP domain, we demonstrate that DLC3 activity locally regulates RhoA-ROCK signaling at and Scribble localization to adherens junctions, and is required for their functional integrity. In a 3D model of cyst development, we furthermore show that DLC3 depletion impairs polarized morphogenesis, phenocopying the effects observed upon Scribble knockdown. We thus propose a new function for Scribble in Rho regulation that entails positioning of DLC3 GAP activity at cell junctions in polarized epithelial cells.


Assuntos
Junções Aderentes/metabolismo , Polaridade Celular , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Células CACO-2 , Adesão Celular , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Ligantes , Células MCF-7 , Proteínas de Membrana/química , Domínios PDZ , Ligação Proteica , Proteínas Supressoras de Tumor/química , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
9.
Chin J Cancer Res ; 30(1): 112-121, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29545725

RESUMO

OBJECTIVE: Triple-negative breast cancer (TNBC) is highly invasive and metastatic, which is in urgent need of transformative therapeutics. Tubeimu (TBM), the rhizome of Bolbostemma paniculatum (Maxim.) Franquet, is one of the Chinese medicinal herbs used for breast diseases since the ancient times. The present study evaluated the efficacy, especially the anti-metastatic effects of the dichloromethane extract of Tubeimu (ETBM) on TNBC orthotopic mouse models and cell lines. METHODS: We applied real-time imaging on florescent orthotopic TNBC mice model and tested cell migration and invasion abilities with MDA-MB-231 cell line. Digital gene expression sequencing was performed and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis applied to explore the pathways influenced by ETBM. Moreover, quantitative real-time polymerase chain reactions (qRT-PCR) and Western blot were delivered to confirm the gene expression changes. RESULTS: ETBM exhibited noticeable control on tumor metastasis and growth of TNBC tumors with no obvious toxicity. In compliance with this, it also showed inhibition of cell migration and invasion in vitro. Its impact on the changed biological behavior in TNBC may be a result of decreased expression of integrin ß1 (ITGß1), integrin ß8 (ITGß8) and Rho GTPase activating protein 5 (ARHGAP5), which disabled the focal adhesion pathway and caused change in cell morphology. CONCLUSIONS: This study reveals that ETBM has anti-metastatic effects on MDA-MB-231-GFP tumor and may lead to a new therapeutic agent for the integrative treatment of highly invasive TNBC.

10.
J Cell Sci ; 128(7): 1386-99, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25673874

RESUMO

Membrane trafficking is known to be coordinated by small GTPases, but the identity of their regulators, the guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) that ensure balanced GTPase activation at different subcellular sites is largely elusive. Here, we show in living cells that deleted in liver cancer 3 (DLC3, also known as STARD8) is a functional Rho-specific GAP protein, the loss of which enhances perinuclear RhoA activity. DLC3 is recruited to Rab8-positive membrane tubules and is required for the integrity of the Rab8 and Golgi compartments. Depletion of DLC3 impairs the transport of internalized transferrin to the endocytic recycling compartment (ERC), which is restored by the simultaneous downregulation of RhoA and RhoB. We further demonstrate that DLC3 loss interferes with epidermal growth factor receptor (EGFR) degradation associated with prolonged receptor signaling. Taken together, these findings identify DLC3 as a novel component of the endocytic trafficking machinery, wherein it maintains organelle integrity and regulates membrane transport through the control of Rho activity.


Assuntos
Endocitose , Proteínas Ativadoras de GTPase/metabolismo , Complexo de Golgi/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas Ativadoras de GTPase/genética , Complexo de Golgi/genética , Células HeLa , Humanos , Ligação Proteica , Transporte Proteico , Transferrina/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoB de Ligação ao GTP/genética , Proteína rhoB de Ligação ao GTP/metabolismo
11.
FEMS Yeast Res ; 17(8)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29177429

RESUMO

Cryptococcus neoformans is a basidiomycetous pathogenic yeast that causes fatal infections in both immunocompetent and immunocompromised patients. Regulation on the production of its virulence factors is not fully understood. Here we reported the characterization of a gene, named CVH1(CNA06260), encoding a Drosophila Vilse-like RhoGAP homolog, which is hallmarked by three conserved functional domains: WW, MyTH4 and RhoGAP. Phylogenetic analysis suggests that CVH1 is highly conserved from protists to mammals and interestingly in basidiomycetes, but absent in plants or Ascomycota and other lower fungi. This phylogenetic distribution indicates an evolutionary link among these groups of organisms. Functional analyses demonstrated that CVH1 was involved in stress tolerance and virulence factor production. By disrupting CVH1, we created a second mutant cvh1Δ with the CRISPR-Cas9 editing tool. The mutant strain exhibited hypersensitivity to osmotic stress by 2 M sorbitol and NaCl, suggesting defects in the HOG signaling pathway and an interaction of Cvh1 with the HOG pathway. Hypersensitivity of cvh1Δ to 1% Congo red and 0.01% SDS suggests that the cell wall integrity was impaired in the mutant. And cvh1Δ hardly produced the pigment melanin and capsule. Our study for the first time demonstrates that the fungal Vilse-like RhoGAP CVH1 is an important regulator of multiple biological processes in C. neoformans, and provides novel insights into the regulatory circuit of stress resistance/cell wall integrity, and laccase and capsule synthesis in C. neoformans.


Assuntos
Cryptococcus neoformans/fisiologia , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Biomarcadores , Sistemas CRISPR-Cas , Parede Celular/metabolismo , Cryptococcus neoformans/classificação , Edição de Genes , Regulação Fúngica da Expressão Gênica , Humanos , Melaninas/metabolismo , Mutação , Pressão Osmótica , Filogenia , Transdução de Sinais , Fatores de Virulência
12.
Proc Natl Acad Sci U S A ; 110(42): 16868-73, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24082123

RESUMO

DLC1 encodes a RhoA GTPase-activating protein and tumor suppressor lost in cancer by genomic deletion or epigenetic silencing and loss of DLC1 gene transcription. We unexpectedly identified non-small cell lung cancer (NSCLC) cell lines and tumor tissue that expressed DLC1 mRNA yet lacked DLC1 protein expression. We determined that DLC1 was ubiquitinated and degraded by cullin 4A-RING ubiquitin ligase (CRL4A) complex interaction with DDB1 and the FBXW5 substrate receptor. siRNA-mediated suppression of cullin 4A, DDB1, or FBXW5 expression restored DLC1 protein expression in NSCLC cell lines. FBXW5 suppression-induced DLC1 reexpression was associated with a reduction in the levels of activated RhoA-GTP and in RhoA effector signaling. Finally, FBXW5 suppression caused a DLC1-dependent decrease in NSCLC anchorage-dependent and -independent proliferation. In summary, we identify a posttranslational mechanism for loss of DLC1 and a linkage between CRL4A-FBXW5-associated oncogenesis and regulation of RhoA signaling.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas Culina/metabolismo , Proteínas F-Box/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Neoplasias Pulmonares/metabolismo , Proteólise , Proteínas Supressoras de Tumor/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proteínas Culina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas F-Box/genética , Proteínas Ativadoras de GTPase/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitinação/genética
13.
Am J Physiol Renal Physiol ; 309(6): F501-13, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26136556

RESUMO

Mammalian class IX myosin Myo9a is a single-headed, actin-dependent motor protein with Rho GTPase-activating protein activity that negatively regulates Rho GTPase signaling. Myo9a is abundantly expressed in ciliated epithelial cells of several organs. In mice, genetic deletion of Myo9a leads to the formation of hydrocephalus. Whether Myo9a also has essential functions in the epithelia of other organs of the body has not been explored. In the present study, we report that Myo9a-deficient mice develop bilateral renal disease, characterized by dilation of proximal tubules, calyceal dilation, and thinning of the parenchyma and fibrosis. These structural changes are accompanied by polyuria (with normal vasopressin levels) and low-molecular-weight proteinuria. Immunohistochemistry revealed that Myo9a is localized to the circumferential F-actin belt of proximal tubule cells. In kidneys lacking Myo9a, the multiligand binding receptor megalin and its ligand albumin accumulated at the luminal surface of Myo9a-deficient proximal tubular cells, suggesting that endocytosis is dysregulated. In addition, we found, surprisingly, that levels of murine diaphanous-related formin-1, a Rho effector, were decreased in Myo9a-deficient kidneys as well as in Myo9a knockdown LLC-PK1 cells. In summary, deletion of the Rho GTPase-activating protein Myo9a in mice causes proximal tubular dilation and fibrosis, and we speculate that downregulation of murine diaphanous-related formin-1 and impaired protein reabsorption contribute to the pathophysiology.


Assuntos
Proteínas Ativadoras de GTPase/fisiologia , Túbulos Renais/fisiologia , Miosinas/fisiologia , Albuminas/metabolismo , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Endocitose/fisiologia , Forminas , Proteínas Ativadoras de GTPase/genética , Hidronefrose/genética , Hidronefrose/metabolismo , Túbulos Renais/anatomia & histologia , Túbulos Renais/citologia , Células LLC-PK1 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miosinas/genética , Néfrons/fisiologia , Poliúria/genética , Poliúria/metabolismo , Suínos , Vasopressinas/metabolismo , Quinases Associadas a rho/metabolismo
14.
Cancer Biomark ; 40(2): 205-223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905034

RESUMO

BACKGROUND: Kidney Renal Clear Cell Carcinoma (KIRC) is a malignant tumor that seriously threatens human health. Rho GTPase-activating protein 4 (ARHGAP4) plays an important role in the occurrence and development of tumors. OBJECTIVE: The purpose of this study was to explore the role of ARHGAP4 in the progression of KIRC and its diagnostic and prognostic value. METHODS: Multiple analytical methods and in vitro cell assays were used to explore the expression of ARHGAP4 and its value in the progression, diagnosis and prognosis of KIRC. The biological function of ARHGAP4 was studied by GO analysis and KEGG pathway analysis, and then the relationship between ARHGAP4 and immune infiltration was analyzed. RESULTS: The expression of ARHGAP4 was significantly up-regulated in KIRC. We found that the high expression of ARHGAP4 was related to the progression of KIRC and suggested a poor prognosis. Compared with normal tissues, ARHGAP4 had a better diagnostic value in KIRC. The biological function of ARHGAP4 was related to immunity, and its expression was also closely related to tumor immune infiltration and immune checkpoints. CONCLUSIONS: Our study demonstrated that ARHGAP4 may be a biomarker, which is related to the progression, diagnosis and prognosis of KIRC. Its biological functions are related to tumor immune infiltration.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Proteínas Ativadoras de GTPase , Neoplasias Renais , Humanos , Prognóstico , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/imunologia , Neoplasias Renais/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Masculino , Feminino , Regulação para Cima , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Linhagem Celular Tumoral
15.
Mol Clin Oncol ; 19(6): 100, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38022849

RESUMO

Rho GTPASE-activating protein 23 (ARHGAP23) is known to activate RHO-GTPase and has an important role in the infiltration and metastasis of tumors. Although previous studies suggested its involvement in certain human cancers, its role in pan-cancer remains unclear. In the present study, the expression, prognosis and potential functions of ARHGAP23 in pan-cancer were evaluated through various public databases such as Human Protein Atlas, Tumor IMmune Estimation Resource, Gene Set Co-Expression Analysis, Gene Expression Profiling Interactive Analysis, cBio Cancer Genomics Portal, Tumor-Immune System Interactions Database (TISIDB) and others. Through these data combined with a variety of biological information analysis methods, the potential role of ARHGAP23 as a carcinogenic gene was explored in the present study. The present analysis revealed that ARHGAP23 expressed abnormalities in >10 tumors, which was associated with differences in prognosis. Furthermore, the findings of the present study indicated that ARHGAP23 is associated with DNA methylation and multiple immune cell infiltrations in these tumors. ARHGAP23 expression was related to clinical prognosis, DNA methylation and immune infiltration. These findings support the potential of ARHGAP23 as a prognostic biomarker and a molecular target for cancer treatment.

16.
JACC Basic Transl Sci ; 8(10): 1357-1378, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38094680

RESUMO

A specific genetic variant associated with atrial fibrillation risk, rs17171731, was identified as a regulatory variant responsible for controlling FAM13B expression. The atrial fibrillation risk allele decreases FAM13B expression, whose knockdown alters the expression of many genes in stem cell-derived cardiomyocytes, including SCN2B, and led to pro-arrhythmogenic changes in the late sodium current and Ca2+ cycling. Fam13b knockout mice had increased P-wave and QT interval duration and were more susceptible to pacing-induced arrhythmias vs control mice. FAM13B expression, its regulation, and downstream effects are potential targets for investigation of patient-specific therapeutics.

17.
Front Microbiol ; 14: 1235283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779704

RESUMO

The p21-GTPase-activated protein kinases (PAKs) participate in signal transduction downstream of Rho GTPases, which are regulated by Rho GTPase-activating proteins (Rho-GAP). Herein, we characterized two orthologous Rho-GAPs (AoRga1 and AoRga2) and two PAKs (AoPak1 and AoPak2) through bioinformatics analysis and reverse genetics in Arthrobotrys oligospora, a typical nematode-trapping (NT) fungus. The transcription analyses performed at different development stages suggested that Aopaks and Aorga1 play a crucial role during sporulation and trap formation, respectively. In addition, we successfully deleted Aopak1 and Aorga1 via the homologous recombination method. The disruption of Aopak1 and Aorga1 caused a remarkable reduction in spore yield and the number of nuclei per cell, but did not affect mycelial growth. In ∆Aopak1 mutants, the trap number was decreased at 48 h after the introduction of nematodes, but nematode predatory efficiency was not affected because the extracellular proteolytic activity was increased. On the contrary, the number of traps in ∆Aorga1 mutants was significantly increased at 36 h and 48 h. In addition, Aopak1 and Aorga1 had different effects on the sensitivity to cell-wall-disturbing reagent and oxidant. A yeast two-hybrid assay revealed that AoPak1 and AoRga1 both interacted with AoRac, and AoPak1 also interacted with AoCdc42. Furthermore, the Aopaks were up-regulated in ∆Aorga1 mutants, and Aorga1 was down-regulated in ∆Aopak1 mutants. These results reveal that AoRga1 indirectly regulated AoPAKs by regulating small GTPases.

18.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(8): 1322-1332, 2023 Aug 20.
Artigo em Chinês | MEDLINE | ID: mdl-37712268

RESUMO

OBJECTIVE: To investigate the role of Rho GTPase-activating protein 21 (ARHGAP21) in regulating the migration and metastasis of non-small cell lung cancer (NSCLC) cells. METHODS: TCGA, CPTAC database were used to analyze the correlation of ARHGAP21 expression level in NSCLC and the patients' prognosis. The expression of ARHGAP21 in clinical specimens of NSCLC tissues was examined using Western blotting and immunohistochemistry. The effect of ARHGAP21 knockdown on migration ability of lung cancer cell lines was examined using Transwell assay and wound healing assay. A nude mouse model with injection of lung cancer H1299 cells via the tail vein was used to examine the effect of ARHGAP21 knockdown on the metastatic ability of the tumor cells. The possible mechanism of ARHGAP21 was predicted by bioinformatics analysis and verified using Western blotting. RESULTS: A low ARHGAP21 expression was associated with poor prognosis of patients with NSCLC (P < 0.05). ARHGAP21 expression was significantly downregulated in lung cancer tissues as compared with the adjacent tissues (P < 0.001). In cultured lung cancer cells, ARHGAP21 knockdown obviously promoted the migration ability of the cells (P < 0.001). In the nude mouse models, injection of H1299 cells with ARHGAP21 knockdown, as compared with the negative control cells, resulted in a greater number of metastatic lung cancer nodules (P < 0.05), which expressed higher levels of N-cadherin and vimentin. Bioinformatic analysis showed a close correlation of ARHGAP21 with APC, GSK3ß, and Axin (P < 0.001). Western blotting showed that ARHGAP21 knockdown significantly decreased ubiquitination of ß-catenin, upregulated N-cadherin and activated the WNT signaling pathway in the lung cancer cells. CONCLUSION: ARHGAP21 downregulation can significantly promote the migration and metastatic ability of NSCLC possibly as a result of WNT signaling pathway activation, which reduces the ubiquitination of ß-catenin by affecting the expressions of APC, GSK3ß, and Axin.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Proteína Axina , beta Catenina , Caderinas , Transição Epitelial-Mesenquimal , Glicogênio Sintase Quinase 3 beta , Camundongos Nus , Via de Sinalização Wnt
19.
Food Chem (Oxf) ; 6: 100155, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36582744

RESUMO

Chronic Non-Communicable Diseases (NCDs) have been considered a global health problem, characterized as diseases of multiple factors, which are developed throughout life, and regardless of genetics as a risk factor of important relevance, the increase in mortality attributed to the disease to environmental factors and the lifestyle one leads. Although the reactive species (ROS/RNS) are necessary for several physiological processes, their overproduction is directly related to the pathogenesis and aggravation of NCDs. In contrast, dietary polyphenols have been widely associated with minimizing oxidative stress and inflammation. In addition to their antioxidant power, polyphenols have also drawn attention for being able to modulate both gene expression and modify epigenetic alterations, suggesting an essential involvement in the prevention and/or development of some pathologies. Therefore, this review briefly explained the mechanisms in the development of some NCDs, followed by a summary of some evidence related to the interaction of polyphenols in oxidative stress, as well as the modulation of epigenetic mechanisms involved in the management of NCDs.

20.
Mol Clin Oncol ; 16(4): 84, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35251635

RESUMO

Although progress has been made in the early diagnosis of colorectal cancer (CRC) and in the systemic therapy of patients with CRC, the prognosis for advanced CRC remains poor. Our previous study demonstrated that ARHGAP25 overexpression significantly inhibits CRC cell growth, invasion and migration. However, it was not possible to evaluate and analyze the overall survival (OS) rate of patients with CRC. Thus, the discovery of relevant factors and their expression on the basis of existing research is necessary to predict the OS rate of patients with advanced CRC. Therefore, the aim of the present study was to define the value of Rho GTPase-activating protein 25 (ARHGAP25) expression in predicting the OS rate in patients with CRC. The clinical data of 153 patients with CRC who underwent colorectal resection were retrospectively analyzed. In order to explore the expression of ARHGAP25, immunohistochemical analysis of the tumor tissues of these patients, was performed. Univariate Cox regression analysis was used to assess the prognostic value of ARHGAP25 expression for OS. Multivariate analysis was used to evaluate the effect of ARHGAP25 expression in the presence of other variables. Confounding factors and interaction were assessed by a stratified analysis using ARHGAP25 expression and other variables associated with survival. The univariate analysis revealed that, ARHGAP25 expression was associated with an improved OS in patients with CRC (P<0.05). The multivariate analysis revealed that ARHGAP25 expression was still correlated with an improved OS after adjusting for sex, age, invasion degree, lymph node metastasis, distant metastasis, TNM stage, tumor location, histological type, histological grade, tumor deposits, and postoperative treatment (P<0.05). The stratified analysis demonstrated that the predictive value of ARHGAP25 for the OS of patients with CRC was stronger in males, elderly patients (>70 years old), patients with T3 stage tumor, lymph node metastasis, TNM stage III, right hemicolon location and patients with a poorly differentiated tumor (P<0.05). Overall, our results demonstrated that ARHGAP25 may have an important potential value for improving the prognosis of patients with CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA