Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.320
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(11): e2112109119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35263231

RESUMO

SignificanceDirect ethanol fuel cells are attracting growing attention as portable power sources due to their advantages such as higher mass-energy density than hydrogen and less toxicity than methanol. However, it is challenging to achieve the complete electrooxidation to generate 12 electrons per ethanol, resulting in a low fuel utilization efficiency. This manuscript reports the complete ethanol electrooxidation by engineering efficient catalysts via single-atom modification. The combined electrochemical measurements, in situ characterization, and density functional theory calculations unravel synergistic effects of single Rh atoms and Pt nanocubes and identify reaction pathways leading to the selective C-C bond cleavage to oxidize ethanol to CO2. This study provides a unique single-atom approach to tune the activity and selectivity toward complicated electrocatalytic reactions.

2.
Chemistry ; 30(5): e202302925, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37931068

RESUMO

Monocarbonyl rhodium complex LRh(CO), 1, which is stabilized by a pyrrole-based bis(phosphinimine) pincer ligand (L=κ3 -NNN'=2,5-[i Pr2 P=N(4-i PrC6 H4 )]2 -N'(C4 H2 )- ), serves as a versatile platform for the dehydrogenation of group 14 substrates. Reaction with primary and secondary silanes and germanes (MesSiH3 , Et2 SiH2 , Ph2 GeH2 , t BuGeH3 ; Mes=mesityl) liberates H2 and yields base-stabilized tetrylene compounds of the form κ2 -L(CO)Rh(ER2 ) (E=Si: R=Mes, H, 2; R=Et, 5; E=Ge: R=Ph, 6; R=t Bu, H, 8). The ":ER2 " fragment in these species bridges between the rhodium center and a phosphinimine donor. Preliminary reactions between pinacol (Pin) and κ2 -L(CO)Rh(ER2 ), E=Si, Ge, indicate that such complexes can serve as silylene and germylene synthons, releasing :ER2 and catalytically generating PinER2 . In contrast, combination of complex 1 and MesGeH3 does not yield the anticipated dehydrogenation product, but rather, transmetalation similar to that observed upon reaction between 1 and 3,5-dimethylphenylborane prevails.

3.
Chemistry ; 30(9): e202303752, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38109037

RESUMO

Herein, a highly efficient five-step reaction sequence to BODIPYs is presented. The key step is the combination of transition metal-catalyzed in-situ generation of aldehydes and their subsequent organocatalytic activation to yield dipyrromethanes, which are further converted to the corresponding BODIPY. Classic syntheses towards BODIPYs have relied on aldehydes or acid chlorides, which are often not commercially available and rather sensitive to handle. The presented approach starts from readily available and stable alkenes or aryl-bromides, which allows to extend the range of readily available BODIPYs that can be tailored for their specific use. The synthesis of 55 derivatives with overall yields of up to 78 % demonstrates the wide applicability and advantages of the presented method.

4.
Chemistry ; 30(23): e202400427, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38380762

RESUMO

Triphenylpnictogens EPh3 (E=N, P, As, Sb, Bi) are able to displace the perfluorinated Cp* ligand in [Rh(COD)(C5(CF3)5)] (COD=1,5-cyclooctadiene) in up to quantitative yield. The resulting ionic products contain [C5(CF3)5]- as uncoordinated counter anion. The cations feature [Rh(COD)]+ fragments, coordinated by one (N, Bi), two (P, As) or three (Sb) triphenylpnictogen moieties. Whereas coordination via the pnictogen is observed for P, As and Sb, π-coordination of the aryl rings is observed for N and Bi.

5.
Chemistry ; : e202400669, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924194

RESUMO

Supported metal single atom catalysis is a dynamic research area in catalysis science combining the advantages of homogeneous and heterogeneous catalysis. Understanding the interactions between metal single atoms and the support constitutes a challenge facing the development of such catalysts, since these interactions are essential in optimizing the catalytic performance. For conventional carbon supports, two types of surfaces can contribute to single atom stabilization: the basal planes and the prismatic surface; both of which can be decorated by defects and surface oxygen groups. To date, most studies on carbon-supported single atom catalysts focused on nitrogen-doped carbons, which, unlike classic carbon materials, have a fairly well-defined chemical environment. Herein we report the synthesis, characterization and modeling of rhodium single atom catalysts supported on carbon materials presenting distinct concentrations of surface oxygen groups and basal/prismatic surface area. The influence of these parameters on the speciation of the Rh species, their coordination and ultimately on their catalytic performance in hydrogenation and hydroformylation reactions is analyzed. The results obtained show that catalysis itself is an interesting tool for the fine characterization of these materials, for which the detection of small quantities of metal clusters remains a challenge, even when combining several cutting-edge analytical methods.

6.
Chemistry ; : e202402010, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855991

RESUMO

We report herein of a novel, enantioselective and rhodium- catalyzed cyclisation of allenyl alcohols towards chiral α-vinylic, cyclic ethers employing a rhodium/(R,R)-Me-ferrocelane catalyst. The corresponding chiral cyclic products were obtained in general high yield and enantioselectivities. The synthetic value of our obtained products was further exemplified by transformations of the allylic ether function. Furthermore, applying our newly developed method in our previously reported route towards the total synthesis of (R,R,R)-α-tocopherol, we were able to devise a significantly improved 2nd generation total synthesis with 12 steps in the longest linear sequence and an overall total yield of 24%.

7.
Chemistry ; 30(41): e202401571, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38757784

RESUMO

The κ2-(P,N)-phosphine ligand precursor NH(CH2CH2PCy2)2 can be used for the synthesis of the rhodium(I) complex [Rh(CO){ĸ3-(P,N,P)-Cy2PC2H4NHC2H4PCy2}][Cl] (1). The deprotonated complex [Rh(CO){ĸ3-(P,N,P)-Cy2PC2H4NC2H4PCy2}] (2) shows a cooperative reactivity of the PNP ligand in the activation reaction of SO2F2 to yield the rhodium fluorido complex trans-[Rh(F)(CO){ĸ2-(P,P)-Cy2PC2H4N(SO2F)C2H4PCy2}]2 (3) by S-F bond cleavage. It is remarkable that no reaction was observed when 3 was treated with hydrogen sources e. g. dihydrogen, organosilicon compounds such as triethylsilane or TMS-CF3 and different fluorine sources such as SF4 or Selectfluor®. However, the treatment of complex 3 with XeF2 in the presence of CsF resulted in the formation of the unique fluorido rhodium(III) complex cis,trans-[Rh(F)3(CO){ĸ2-(P,P)-Cy2PC2H4N(SO2F)C2H4PCy2}]2 (4). In the presence of pyridine(HF)X or BF3 the fluorido complex 3 converted into the dicationic complexes [Rh(CO){ĸ2-(P,P)-Cy2PC2H4N(SO2F)C2H4PCy2}]2[XF]2, X=HF (5) or BF3 (6), respectively.

8.
Chemistry ; 30(5): e202302718, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37846841

RESUMO

Diazomethyl-substituted iodine(III) compounds with electron-withdrawing groups (EWG) connected to diazo methyl center were a type of donor-acceptor diazo compounds with potential reaction abilities similar to ordinary diazo compounds. Although several diazomethyl-substituted iodine(III) compounds were synthesized and used in the nucleophilic substitution reactions as early as 1994, the synthesis and application of new iodine(III) diazo compounds have only been reported to a certain extent in recent years. In the presence of rhodium catalyst, photocatalyst, or nucleophiles, diazomethyl-substituted iodine(III) compounds can be converted into rhodium-carbenes, diazomethyl radicals, ester radicals or nucleophilic intermediates, which can be used as key intermediates for the formation of chemical bonds. The aim of this review is to give an overview of diazomethyl-substituted iodine(III) compounds in organic synthesis.

9.
Chemistry ; 30(21): e202304140, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38323731

RESUMO

The masked transition-metal frustrated Lewis pairs [Cp*M(κ3N,N',N''-L)][SbF6] (Cp*=η5-C5Me5; M=Ir, 1, Rh, 2; HL=pyridinyl-amidine ligand) reversibly activate H2 under mild conditions rendering the hydrido derivatives [Cp*MH(κ2N,N'-HL)][SbF6] observed as a mixture of the E and Z isomers at the amidine C=N bond (M=Ir, 3Z, 3E; M=Rh, 4Z, 4E). DFT calculations indicate that the formation of the E isomers follows a Grotthuss type mechanism in the presence of water. A mixture of Rh(I) isomers of formula [(Cp*H)Rh(κ2N,N'-HL)][SbF6] (5 a-d) is obtained by reductive elimination of Cp*H from 4. The formation of 5 a-d was elucidated by means of DFT calculations. Finally, when 2 reacts with D2, the Cp* and Cp*H ligands of the resulting rhodium complexes 4 and 5, respectively, are deuterated as a result of a reversible hydrogen abstraction from the Cp* ligand and D2 activation at rhodium.

10.
Chemphyschem ; 25(1): e202300523, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37877432

RESUMO

Operando probing by x-ray photoelectron spectroscopy (XPS) of certain hydrogenation reactions are often limited by the scattering of photoelectrons in the gas phase. This work describes a method designed to partially circumvent this so called pressure gap. By performing a rapid switch from a high pressure (where acquisition is impossible) to a lower pressure we can for a short while probe a "remnant" of the high pressure surface as well as the time dynamics during the re-equilibration to the new pressure. This methodology is demonstrated using the CO2 and the CO hydrogenation reaction over Rh(211). In the CO2 hydrogenation reaction, the remnant surface of a 2 bar pressure shows an adsorbate distribution which favors chemisorbed CHx adsorbates over chemisorbed CO. This contrasts against previous static operando spectra acquired at lower pressures. Furthermore, the pressure jumping method yields a faster acquisition and more detailed spectra than static operando measurements above 1 bar. In the CO hydrogenation reaction, we observe that CHx accumulated faster during the 275 mbar low pressure regime, and different hypotheses are presented regarding this observation.

11.
Chemphyschem ; 25(7): e202400022, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38269625

RESUMO

The factors governing the acceleration of the oxidative addition of methyl iodide to pincer rhodium(I)-complexes induced by coronene have been computationally explored in detail using quantum chemical methods. Both the parent reaction and the coronene-mediated process proceed via a stepwise SN2-type mechanism. It is found that the acceleration of the process derives from the formation of an initial supramolecular complex, mainly stabilized by electrostatic and π-π interactions, which significantly increases the electron richness of the complex. The impact of this effect on the reaction barrier has been quantitatively analyzed by applying the activation strain model in combination with the energy decomposition analysis method. In addition, the influence of other polycyclic aromatic hydrocarbons on the oxidative reaction has been also considered.

12.
Chemphyschem ; : e202400270, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837531

RESUMO

NMR spectroscopy studies using parahydrogen-induced polarization have previously established the existence of the pairwise hydrogen addition route in the hydrogenation of unsaturated hydrocarbons over heterogeneous catalysts, including those based on rhodium (Rh0). This pathway requires the incorporation of both hydrogen atoms from one hydrogen molecule to the same product molecule. However, the underlying mechanism for such pairwise hydrogen addition must be better understood. The involvement of carbon, either in the form of carbonaceous deposits on the surface of a catalyst or as a metal carbide phase, is known to modify catalytic properties significantly and thus could also affect the pairwise hydrogen addition route. Here, we explored carbon's role by studying the hydrogenation of propene and propyne with parahydrogen on a Rh2C catalyst and comparing the results with those for a Rh0/C catalyst obtained from Rh2C via H2 pretreatment. While the catalysts Rh2C and Rh0/C differ notably in the rate of conversion of parahydrogen to normal hydrogen as well as in terms of hydrogenation activity, our findings suggest that the carbide phase does not play a significant role in the pairwise H2 addition route on rhodium catalysts.

13.
Chemphyschem ; : e202400186, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775199

RESUMO

Chemical wave patterns and V-oxide redistribution in catalytic methanol oxidation on a VOx/Rh(110) surface have been investigated in the 10-4 mbar range with low-energy electron microscopy (LEEM) and micro spot low-energy electron diffraction (micro-LEED) as in situ methods. V coverages of θV=0.2 and 0.4 MLE (monolayer equivalents) were studied. Pulses display a c(2×2) pattern in the reduced part and (1×2) and c(2×8) structures in the oxidized part of the surface. At θV=0.4 MLE (1×2)/(1×4) patterns with streaks along the [001]-direction at the 1/8 positions are present on the oxidized part of the surface. This phase can be assigned to V-oxide. On a tentative basis, an excitation mechanism for pulses is presented, Annealing the surface to 990 K under reaction conditions results in a macroscopic hole pattern in which holes of low VOx coverage are surrounded by a V-oxide layer. Chemical waves propagate inside the holes as well as on the VOx covered parts of the surface. The results demonstrate for the first time that also in supported oxidic overlayers selforganization processes can take place leading to chemical waves and a large scale redistribution of the oxide.

14.
Chem Pharm Bull (Tokyo) ; 72(3): 313-318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38494725

RESUMO

Generating reliable data on functional group compatibility and chemoselectivity is essential for evaluating the practicality of chemical reactions and predicting retrosynthetic routes. In this context, we performed systematic studies using a functional group evaluation kit including 26 kinds of additives to assess the functional group tolerance of carbene-mediated reactions. Our findings revealed that some intermolecular heteroatom-hydrogen insertion reactions proceed faster than intramolecular cyclopropanation reactions. Lewis basic functionalities inhibited rhodium-catalyzed C-H functionalization of indoles. While performing these studies, we observed an unexpected C-H functionalization of a 1-naphthol variant used as an additive.


Assuntos
Metano/análogos & derivados , Ródio , Catálise , Ródio/química , Metano/química , Hidrogênio/química
15.
Nano Lett ; 23(20): 9515-9521, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37830516

RESUMO

Two-dimensional (2D) van der Waals single crystals with long-range magnetic order are the precondition and urgent task for developing a 2D spintronics device. In contrast to graphene and transition metal dichalcogenides, the study of 2D single-crystal metal oxides with intrinsic ferromagnetic properties remains a huge challenge. Here, we report a large-size trigonal single-crystal rhodium oxide (SC-Tri-RhO2), with crystal parameters of a = b = 3.074 Å, c = 6.116 Å, and a space group of P3̅m1 (164), exhibiting strong ferromagnetism (FM) at a rather high temperature. Furthermore, theoretical calculations suggest that the ferromagnetism in SC-Tri-RhO2 originates from spin splitting near the Fermi level, and the total magnetic moment is contributed mainly by the Rh atom.

16.
Molecules ; 29(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398597

RESUMO

Phospholane-phosphites are known to show highly unusual selectivity towards branched aldehydes in the hydroformylation of terminal alkenes. This paper describes the synthesis of hitherto unknown unsaturated phospholene borane precursors and their conversion to the corresponding phospholene-phosphites. The relative stereochemistry of one of these ligands and its Pd complex was assigned with the aid of X-ray crystal structure determinations. These ligands were able to approach the level of selectivity observed for phospholane-phosphites in the rhodium-catalysed hydroformylation of propene. High-pressure infra-red (HPIR) spectroscopic monitoring of the catalyst formation revealed that whilst the catalysts showed good thermal stability with respect to fragmentation, the C=C bond in the phospholene moiety was slowly hydrogenated in the presence of rhodium and syngas. The ability of this spectroscopic tool to detect even subtle changes in structure, remotely from the carbonyl ligands, underlines the usefulness of HPIR spectroscopy in hydroformylation catalyst development.

17.
Molecules ; 29(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38474531

RESUMO

A enantioselective tandem transformation, concerning asymmetric allylic decarboxylative addition and cyclization of N-nosylimines with vinylethylene carbonates (VECs), in the presence of [Rh(C2H4)2Cl]2, chiral sulfoxide-N-olefin tridentate ligand has been developed. The reaction of VECs with various substituted N-nosylimines proceeded smoothly under mild conditions, providing highly functionalized oxazolidine frameworks in good to high yields with good to excellent enantioselectivity.

18.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474597

RESUMO

Rhodium-catalyzed cycloaddition reactions are a powerful tool for the construction of polycyclic compounds. Combined experimental and DFT studies were used to investigate the temperature-controlled chemoselectivity of cationic rhodium-catalyzed intramolecular cycloaddition reactions of ene-vinylidenecyclopropanes. After a series of mechanistic studies, it was found that trace amounts of water in the reaction system play an important role in generating the product with endo double bond located on a five-membered ring and revealed that trace amounts of water in the reaction system, including the rhodium catalyst, substrate and solvent, were sufficient to promote the formation of the product with endo double bond located on a five-membered ring, and additional water could not further accelerate the reaction. DFT calculation results show that the addition of water indeed significantly lowers the energy barrier of the proton transfer step, making the formation of the product with endo double bond located on a five-membered ring more likely to occur and confirming the rationality of water-assisted proton transfer occurring in the selective access to the product with endo double bond located on a five-membered ring.

19.
Angew Chem Int Ed Engl ; 63(4): e202316246, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38009666

RESUMO

A new generation of soluble phenothiazinyl merocyanine substituted polyacetylenes can be readily synthesized by rhodium-catalyzed polymerization of the corresponding 3-ethynyl phenothiazines, accessible by Sonogashira coupling and Knoevenagel condensation. UV/Vis and fluorescence spectroscopy of 7-acceptor-substituted phenothiazinyl polyacetylenes reveal that these polyacetylenes with conjugatively ligated merocyanines are luminescent in solution with positive emission solvatochromism and, in some cases, with distinct solid-state luminescence.

20.
Angew Chem Int Ed Engl ; 63(1): e202312923, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37971168

RESUMO

Axially chiral open-chained olefins are an underexplored class of atropisomers, whose enantioselective synthesis represents a daunting challenge due to their relatively low racemization barrier. We herein report rhodium(I)-catalyzed hydroarylative cyclization of 1,6-diynes with three distinct classes of arenes, enabling highly enantioselective synthesis of a broad range of axially chiral 1,3-dienes that are conformationally labile (ΔG≠ (rac)=26.6-28.0 kcal/mol). The coupling reactions in each category proceeded with excellent enantioselectivity, regioselectivity, and Z/E selectivity under mild reaction conditions. Computational studies of the coupling of quinoline N-oxide system reveal that the reaction proceeds via initial oxidative cyclization of the 1,6-diyne to give a rhodacyclic intermediate, followed by σ-bond metathesis between the arene C-H bond and the Rh-C(vinyl) bond, with subsequent C-C reductive elimination being enantio-determining and turnover-limiting. The DFT-established mechanism is consistent with the experimental studies. The coupled products of quinoline N-oxides undergo facile visible light-induced intramolecular oxygen-atom transfer, affording chiral epoxides with complete axial-to-central chirality transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA