Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 167(1): 87-98.e14, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27641502

RESUMO

Aerobic organisms survive low oxygen (O2) through activation of diverse molecular, metabolic, and physiological responses. In most plants, root water permeability (in other words, hydraulic conductivity, Lpr) is downregulated under O2 deficiency. Here, we used a quantitative genetics approach in Arabidopsis to clone Hydraulic Conductivity of Root 1 (HCR1), a Raf-like MAPKKK that negatively controls Lpr. HCR1 accumulates and is functional under combined O2 limitation and potassium (K(+)) sufficiency. HCR1 regulates Lpr and hypoxia responsive genes, through the control of RAP2.12, a key transcriptional regulator of the core anaerobic response. A substantial variation of HCR1 in regulating Lpr is observed at the Arabidopsis species level. Thus, by combinatorially integrating two soil signals, K(+) and O2 availability, HCR1 modulates the resilience of plants to multiple flooding scenarios.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Oxigênio/metabolismo , Raízes de Plantas/metabolismo , Potássio/metabolismo , Água/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , MAP Quinase Quinase Quinases/genética , Permeabilidade , Fatores de Transcrição/genética
2.
New Phytol ; 243(2): 591-606, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38785184

RESUMO

Investigating plant responses to climate change is key to develop suitable adaptation strategies. However, whether changes in land management can alleviate increasing drought threats to crops in the future is still unclear. We conducted a management × drought experiment with winter wheat (Triticum aestivum L.) to study plant water and vegetative traits in response to drought and management (conventional vs organic farming, with intensive vs conservation tillage). Water traits (root water uptake pattern, stem metaxylem area, leaf water potential, stomatal conductance) and vegetative traits (plant height, leaf area, leaf Chl content) were considered simultaneously to characterise the variability of multiple traits in a trait space, using principal component analysis. Management could not alleviate the drought impacts on plant water traits as it mainly affected vegetative traits, with yields ultimately being affected by both management and drought. Trait spaces were clearly separated between organic and conventional management as well as between drought and control conditions. Moreover, changes in trait space triggered by management and drought were independent from each other. Neither organic management nor conservation tillage eased drought impacts on winter wheat. Thus, our study raised concerns about the effectiveness of these management options as adaptation strategies to climate change.


Assuntos
Secas , Característica Quantitativa Herdável , Estações do Ano , Triticum , Água , Triticum/fisiologia , Triticum/crescimento & desenvolvimento , Análise de Componente Principal , Folhas de Planta/fisiologia , Agricultura/métodos , Raízes de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento
3.
Plant J ; 111(2): 348-359, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35603461

RESUMO

Quantifying root water uptake is essential to understanding plant water use and responses to different environmental conditions. However, non-destructive measurement of water transport and related hydraulics in the soil-root system remains a challenge. Neutron imaging, with its high sensitivity to hydrogen, has become an unparalleled tool to visualize and quantify root water uptake in vivo. In combination with isotopes (e.g., deuterated water) and a diffusion-convection model, root water uptake and hydraulic redistribution in root and soil can be quantified. Here, we review recent advances in utilizing neutron imaging to visualize and quantify root water uptake, hydraulic redistribution in roots and soil, and root hydraulic properties of different plant species. Under uniform soil moisture distributions, neutron radiographic studies have shown that water uptake was not uniform along the root and depended on both root type and age. For both tap (e.g., lupine [Lupinus albus L.]) and fibrous (e.g., maize [Zea mays L.]) root systems, water was mainly taken up through lateral roots. In mature maize, the location of water uptake shifted from seminal roots and their laterals to crown/nodal roots and their laterals. Under non-uniform soil moisture distributions, part of the water taken up during the daytime maintained the growth of crown/nodal roots in the upper, drier soil layers. Ultra-fast neutron tomography provides new insights into 3D water movement in soil and roots. We discuss the limitations of using neutron imaging and propose future directions to utilize neutron imaging to advance our understanding of root water uptake and soil-root interactions.


Assuntos
Lupinus , Água , Transporte Biológico , Nêutrons , Raízes de Plantas , Solo , Água/fisiologia , Zea mays
4.
New Phytol ; 240(6): 2484-2497, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37525254

RESUMO

The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been elusive. We grew maize plants (Zea mays) in microcosms and scanned them using synchrotron-based X-ray computed microtomography. By means of image-based modelling, we investigated the parameters determining the effectiveness of root hairs in root water uptake. We explicitly accounted for rhizosphere features (e.g. root-soil contact and pore structure) and took root hair shrinkage of dehydrated root hairs into consideration. Our model suggests that > 85% of the variance in root water uptake is explained by the hair-induced increase in root-soil contact. In dry soil conditions, root hair shrinkage reduces the impact of hairs substantially. We conclude that the effectiveness of root hairs on root water uptake is determined by the hair-induced increase in root-soil contact and root hair shrinkage. Although the latter clearly reduces the effect of hairs on water uptake, our model still indicated facilitation of water uptake by root hairs at soil matric potentials from -1 to -0.1 MPa. Our findings provide new avenues towards a mechanistic understanding of the role of root hairs on water uptake.


Assuntos
Raízes de Plantas , Solo , Solo/química , Água , Rizosfera , Microtomografia por Raio-X , Zea mays
5.
Plant Cell Environ ; 46(7): 2046-2060, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36942406

RESUMO

Moderate soil drying can cause a strong decrease in the soil-root system conductance. The resulting impact on root water uptake depends on the spatial distribution of the altered conductance relatively to remaining soil water resources, which is largely unknown. Here, we analyzed the vertical distribution of conductance across root systems using a novel, noninvasive sensor technology on pot-grown faba bean and maize plants. Withholding water for 4 days strongly enhanced the vertical gradient in soil water potential. Therefore, roots in upper and deeper soil layers were affected differently: In drier, upper layers, root conductance decreased by 66%-72%, causing an amplification of the drop in leaf water potential. In wetter, deeper layers, root conductance increased in maize but not in faba bean. The consequently facilitated deep-water uptake in maize contributed up to 21% of total water uptake at the end of the measurement. Analysis of root length distributions with MRI indicated that the locally increased conductance was mainly caused by an increased intrinsic conductivity and not by additional root growth. Our findings show that plants can partly compensate for a reduced root conductance in upper, drier soil layers by locally increasing root conductivity in wetter layers, thereby improving deep-water uptake.


Assuntos
Vicia faba , Água , Secas , Zea mays , Raízes de Plantas , Solo
6.
J Exp Bot ; 74(16): 4789-4807, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37354081

RESUMO

The water deficit experienced by crops is a function of atmospheric water demand (vapor pressure deficit) and soil water supply over the whole crop cycle. We summarize typical transpiration response patterns to soil and atmospheric drying and the sensitivity to plant hydraulic traits. We explain the transpiration response patterns using a soil-plant hydraulic framework. In both cases of drying, stomatal closure is triggered by limitations in soil-plant hydraulic conductance. However, traits impacting the transpiration response differ between the two drying processes and act at different time scales. A low plant hydraulic conductance triggers an earlier restriction in transpiration during increasing vapor pressure deficit. During soil drying, the impact of the plant hydraulic conductance is less obvious. It is rather a decrease in the belowground hydraulic conductance (related to soil hydraulic properties and root length density) that is involved in transpiration down-regulation. The transpiration response to increasing vapor pressure deficit has a daily time scale. In the case of soil drying, it acts on a seasonal scale. Varieties that are conservative in water use on a daily scale may not be conservative over longer time scales (e.g. during soil drying). This potential independence of strategies needs to be considered in environment-specific breeding for yield-based drought tolerance.


Assuntos
Transpiração Vegetal , Solo , Pressão de Vapor , Transpiração Vegetal/fisiologia , Melhoramento Vegetal , Água/fisiologia , Produtos Agrícolas , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia
7.
J Exp Bot ; 74(16): 4808-4824, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37409696

RESUMO

Arbuscular mycorrhizal fungi (AMF) have been presumed to ameliorate crop tolerance to drought. Here, we review the role of AMF in maintaining water supply to plants from drying soils and the underlying biophysical mechanisms. We used a soil-plant hydraulic model to illustrate the impact of several AMF mechanisms on plant responses to edaphic drought. The AMF enhance the soil's capability to transport water and extend the effective root length, thereby attenuating the drop in matric potential at the root surface during soil drying. The synthesized evidence and the corresponding simulations demonstrate that symbiosis with AMF postpones the stress onset limit, which is defined as the disproportionality between transpiration rates and leaf water potentials, during soil drying. The symbiosis can thus help crops survive extended intervals of limited water availability. We also provide our perspective on future research needs and call for reconciling the dynamic changes in soil and root hydraulics in order to better understand the role of AMF in plant water relations in the face of climate changes.


Assuntos
Micorrizas , Simbiose , Secas , Água , Micorrizas/fisiologia , Produtos Agrícolas , Solo , Raízes de Plantas/microbiologia
8.
J Exp Bot ; 74(16): 4862-4874, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36787201

RESUMO

Water scarcity is the primary environmental constraint affecting wheat growth and production and is increasingly exacerbated due to climatic fluctuation, which jeopardizes future food security. Most breeding efforts to improve wheat yields under drought have focused on above-ground traits. Root traits are closely associated with various drought adaptability mechanisms, but the genetic variation underlying these traits remains untapped, even though it holds tremendous potential for improving crop resilience. Here, we examined this potential by re-introducing ancestral alleles from wild emmer wheat (Triticum turgidum ssp. dicoccoides) and studied their impact on root architecture diversity under terminal drought stress. We applied an active sensing electrical resistivity tomography approach to compare a wild emmer introgression line (IL20) and its drought-sensitive recurrent parent (Svevo) under field conditions. IL20 exhibited greater root elongation under drought, which resulted in higher root water uptake from deeper soil layers. This advantage initiated at the pseudo-stem stage and increased during the transition to the reproductive stage. The increased water uptake promoted higher gas exchange rates and enhanced grain yield under drought. Overall, we show that this presumably 'lost' drought-induced mechanism of deeper rooting profile can serve as a breeding target to improve wheat productiveness under changing climate.


Assuntos
Secas , Triticum , Triticum/genética , Melhoramento Vegetal , Fenótipo , Água
9.
New Phytol ; 233(3): 1121-1132, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767646

RESUMO

The long-standing hypothesis that the isotopic composition of plant stem water reflects that of source water is being challenged by studies reporting bulk water from woody stems with an isotopic composition that cannot be attributed to any potential water source. The mechanism behind such source-stem water isotopic offsets is still poorly understood. Using a novel technique to extract selectively sap water from xylem conduits, we show that, in cut stems and potted plants, the isotopic composition of sap water reflects that of irrigation water, demonstrating unambiguously that no isotopic fractionation occurs during root water uptake or sap water extraction. By contrast, water in nonconductive xylem tissues is always depleted in deuterium compared with sap water, irrespective of wood anatomy. Previous studies have shown that isotopic heterogeneity also exists in soils at the pore scale in which water adsorbed onto soil particles is more depleted in deuterium than unbound water. Data collected at a riparian forest indicated that sap water matches best unbound soil water from depth below -70 cm, while bulk stem and soil water differ markedly. We conclude that source-stem isotopic offsets can be explained by micrometre-scale heterogeneity in the isotope ratios of water within woody stems and soil micro-pores.


Assuntos
Árvores , Água , Caules de Planta , Solo , Madeira , Xilema
10.
New Phytol ; 236(4): 1267-1280, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35945699

RESUMO

Determining whether isotope fractionation occurs during root water uptake is a prerequisite for using stem or xylem water isotopes to trace water sources. However, it is unclear whether isotope fractionation occurs during root water uptake in gramineous crops. We conducted prevalidation experiments to estimate the isotope measurement bias associated with cryogenic vacuum distillation (CVD). Next, we assessed isotope fractionation during root water uptake in two common agronomic crops, wheat (Triticum aestivum L.) and maize (Zea mays L.), under flooding after postdrought stress conditions. Cryogenic vacuum distillation caused significant depletion of 2 H but negligible effects on 18 O for both soil and stem water. Surprisingly CVD caused depletion of 2 H and enrichment of 18 O in root water. Stem and root water δ18 O were more than soil water δ18 O, even considering the uncertainty of CVD. Soil water 18 O was depleted compared with irrigation water 18 O in the pots with plants but enriched relative to irrigation water 18 O in the pots without plants. These results indicate that isotope fractionation occurred during wheat and maize root water uptake after full irrigation and led to a heavy isotope enrichment in stem water. Therefore, the xylem/stem water isotope approach widely used to trace water sources should be carefully evaluated.


Assuntos
Doenças Cardiovasculares , Água , Isótopos de Oxigênio/análise , Deutério/análise , Poaceae , Solo , Triticum , Produtos Agrícolas , Zea mays , Hidratação
11.
Plant Cell Environ ; 45(3): 650-663, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35037263

RESUMO

Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and root phenotypes. Here we ask (1) what root phenotypes improve the water use from drying soils? and (2) what root hydraulic properties impact water flow across the soil-plant continuum? The main objective is to propose a hydraulic framework to investigate the interplay between soil and root hydraulic properties on water uptake. We collected highly resolved data on transpiration, leaf and soil water potential across 11 crops and 10 contrasting soil textures. In drying soils, the drop in water potential at the soil-root interface resulted in a rapid decrease in soil hydraulic conductance, especially at higher transpiration rates. The analysis reveals that water uptake was limited by soil within a wide range of soil water potential (-6 to -1000 kPa), depending on both soil textures and root hydraulic phenotypes. We propose that a root phenotype with low root hydraulic conductance, long roots and/or long and dense root hairs postpones soil limitation in drying soils. The consequence of these root phenotypes on crop water use is discussed.


Assuntos
Solo , Água , Dessecação , Fenótipo , Raízes de Plantas/química , Transpiração Vegetal , Água/análise
12.
Glob Chang Biol ; 28(20): 5928-5944, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35795901

RESUMO

Central Europe has been experiencing unprecedented droughts during the last decades, stressing the decrease in tree water availability. However, the assessment of physiological drought stress is challenging, and feedback between soil and vegetation is often omitted because of scarce belowground data. Here we aimed to model Swiss forests' water availability during the 2015 and 2018 droughts by implementing the mechanistic soil-vegetation-atmosphere-transport (SVAT) model LWF-Brook90 taking advantage of regionalized depth-resolved soil information. We calibrated the model against soil matric potential data measured from 2014 to 2018 at 44 sites along a Swiss climatic and edaphic drought gradient. Swiss forest soils' storage capacity of plant-available water ranged from 53 mm to 341 mm, with a median of 137 ± 42 mm down to the mean potential rooting depth of 1.2 m. Topsoil was the primary water source. However, trees switched to deeper soil water sources during drought. This effect was less pronounced for coniferous trees with a shallower rooting system than for deciduous trees, which resulted in a higher reduction of actual transpiration (transpiration deficit) in coniferous trees. Across Switzerland, forest trees reduced the transpiration by 23% (compared to potential transpiration) in 2015 and 2018, maintaining annual actual transpiration comparable to other years. Together with lower evaporative fluxes, the Swiss forests did not amplify the blue water deficit. The 2018 drought, characterized by a higher and more persistent transpiration deficit than in 2015, triggered widespread early wilting across Swiss forests that was better predicted by the SVAT-derived mean soil matric potential in the rooting zone than by climatic predictors. Such feedback-driven quantification of ecosystem water fluxes in the soil-plant-atmosphere continuum will be crucial to predicting physiological drought stress under future climate extremes.


Assuntos
Secas , Solo , Ecossistema , Florestas , Plantas , Suíça , Árvores/fisiologia , Água/fisiologia
13.
Oecologia ; 196(2): 353-361, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34008141

RESUMO

Dew is an important water resource for plants in most deserts. The mechanism that allows desert plants to use dew water was studied using an isotopic water tracer approach. Most plants use water directly from the soil; the roots transfer the water to the rest of the plant, where it is required for all metabolic functions. However, many plants can also take up water into their leaves and stems. Examining the dew water uptake pathways in desert plants can lend insight on another all water-use pathways examination. We determined where and how dew water enters plants in the water limited Negev desert. Highly depleted isotopic water was sprayed on three different dominant plant species of the Negev desert-Artemesia sieberi, Salsola inermis and Haloxylon scoparium-and its entry into the plant was followed. Water was sprayed onto the soil only, or on the leaves/stems only (with soil covered to prevent water entry via root uptake). Thereafter, the isotopic composition of water in the roots and stems were measured at various time points. The results show that each plant species used the dew water to a different extent, and we obtained evidence of foliar uptake capacity of dew water that varied depending on the microenvironmental conditions. A. sieberi took up the greatest amount of dew water through both stems and roots, S. inermis took up dew water mainly from the roots, and H. scoparium showed the least dew capture overall.


Assuntos
Solo , Água , Transporte Biológico , Isótopos de Oxigênio/análise , Folhas de Planta/química , Água/análise
14.
New Phytol ; 227(3): 766-779, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32239512

RESUMO

A growing number of field studies report isotopic offsets between stem water and its potential sources that prevent the unambiguous identification of plant water origin using water isotopes. We explored the causes of this isotopic offset by conducting a controlled experiment on the temperate tree species Fagus sylvatica. We measured δ2 H and δ18 O of soil and stem water from potted saplings growing on three soil substrates and subjected to two watering regimes. Regardless of substrate, soil and stem water δ2 H were similar only near permanent wilting point. Under moister conditions, stem water δ2 H was 11 ± 3‰ more negative than soil water δ2 H, coherent with field studies. Under drier conditions, stem water δ2 H became progressively more enriched than soil water δ2 H. Although stem water δ18 O broadly reflected that of soil water, soil-stem δ2 H and δ18 O differences were correlated (r = 0.76) and increased with transpiration rates indicated by proxies. Soil-stem isotopic offsets are more likely to be caused by water isotope heterogeneities within the soil pore and stem tissues, which would be masked under drier conditions as a result of evaporative enrichment, than by fractionation under root water uptake. Our results challenge our current understanding of isotopic signals in the soil-plant continuum.


Assuntos
Fagus , Árvores , Isótopos de Carbono/análise , Isótopos de Oxigênio/análise , Solo , Água/análise
15.
New Phytol ; 226(1): 98-110, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31792975

RESUMO

Root water uptake is a key ecohydrological process for which a physically based understanding has been developed in the past decades. However, due to methodological constraints, knowledge gaps remain about the plastic response of whole plant root systems to a rapidly changing environment. We designed a laboratory system for nondestructive monitoring of stable isotopic composition in plant transpiration of a herbaceous species (Centaurea jacea) and of soil water across depths, taking advantage of newly developed in situ methods. Daily root water uptake profiles were obtained using a statistical Bayesian multisource mixing model. Fast shifts in the isotopic composition of both soil and transpiration water could be observed with the setup and translated into dynamic and pronounced shifts of the root water uptake profile, even in well watered conditions. The incorporation of plant physiological and soil physical information into statistical modelling improved the model output. A simple exercise of water balance closure underlined the nonunique relationship between root water uptake profile on the one hand, and water content and root distribution profiles on the other, illustrating the continuous adaption of the plant water uptake as a function of its root hydraulic architecture and soil water availability during the experiment.


Assuntos
Centaurea , Raízes de Plantas , Solo , Teorema de Bayes , Raízes de Plantas/fisiologia , Transpiração Vegetal , Água
16.
Planta ; 249(4): 1207-1215, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30603790

RESUMO

MAIN CONCLUSION: Rhizobial symbiosis improved the water status of bean plants under salinity-stress conditions, in part by increasing their osmotic root water flow. One of the main problems for agriculture worldwide is the increasing salinization of farming lands. The use of soil beneficial microorganisms stands up as a way to tackle this problem. One approach is the use of rhizobial N2-fixing, nodule-forming bacteria. Salinity-stress causes leaf dehydration due to an imbalance between water lost through stomata and water absorbed by roots. The aim of the present study was to elucidate how rhizobial symbiosis modulates the water status of bean (Phaseolus vulgaris) plants under salinity-stress conditions, by assessing the effects on root hydraulic properties. Bean plants were inoculated or not with a Rhizobium leguminosarum strain and subjected to moderate salinity-stress. The rhizobial symbiosis was found to improve leaf water status and root osmotic water flow under such conditions. Higher content of nitrogen and lower values of sodium concentration in root tissues were detected when compared to not inoculated plants. In addition, a drop in the osmotic potential of xylem sap and increased amount of PIP aquaporins could favour higher root osmotic water flow in the inoculated plants. Therefore, it was found that rhizobial symbiosis may also improve root osmotic water flow of the host plants under salinity stress.


Assuntos
Phaseolus/metabolismo , Raízes de Plantas/metabolismo , Rhizobium leguminosarum/metabolismo , Simbiose , Desidratação , Nitrogênio/metabolismo , Phaseolus/microbiologia , Phaseolus/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Potássio/metabolismo , Sódio/metabolismo , Água/metabolismo
17.
New Phytol ; 222(3): 1271-1283, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30604465

RESUMO

The 'two-water-worlds' hypothesis is based on stable isotope differences in stream, soil and xylem waters in dual isotope space. It postulates no connectivity between bound and mobile soil waters, and preferential plant water uptake of bound soil water sources. We tested the pool-weighted impact of isotopically distinct water pools for hydrological cycling, the influence of species-specific water use and the degree of ecohydrological separation. We combined stable isotope analysis (δ18 O and δ2 H) of ecosystem water pools of precipitation, groundwater, soil and xylem water of two distinct species (Quercus suber, Cistus ladanifer) with observations of soil water contents and sap flow. Shallow soil water was evaporatively enriched during dry-down periods, but enrichment faded strongly with depth and upon precipitation events. Despite clearly distinct water sources and water-use strategies, both species displayed a highly opportunistic pattern of root water uptake. Here we offer an alternative explanation, showing that the isotopic differences between soil and plant water vs groundwater can be fully explained by spatio-temporal dynamics. Pool weighting the contribution of evaporatively enriched soil water reveals only minor annual impacts of these sources to ecosystem water cycling (c. 11% of bulk soil water and c. 14% of transpired water).


Assuntos
Modelos Biológicos , Água/metabolismo , Transporte Biológico , Cistus/metabolismo , Deutério/metabolismo , Ecossistema , Água Subterrânea/química , Isótopos de Oxigênio/metabolismo , Raízes de Plantas/metabolismo , Quercus/metabolismo , Chuva , Estações do Ano , Solo/química , Pressão de Vapor , Xilema/metabolismo
18.
J Exp Bot ; 70(21): 6437-6446, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31504720

RESUMO

The relatively better performance of mycorrhizal plants subjected to drought stress has commonly been linked to improved root water uptake through the fungal regulation of plant aquaporins and hormones. In this study, we examined the role of ectomycorrhizal fungi in plant water relations and plant hormonal balance under mild drought using split-root seedlings of Populus trichocarpa × deltoides either with or without inoculation with Laccaria bicolor. The root compartments where the drought treatment was applied had higher ABA and lower cytokinin tZR contents, and greater expression of the plant aquaporins PtPIP1;1, PtPIP1;2, PtPIP2;5, and PtPIP2;7. On the other hand, the presence of L. bicolor within the roots down-regulated PtPIP1;4, PtPIP2;3, and PtPIP2;10, and reduced the abundance of PIP2 proteins. In addition, expression of the fungal aquaporins JQ585595 and JQ585596 were positively correlated with root ABA content, while tZR content was positively correlated with PtPIP1;4 and negatively correlated with PtPIP2;7. The results demonstrate a coordinated plant-fungal system that regulates the different mechanisms involved in water uptake in ectomycorrhizal poplar plants.


Assuntos
Ácido Abscísico/metabolismo , Aquaporinas/metabolismo , Citocininas/metabolismo , Secas , Laccaria/fisiologia , Micorrizas/fisiologia , Raízes de Plantas/metabolismo , Populus/fisiologia , Aquaporinas/genética , Regulação da Expressão Gênica de Plantas , Laccaria/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Populus/microbiologia , Plântula/crescimento & desenvolvimento , Solo , Estresse Fisiológico
19.
J Exp Bot ; 70(10): 2797-2809, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30799498

RESUMO

For the first time, a functional-structural root-system model is validated by combining a tracer experiment monitored with magnetic resonance imaging and three-dimensional modeling of water and solute transport.


Assuntos
Botânica/métodos , Imageamento por Ressonância Magnética , Raízes de Plantas/metabolismo , Água/metabolismo , Modelos Biológicos , Solo
20.
J Theor Biol ; 456: 49-61, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30055183

RESUMO

Current theory and supporting research suggests that radial transport is the most limiting factor to root water uptake, raising the question whether only absorbing root length and radial conductivity matter to water uptake. Here, we extended the porous pipe analytical model of root water uptake to entire root networks in 3D and analysed the relative importance of axial and radial characteristics to total uptake over parameter ranges reported in the literature. We found that network conductance can be more sensitive to axial than radial conductance of absorbing roots. When axial transport limits uptake, more dichotomous topology, especially towards the base of the network, increases water uptake efficiency, while the effect of root length is reduced. Whole root system conductance was sensitive to radial transport and length in model lupin (Lupinus angustifolius L.), but to axial transport and topology in wheat (Triticum aestivum L.), suggesting the root habit niche space of monocots may be constrained by their loss of secondary growth. A deep tap root calibrated to oak (Quercus fusiformis J. Buchholz) hydraulic parameters required 15 times more xylem volume to transport comparable amounts of water once recalibrated to parameters from juniper (Juniperus ashei Small 1901), showing that anatomical constraints on axial conductance can lead to significant trade-offs in woody roots as well. Root system water uptake responds to axial transport and can be limited by it in a biologically meaningful way.


Assuntos
Modelos Biológicos , Raízes de Plantas/metabolismo , Água/metabolismo , Aquaporinas/antagonistas & inibidores , Aquaporinas/fisiologia , Transporte Biológico/fisiologia , Lupinus/metabolismo , Raízes de Plantas/anatomia & histologia , Quercus/metabolismo , Triticum/metabolismo , Xilema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA