Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Stem Cells ; 41(2): 153-168, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36573461

RESUMO

Mesenchymal stem cells (MSCs) have been demonstrated to protect against fatty liver diseases, but the mechanism is still not clear. Menstrual blood-derived endometrial stem cells (MenSCs) are a substantial population of MSCs that can be obtained in a noninvasive manner. In the present study, we investigated the therapeutic effects and underlying mechanisms of MenSC transplantation in mouse models of diet-induced nonalcoholic fatty liver disease (NAFLD). The results revealed that MenSCs markedly promoted hepatic glycogen storage and attenuated lipid accumulation after transplantation. We further identified Rnf186 as a novel regulator involved in MenSC-based therapy for NAFLD mice. Rnf186 deficiency substantially inhibited high-fat diet-induced insulin resistance and abnormal hepatic glucose and lipid metabolism in mice. Mechanistically, Rnf186 regulated glucose and lipid metabolism through the AMPK-mTOR pathway. More importantly, hepatocyte growth factor (HGF) is identified as the key functional cytokine secreted by MenSCs and decreases the expression of hepatic Rnf186. HGF deficient MenSCs cannot attenuate glucose and lipid accumulation after transplantation in NAFLD mice. Collectively, our results provide preliminary evidence for the protective roles of HGF secreted by MenSCs in fatty liver diseases through downregulation of hepatic Rnf186 and suggest that MenSCs or Rnf186 may be an alternative therapeutic approach/target for the treatment of NAFLD.


Assuntos
Endométrio , Fator de Crescimento de Hepatócito , Células-Tronco Mesenquimais , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Proliferação de Células , Regulação para Baixo , Glucose/metabolismo , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Lipídeos , Fígado/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Menstruação/sangue , Menstruação/genética , Menstruação/metabolismo , Endométrio/citologia , Endométrio/metabolismo
2.
J Biol Chem ; 294(45): 16527-16534, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31586034

RESUMO

Nutrient sensing is a critical cellular process controlling metabolism and signaling. mTOR complex 1 (mTORC1) is the primary signaling hub for nutrient sensing and, when activated, stimulates anabolic processes while decreasing autophagic flux. mTORC1 receives nutrient status signals from intracellular amino acid sensors. One of these sensors, Sestrin-2, functions as an intracellular sensor of cytosolic leucine and inhibitor of mTORC1 activity. Genetic studies of Sestrin-2 have confirmed its critical role in regulating mTORC1 activity, especially in the case of leucine starvation. Sestrin-2 is known to be transcriptionally controlled by several mechanisms; however, the post-translational proteolytic regulation of Sestrin-2 remains unclear. Here, we explored how Sestrin-2 is regulated through the ubiquitin proteasome system. Using an unbiased screening approach of an siRNA library targeting ubiquitin E3 ligases, we identified a RING-type E3 ligase, ring finger protein 186 (RNF186), that critically mediates the Sestrin-2 ubiquitination and degradation. We observed that RNF186 and Sestrin-2 bind each other through distinct C-terminal motifs and that Lys-13 in Sestrin-2 is a putative ubiquitin acceptor site. RNF186 knockdown increased Sestrin-2 protein levels and decreased mTORC1 activation. These results reveal a new mechanism of E3 ligase control of mTORC1 activity through the RNF186-Sestrin-2 axis, suggesting that RNF186 inhibition may be a potential strategy to increase levels of the mTORC1 inhibitor Sestrin-2.


Assuntos
Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Linhagem Celular , Meios de Cultura/química , Meios de Cultura/metabolismo , Cicloeximida/farmacologia , Humanos , Leupeptinas/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Nucleares/química , Ligação Proteica , Estabilidade Proteica/efeitos dos fármacos , Proteólise , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
3.
Int J Mol Sci ; 21(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486221

RESUMO

Ubiquitylation plays multiple roles not only in proteasome-mediated protein degradation but also in various other cellular processes including DNA repair, signal transduction, and endocytosis. Ubiquitylation is mediated by ubiquitin ligases, which are predicted to be encoded by more than 600 genes in humans. RING finger (RNF) proteins form the majority of these ubiquitin ligases. It has also been predicted that there are 49 RNF proteins containing transmembrane regions in humans, several of which are specifically localized to membrane compartments in the secretory and endocytic pathways. Of these, RNF183, RNF186, RNF182, and RNF152 are closely related genes with high homology. These genes share a unique common feature of exhibiting tissue-specific expression patterns, such as in the kidney, nervous system, and colon. The products of these genes are also reported to be involved in various diseases such as cancers, inflammatory bowel disease, Alzheimer's disease, and chronic kidney disease, and in various biological functions such as apoptosis, endoplasmic reticulum stress, osmotic stress, nuclear factor-kappa B (NF-κB), mammalian target of rapamycin (mTOR), and Notch signaling. This review summarizes the current knowledge of these tissue-specific ubiquitin ligases, focusing on their physiological roles and significance in diseases.


Assuntos
Ubiquitina-Proteína Ligases/fisiologia , Doença de Alzheimer/metabolismo , Animais , Apoptose , Estresse do Retículo Endoplasmático , Humanos , Inflamação , Doenças Inflamatórias Intestinais/metabolismo , Camundongos , NF-kappa B/metabolismo , Neoplasias/metabolismo , Pressão Osmótica , Filogenia , Ratos , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Ubiquitinação
4.
Life Sci ; 338: 122389, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38160786

RESUMO

AIMS: Cancer remains a significant global public health issue. There is growing proof that Ring Finger Protein 186 (RNF186) may play a function in pan-cancer, however, this has not yet been thoroughly determined. This study aims to analyze RNF186 with potential implications in progression and prognosis in human cancer. MATERIALS AND METHODS: A comprehensive bioinformatics approaches combined with experimental verification were used across 33 types of cancers in this study to conduct a pan-cancer investigation of RNF186 from the perspectives of gene expression, prognosis, genomic alterations, immunological markers, gene set, and function. KEY FINDINGS: RNF186 is a valuable prognostic biomarker in several cancer types, especially breast invasive carcinoma (BRCA) and uterine corpus endometrial carcinoma (UCEC). The levels of RNF186 promoter methylation and genetic alterations may be responsible for some cancers' abnormal expression. Furthermore, RNF186 expression was determined to be associated with immune checkpoint genes. Analysis of RNF186-related genes revealed that proteasome and PI3K-AKT signaling pathway were primarily involved in the cellular function of RNF186. Additionally, our research first confirmed that RNF186 may function as an oncogene and contribute to cancer proliferation, migration and invasion in UCEC. In contrast, RNF186 may play an inhibitory role in BRCA progression. This function depends on the ligase activity of RNF186. SIGNIFICANCE: This study suggests that RNF186 is a novel critical target for tumor progression in BRCA and UCEC. It reveals that RNF186 may be associated with tumor immunotherapy, which may provide an effective predictive evaluation of the prognosis of immunotherapy.


Assuntos
Neoplasias da Mama , Carcinoma , Humanos , Feminino , Fosfatidilinositol 3-Quinases , Oncogenes , Mama , Ubiquitina-Proteína Ligases/genética
5.
Metabolism ; 152: 155769, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158076

RESUMO

BACKGROUND: Lipophagy is a vital biological process that maintains the balance of intracellular lipid metabolism in nonalcoholic fatty liver disease (NAFLD). However, the precise regulatory mechanism of RNF186 in hepatic lipophagy is still unclear. This study investigates the roles and mechanisms of RNF186 in the regulation of lipophagy during the development of NAFLD. METHODS: In this study, we employed RNF186 knockout mice as well as human liver cells and mouse primary hepatocytes (MPHs) to investigate the role and mechanisms of RNF186 in lipophagy during the progression of NAFLD. Additionally, liver specimens from individuals with NAFLD were examined to assess the expression of RNF186 and its associated factors. RESULTS: Here, we provide evidence that depletion of RNF186 enhances lipophagy in hepatocytes of a NAFLD model. Mechanistically, RNF186 acts as an E3 ubiquitin ligase that targets cytoplasmic HMGB1 for lysine 48 (K48)- and K63-linked ubiquitination, leading to its subsequent proteasomal degradation. Importantly, the translocation of HMGB1 from the nucleus to the cytoplasm is responsible for inducing lipophagy in NAFLD samples. Knockdown of HMGB1 significantly reduces the activation of lipophagy and mediates the decrease in lipid accumulation caused by RNF186 depletion in hepatocytes. Furthermore, we find that maintaining the nuclear HMGB1 level and inhibiting its nuclear-cytoplasmic shuttling are critical for the proper function of RNF186 in NAFLD. Additionally, the expression of RNF186 and HMGB1 in human NAFLD samples, along with factors related to lipophagy, suggest that RNF186 may play a similar role in the pathogenesis of human fatty liver. CONCLUSION: RNF186 deficiency accelerates hepatic lipophagy in NAFLD through the inhibition of ubiquitination and degradation of cytoplasmic HMGB1. Consequently, targeting the RNF186-HMGB1 axis may offer a promising strategy for the prevention and treatment of NAFLD.


Assuntos
Proteína HMGB1 , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Autofagia/genética , Citoplasma/metabolismo , Hepatócitos/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
6.
iScience ; 25(2): 103859, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35198905

RESUMO

RING finger protein186 (RNF186) is dramatically upregulated in steatotic livers. The physiological role of RNF186 in non-alcoholic fatty liver disease (NAFLD) remains obscure. Here, we found that hepatocyte-specific RNF186 knockout (RNF186 LKO ) mice were protected from HFD-induced obesity. RNF186 ablation in liver suppressed inflammatory responses and ER stress and alleviated insulin tolerance, leading to improved glucose and lipid metabolism under HFD conditions. RNA-seq and western blot analyses revealed a significant downregulation of peroxisome proliferator-activated receptor γ, stearoyl-CoA desaturase 1, and cluster of differentiation 36 in the liver of RNF186 knockout mice consuming HFD. RNF186 deletion in liver results in less weight gain during HFD feeding and is associated with reduced liver fat, inflammation, and improved glucose and insulin tolerance. In contrast, upregulation of RNF186 in C57BL/6J mice livers impaired lipid metabolism and insulin tolerance. The collective results suggest that RNF186 may be a potential regulator of NAFLD in obesity.

7.
Autophagy ; 17(10): 3030-3047, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33280498

RESUMO

Although genome-wide association studies have identified the gene RNF186 encoding an E3 ubiquitin-protein ligase as conferring susceptibility to ulcerative colitis, the exact function of this protein remains unclear. In the present study, we demonstrate an important role for RNF186 in macroautophagy/autophagy activation in colonic epithelial cells and intestinal homeostasis. Mechanistically, RNF186 acts as an E3 ubiquitin-protein ligase for EPHB2 and regulates the ubiquitination of EPHB2. Upon stimulation by ligand EFNB1 (ephrin B1), EPHB2 is ubiquitinated by RNF186 at Lys892, and further recruits MAP1LC3B for autophagy. Compared to control mice, rnf186-/- and ephb2-/- mice have a more severe phenotype in the DSS-induced colitis model, which is due to a defect in autophagy in colon epithelial cells. More importantly, treatment with ephrin-B1-Fc recombinant protein effectively relieves DSS-induced mouse colitis, which suggests that ephrin-B1-Fc may be a potential therapy for human inflammatory bowel diseases.Abbreviations: ACTB: actin beta; ATG5: autophagy related 5; ATG16L1: autophagy related 16 like 1; ATP: adenosine triphosphate; Cas9: CRISPR associated protein 9; CD: Crohn disease; CQ: chloroquine; Csf2: colony stimulating factor 2; Cxcl1: c-x-c motif chemokine ligand 1; DMSO: dimethyl sulfoxide; DSS: dextran sodium sulfate; EFNB1: ephrin B1; EPHB2: EPH receptor B2; EPHB3: EPH receptor B3; EPHB2K788R: lysine 788 mutated to arginine in EPHB2; EPHB2K892R: lysine 892 mutated to arginine in EPHB2; ER: endoplasmic reticulum; FITC: fluorescein isothiocyanate; GFP: green fluorescent protein; GWAS: genome-wide association studies; HRP: horseradish peroxidase; HSPA5/BiP: heat shock protein family A (Hsp70) member 5; IBD: inflammatory bowel diseases; Il1b: interleukin 1 beta; Il6: interleukin 6; IRGM:immunity related GTPase M; i.p.: intraperitoneally; IPP: inorganic pyrophosphatase; KD: knockdown; KO: knockout; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; NOD2: nucleotide binding oligomerization domain containing 2; PI3K: phosphoinositide 3-kinase; PtdIns3K: class III phosphatidylinositol 3-kinase; RNF186: ring finger protein 186; RNF186A64T: alanine 64 mutated to threonine in RNF186; RNF186R179X: arginine 179 mutated to X in RNF186; RPS6: ribosomal protein S6; Tnf: tumor necrosis factor; SQSTM1: sequestosome 1; Ub: ubiquitin; UBE2D2: ubiquitin conjugating enzyme E2 D2; UBE2H: ubiquitin conjugating enzyme E2 H; UBE2K: ubiquitin conjugating enzyme E2 K; UBE2N: ubiquitin conjugating enzyme E2 N; UC: ulcerative colitis; ULK1:unc-51 like autophagy activating kinase 1; WT: wild type.


Assuntos
Autofagia , Efrina-B1 , Ubiquitina-Proteína Ligases , Animais , Autofagia/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Colo , Células Epiteliais/metabolismo , Estudo de Associação Genômica Ampla , Homeostase , Camundongos , Receptor EphB2 , Ubiquitina-Proteína Ligases/metabolismo
8.
Cell Signal ; 75: 109764, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32882406

RESUMO

Colorectal cancer (CRC) is one of the most common malignant gastrointestinal cancers worldwide. RING finger protein 186 (RNF186) is a member of the RING finger protein family. RNF186 has been reported to be involved in the regulation of the intestinal homeostasis through the regulation of endoplasmic reticulum (ER) stress in colonic epithelial cells. However, its role in CRC remains unclear. In this study, we found that colorectal tumours from human patients had decreased levels of RNF186. We demonstrated that overexpression of RNF186 suppressed the growth and migration of CRC-derived cell lines in vitro and inhibited tumour proliferation in vivo. Further, our findings indicated that forced expression of RNF186 inhibited nuclear factor-κB (NF-κB) activation by reducing the phosphorylation of NF-κB. In addition, our results showed that RNF186-/- mice exhibited significantly increased tumour burden compared to the wild type (WT) mice following treatment with azoxymethane/dextran sulfate sodium (AOM/DSS). Compared to WT mice, the percentage of Ki67 positive cells was increased in the RNF186-/- mice, indicating that RNF186 is crucial for intestinal cell proliferation during tumorigenesis. Taken together, our data suggest that RNF186 inhibits the development of CRC, and that this effect is mediated through the suppression of NF-κB activity.


Assuntos
Neoplasias Colorretais/metabolismo , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Cell Signal ; 52: 155-162, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30223017

RESUMO

RING finger 186 (RNF186) is involved in the process of endoplasmic reticulum (ER)-stress-mediated apoptosis and inflammation of different cell types, such as HeLa cells and colon epithelial cells. However, the physiological and functional roles of RNF186 in peripheral tissues remain largely unknown. In the current study, we investigate the physiological function of RNF186 in the regulation of ER stress with respect to its biological roles in regulating insulin sensitivity in mouse primary hepatocytes. RNF186 expression is induced in the livers of diabetic, obese and diet-induced obese (DIO) mice. Mouse primary hepatocytes were isolated and treated with Ad-RNF186 or Ad-GFP. The results suggest that overexpression of RNF186 increases the protein levels of the ER stress sensors inositol requiring kinase 1 (IRE1) and C/EBP homologous protein (CHOP) protein, as well as the phosphorylation level of eukaryotic initiation factor 2α (eIF2α), in mouse primary hepatocytes. This effect impedes the action of insulin through c-Jun N-terminal kinase (JNK)-mediated phosphorylation of insulin receptor substrate 1 (IRS1). Furthermore, overexpression of RNF186 also significantly increases the levels of proinflammatory cytokines, including TNFα, IL-6 and MCP1. In addition, tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, alleviates the expression of ER stress markers induced by RNF186 overexpression. Taken together, the results of the present study show that overexpression of RNF186 induces ER stress and impairs insulin signalling in mouse primary hepatocytes, suggesting that RNF186 merits further investigation as a potential therapeutic target for treatment of insulin-resistance-associated metabolic diseases.


Assuntos
Diabetes Mellitus/metabolismo , Estresse do Retículo Endoplasmático , Hepatócitos/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Animais , Quimiocina CCL2/metabolismo , Dieta Hiperlipídica , Fator de Iniciação 2B em Eucariotos/metabolismo , Células Hep G2 , Hepatócitos/citologia , Humanos , Resistência à Insulina , Interleucina-6/metabolismo , Fígado/citologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Proteínas Serina-Treonina Quinases/metabolismo , Ácido Tauroquenodesoxicólico/farmacologia , Fator de Transcrição CHOP/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Cell Signal ; 25(11): 2320-33, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23896122

RESUMO

Disturbances in the normal functions of the endoplasmic reticulum (ER) can lead to the accumulation of unfolded proteins and disturbance of Ca(2+) regulation within the lumen of ER, and arouse a series of complicated response termed unfolded protein response (UPR), which is aimed initially at reestablishing homeostasis and normal physiology but can ultimately trigger cell death if the UPR fails to compensate for damage. Here we show that ER locating human RING finger E3 ligase RNF186 participates in the process of ER stress-mediated apoptosis. Overexpression of RNF186 stimulates upregulation of ER sensor proteins and rapid transmission of ER Ca(2+) in Hela cells, while RNF186 knockdown exhibits a moderate degree of resistance to ER stress, indicating RNF186 can arouse stress signaling at ER. We further identified the Bcl-2 family protein BNip1 as one of the substrates of RNF186. BNip1 co-localizes with RNF186 at ER and is poly-ubiquitinated by RNF186 through K29 and K63 linkage in vivo. This modification promotes BNip1 transportation to mitochondria but has no influence on its protein level. The half-life of RNF186 is prolonged under ER stress, probably because of the inhibition on its self-ubiquitination and subsequent degradation by proteasomes. In addition, the ubiquitination of BNip1 is greatly enhanced when ER stress occurred, possibly due to RNF186 accumulation. More importantly, knockdown of BNip1 attenuates the stress signals at ER induced by RNF186. These results collectively indicate that BNip1 functions as a downstream modulator of RNF186 to direct ER stress-associated apoptotic signaling. Our study might reveal a novel E3 ligase-mediated mechanism for modulating ER stress.


Assuntos
Apoptose/genética , Cálcio/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ubiquitina-Proteína Ligases/genética , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica , Células HEK293 , Meia-Vida , Células HeLa , Humanos , Mitocôndrias/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Domínios RING Finger , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA