Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Plant Dis ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995764

RESUMO

China rose (Rosa chinensis Jacq.) is a popular ornamental plant grown widely in China. In September 2021, a serious leaf spot disease was observed on R. chinensis in Rose plantation of Nanyang Academy of Agricultural Sciences in Nanyang (112°25'41″N, 32°54'28″E), Henan Province, causing severe defoliation of infected plants with a foliar disease incidence of 50 to 70% (n = 100). The early symptoms were irregular brown specks on the leaves, mostly at the tip and margin of the leaves. Then the specks gradually expanded into round amorphous and became dark brown, eventually leading to large irregular or circular lesions. Twenty symptomatic samples were collected from several individual plants, and the junction areas between infected and healthy tissues were cut into 3×3 mm pieces. These tissues were sterilized in 75% ethanol for 30 seconds and 1% HgCl solution for 3 min, rinsed thrice in sterile water, and placed on potato dextrose agar (PDA) plates, incubated at 25°C for 3 days. The edges of the colony were cut and transferred to new PDA plates for purification. These isolates were isolated from the original diseased leaves and showed similar phenotypes in morphological characters. Three representative purified strains (YJY20, YJY21, and YJY30) were used for further study. Colonies were villiform, initially white, later turning gray and greyish-green. Conidia were unitunicate, clavate, and averaged 17.36 (11.61 to 22.12) - 5.29 (3.92 to 7.04) µm in diameter (n=100). The characteristics were close to those of Colletotrichum spp. (Weir et al. 2012). The genomic DNA was extracted, and the rDNA internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (GADPH), calmodulin genes (CAL), actin genes (ACT), chitin synthase 1 genes (CHS-1), manganesesuperoxide dismutase (SOD2), and ß-tubulin 2 genes (TUB2) were amplified from genomic DNA by primers ITS1/ITS4, GDF/GDR, CL1C/CL2C, ACT-512F/ACT-783R, CHS-79F/CHS-345R, SODglo2-F/SODglo2-R, and Bt2a/Bt2b, respectively (Weir et al. 2012). Sequences were submitted to GenBank with accession numbers OP535983, OP535993, OP535994(ITS), OP554748, OP546349, OP546350(GAPDH), OP546351-OP546353(CAL), OP546354-OP546356(ACT), OP554742-OP554744(CHS-1), OP554745-OP554747(SOD2), and OP554749-OP554751(TUB2). BLASTn analyses of ITS, GAPDH, CAL, ACT, CHS-1, SDO2 and TUB2 sequences exhibited 99.62%, 98.40%, 99.72%-99.86%, 96.85%-96.86%, 99.26%-100%, 100% and 99.33% similarity to the sequences of Colletotrichum fructicola strain ICMP 18581, respectively in GenBank. These morphological features and molecular identification indicated that the pathogen possessed identical characteristics as C. fructicola (Weir et al. 2012). Pathogenicity was tested through in vivo experiments. Six 1-year-old intact plants were used per isolate. The test leaves of plants were gently scratched with a sterilized needle. Conidial suspension of the pathogen strains were inoculated on the wounded leaves at a concentration of 107 conidial/mL. The control leaves were inoculated with distilled water. The inoculated plants were placed in greenhouse at 28℃ and 90% humidity. After 3-6 days,anthracnose-like symptoms were observed on inoculated leaves of five plants while the control plants remained healthy. The strains of C. fructicola were reisolated from the symptomatic inoculated leaves, confirming Koch's postulates. To our knowledge, this is the first report of C. fructicola causing anthracnose on Rosa chinensis in China. C. fructicola has been reported to affect numerous plants worldwide, including grape, citrus, apple, cassava, mango (Qili Li et al. 2019), and tea-oil tree (X. G. Chen et al. 2022), among others (Oliveira et al. 2018). This identification research will facilitate subsequent assistance with disease control and field management of plants.

2.
Genomics ; 114(6): 110516, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36306956

RESUMO

We explored the transcriptomic and metabolomic changes in Rosa chinensis after the infection with Podosphaera pannosa and after the treatment with exogenous salicylic acid (SA), separately. The rose responses to the mildew-infection were clearly similar to the responses to the SA-treatment. Based on the combined omics analysis, after the induction by both P. pannosa and SA, R. chinensis responded consistently by MAPK cascades, plant-pathogen interaction pathway activation, and resistance (R) genes expression, and further, triterpenoid biosynthesis, glutathione metabolism, and linoleic acid metabolism were significantly enriched when compared with the control. The levels of the triterpenoids with the largest fold change values were significantly up-regulated such as dehydro (11,12) ursolic acid lactone and maslinic acid, suggesting that these pathways and metabolites were involved in the resistance to P. pannosa. The contents of salicylic acid beta-D-glucoside, methyl salicylate, and methyl jasmonate increased significantly resulting from both P. pannosa-infection and exogenous SA-treatment.


Assuntos
Rosa , Ácido Salicílico , Ácido Salicílico/farmacologia , Rosa/genética , Metabolômica
3.
Plant J ; 107(5): 1332-1345, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34160111

RESUMO

Small RNAs play important roles in plant growth and development by modulating expression of genes and transposons. In many flowering plant species, male reproductive organs, the anthers, produce abundant phased small interfering RNAs (phasiRNAs). Two classes of reproductive phasiRNAs are generally known, mostly from monocots: (i) pre-meiotic 21-nucleotide (nt) phasiRNAs triggered by miR2118 and (ii) meiotic 24-nt phasiRNAs triggered by miR2275. Here, we describe conserved and non-conserved triggers of 24-nt phasiRNAs in several eudicots. We found that the abundant 24-nt phasiRNAs in the basal eudicot columbine (Aquilegia coerulea) are produced by the canonical trigger miR2275, as well as by other non-canonical triggers, miR482/2118 and miR14051. These triggering microRNAs (miRNAs) are localized in microspore mother cells and tapetal cells of meiotic and post-meiotic stage anthers. Furthermore, we identified a lineage-specific trigger (miR11308) of 24-nt phasiRNAs and an expanded number of 24-PHAS loci in wild strawberry (Fragaria vesca). We validated the presence of the miR2275-derived 24-nt phasiRNA pathway in rose (Rosa chinensis). Finally, we evaluated all eudicots that have been validated for the presence of 24-nt phasiRNAs as possible model systems in which to study the biogenesis and function of 24-nt phasiRNAs. We conclude that columbine (Aquilegia coerulea) would be a strong model because of its extensive number of 24-PHAS loci and its diversity of trigger miRNAs.


Assuntos
Aquilegia/genética , Magnoliopsida/genética , MicroRNAs/genética , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Fragaria/genética , Loci Gênicos/genética , Meiose/genética , Especificidade de Órgãos
4.
Plant Cell Rep ; 41(2): 395-413, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34820714

RESUMO

KEY MESSAGE: Nine RcBURPs have been identified in Rosa chinensis, and overexpression of RcBURP4 increased ABA, NaCl sensitivity, and drought tolerance in transgenic Arabidopsis. BURP proteins are unique to plants and may contribute greatly to growth, development, and stress responses of plants. Despite the vital role of BURP proteins, little is known about these proteins in rose (Rosa spp.). In the present study, nine genes belonging to the BURP family in R. chinensis were identified using multiple bioinformatic approaches against the rose genome database. The nine RcBURPs, with diverse structures, were located on all chromosomes of the rose genome, except for Chr2 and Chr3. Phylogenic analysis revealed that these RcBURPs can be classified into eight subfamilies, including BNM2-like, PG1ß-like, USP-like, RD22-like, BURP-V, BURP-VI, BURP-VII, and BURP-VIII. Conserved motif and exon-intron analyses indicated a conserved pattern within the same subfamily. The presumed cis-regulatory elements (CREs) within the promoter region of each RcBURP were analyzed and the results showed that all RcBURPs contained different types of CREs, including abiotic stress-, light response-, phytohormones response-, and plant growth and development-related CREs. Transcriptomic analysis revealed that a BURP-V member, RcBURP4, was induced in rose leaves and roots under mild and severe drought treatments. We then overexpressed RcBURP4 in Arabidopsis and examined its role under abscisic acid (ABA), NaCl, polyethylene glycol (PEG), and drought treatments. Nine stress-responsive genes expression were changed in RcBURP4-overexpressing leaves and roots. Furthermore, RcBURP4-silenced rose plants exhibited decreased tolerance to dehydration. The results obtained from this study provide the first comprehensive overview of RcBURPs and highlight the importance of RcBURP4 in rose plant.


Assuntos
Arabidopsis/fisiologia , Filogenia , Proteínas de Plantas/genética , Rosa/genética , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Mapeamento Cromossômico , Secas , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Germinação , Plantas Geneticamente Modificadas , Polietilenoglicóis/farmacologia , Sequências Reguladoras de Ácido Nucleico , Rosa/fisiologia , Salinidade , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/fisiologia
5.
Genomics ; 113(6): 3881-3894, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34571174

RESUMO

Members of the REM (Reproductive Meristem) gene family are expressed primarily in reproductive meristems and floral organs. However, their evolution and their functional profiles in flower development remain poorly understood. Here, we performed genome-wide identification and evolutionary analysis of the REM gene family in Rosaceae. This family has been greatly expanded in rose (Rosa chinensis) compared to other species, primarily through tandem duplication. Expression analysis revealed that most RcREM genes are specifically expressed in reproductive organs and that their specific expression patterns are dramatically altered in rose plants with mutations affecting floral organs. Protein-protein interaction analysis indicated that RcREM14 interact with RcAP1 (one of the homology of A class genes in ABCDE model), highlighting the roles of RcREM genes in floral organ identity. Finally, co-expression network analysis indicated that RcREM genes are co-expressed with a high proportion of key genes that regulate flowering time, floral organ development, and cell proliferation and expansion in R. chinensis.


Assuntos
Rosa , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Meristema/genética , Meristema/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rosa/genética , Rosa/metabolismo
6.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499007

RESUMO

Fragrance is an important characteristic of rose flowers and is largely determined by the terpenes. Rose has a unique NUDX1 (NUDIX HYDROLASES 1)-dependent monoterpene geraniol biosynthesis pathway, but little is known about its transcriptional regulation. In this study, we characterized two China rose (Rosa chinensis) materials from the 'Old Blush' variety with contrasting aromas. We profiled the volatile metabolome of both materials, and the results revealed that geraniol was the main component that distinguishes the aroma of these two materials. We performed a comparative transcriptome analysis of the two rose materials, from which we identified the hydrolase RcNUDX1 as a key factor affecting geraniol content, as well as 17 transcription factor genes co-expressed with RcNUDX1. We also determined that the transcription factor RcWRKY70 binds to four W-box motifs in the promoter of RcNUDX1, repressing RcNUDX1 expression, based on yeast one-hybrid and transient dual-luciferase assays. These results provide important information concerning the transcriptional regulatory framework underlying the control of geraniol production in rose.


Assuntos
Rosa , Rosa/genética , Rosa/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Flores/genética , Flores/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
7.
Plant J ; 103(5): 1839-1849, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32524706

RESUMO

Jasmonates (JAs) are important for pathogen resistance in many plants, but the role of these phytohormones in fungal pathogen resistance in rose is unclear. Here, we determined that exogenous application of methyl jasmonate increased resistance to the important fungal pathogen Botrytis cinerea in Rosa chinensis 'Old blush', whereas silencing the JA biosynthetic pathway gene Allene Oxide Synthase (AOS) and JA co-receptor gene CORONATINE INSENSITIVE 1 (COI1) suppressed this response. Transcriptome profiling identified various MYB transcription factor genes that responded to both JA and B. cinerea treatment. Silencing Ri-RcMYB84/Ri-RcMYB123 increased the susceptibility of rose plants to B. cinerea and inhibited the protective effects of JA treatment, confirming the crucial roles of these genes in JA-induced responses to B. cinerea. JAZ1, a key repressor of JA signaling, directly interacts with RcMYB84 and RcMYB123 to deplete their free pools. The JAZ1-RcMYB84 complex binds to the RcMYB123 promoter via the CAACTG motifs to block its transcription. Upon JA treatment, the expression of RcMYB123 is de-repressed, and free forms of RcMYB84 and RcMYB123 are released due to JAZ1 degradation, thereby activating the defense responses of plants to B. cinerea. These findings shed light on the molecular mechanisms underlying JA-induced pathogen resistance in roses.


Assuntos
Botrytis , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Rosa/imunologia , Fatores de Transcrição/fisiologia , Resistência à Doença , Perfilação da Expressão Gênica , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Rosa/metabolismo , Rosa/microbiologia , Transdução de Sinais , Fatores de Transcrição/metabolismo
8.
BMC Plant Biol ; 21(1): 526, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34758750

RESUMO

BACKGROUND: Wall-associated kinase (WAK)/WAK-like (WAKL) is one of the subfamily of receptor like kinases (RLK). Although previous studies reported that WAK/WAKL played an important role in plant cell elongation, response to biotic and abiotic stresses, there are no systematic studies on RcWAK/RcWAKL in rose. RESULTS: In this study, we identified a total of 68 RcWAK/RcWAKL gene family members within rose (Rosa chinensis) genome. The RcWAKs contained the extracellular galacturonan-binding domain and calcium-binding epidermal growth factor (EGF)-like domain, as well as an intracellular kinase domains. The RcWAKLs are missing either calcium-binding EGF-like domain or the galacturonan-binding domain in their extracellular region. The phylogenetic analysis showed the RcWAK/RcWAKL gene family has been divided into five groups, and these RcWAK/RcWAKL genes were unevenly distributed on the 7 chromosomes of rose. 12 of RcWAK/RcWAKL genes were significantly up-regulated by Botrytis cinerea-inoculated rose petals, where RcWAK4 was the most strongly expressed. Virus induced gene silencing of RcWAK4 increased the rose petal sensitivity to B. cinerea. The results indicated RcWAK4 is involved in the resistance of rose petal against B. cinerea. CONCLUSION: Our study provides useful information to further investigate the function of the RcWAK/RcWAKL gene family and breeding research for resistance to B. cinerea in rose.


Assuntos
Botrytis/fisiologia , Proteínas de Plantas/fisiologia , Proteínas Quinases/fisiologia , Rosa/enzimologia , Rosa/microbiologia , Mapeamento Cromossômico , Cromossomos de Plantas , Resistência à Doença/genética , Genoma de Planta , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas Quinases/genética , Rosa/genética , Transcriptoma
9.
Planta ; 254(6): 118, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34757465

RESUMO

MAIN CONCLUSION: A total of 27 rose thaumatin-like protein (TLP) genes were identified from the rose genome through bioinformatics analyses. RcTLP6 was found to confer salinity stress tolerance in rose. Thaumatin-like proteins (TLPs) play critical roles in regulating many biological processes, including abiotic and biotic stress responses in plants. Here, we conducted a genome-wide screen of TLPs in rose (Rosa chinensis) and identified 27 RcTLPs. The identified RcTLPs, as well as other TLPs from six different plant species, were placed into nine groups based on a phylogenetic analysis. An analysis of the intron-exon structures of the TLPs revealed a high degree of similarity. RcTLP genes were found on all chromosomes except for chromosome four. Cis-regulatory elements (CEs) were identified in the promoters of all RcTLPs, including CEs associated with growth, development and hormone-responsiveness, as well as abiotic and biotic responses, indicating they play diverse roles in rose. Transcriptomics analysis revealed that RcTLPs had tissue-specific expression patterns, and several root-preferential RcTLPs were responsive to drought and salinity stress. Quantitative PCR analysis of six RcTLPs under ABA, PEG and NaCl treatment confirmed the differentially expressed genes identified in the transcriptomics experiment. In addition, silencing RcTLP6 in rose leaves led to decreased tolerance to salinity stress. We also screened proteins which may interact with RcTLP6 to understand its biological roles. This study represents the first report of the TLP gene family in rose and expands the current understanding of the role that RcTLP6 plays in salt tolerance. These findings lay a foundation for future utilization of RcTLPs to improve rose abiotic stress tolerance.


Assuntos
Rosa , Secas , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rosa/genética , Tolerância ao Sal/genética , Estresse Fisiológico/genética
10.
Plant Dis ; 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33829859

RESUMO

Chinese rose (Rosa chinensis Jacq.) is cultivated for edible flowers in southwestern China (Zhang et al. 2014). In March 2020, a leaf spot disease was observed on about 3-5% leaves of Chinese rose cultivar 'Mohong' in Guizhou Botanical Garden (26°37' 45'' N, 106°43' 10'' E), Guiyang, Guizhou province, China. The symptomatic plants displayed circular, dark brown lesions with black conidiomata in grey centers on leaves, and leaf samples were collected. After surface sterilization (0.5 min in 75% ethanol and 2 min in 3% NaOCl, washed 3 times with sterilized distilled water) (Fang 2007), small pieces of symptomatic leaf tissue (0.3 × 0.3 cm) were plated on potato dextrose agar (PDA) and incubated at 28oC for about 7 days. Two single-spore isolates, GZUMH01 and GZUMH02, were obtained, which were identical in morphology and molecular analysis. Therefore, the representative isolate GZUMH01 was used for further study. The pathogenicity of GZUMH01 was tested through a pot assay. Ten healthy plants were scratched with a sterilized needle on the leaves. Plants were inoculated by spraying a spore suspension (106 spores ml-1) onto leaves until runoff, and the control leaves sprayed with sterile water. The plants were maintained at 25°C with high relative humidity (90 to 95%) in a growth chamber. The pathogenicity test was carried out three times using the method described in Fang (2007). The symptoms developed on all inoculated leaves but not on the control leaves. The lesions were first visible 48 h after inoculation, and typical lesions similar to those observed on field plants after 7 days. The same fungus was re-isolated from the infected leaves but not from the non-inoculated leaves, fulfilling Koch's postulates. Fungal colonies on PDA were villiform and greyish. The conidia were abundant, oval-ellipsoid, aseptate, 15.8 (13.7 to 18.8) × 5.7 (4.3 to 6.8) µm. The fungal colonies, hyphae, and conidia were consistent with the descriptions of Colletotrichum boninense Moriwaki, Toy. Sato & Tsukib. (Damm et al. 2012; Moriwaki et al. 2003). The pathogen was confirmed to be C. boninense by amplification and sequencing of the internal transcribed spacer region (ITS), the glyceraldehyde-3-phosphate dehydrogenase (GADPH), actin (ACT), and chitin synthase 1 (CHS-1) genes using primers ITS1/ITS4, GDF1/GDR1, ACT512F/ACT783R, and CHS-79F/CHS-345R, respectively (Damm et al. 2012; Moriwaki et al. 2003). The sequences of the PCR products were deposited in GenBank with accession numbers MT845879 (ITS), MT861006 (GADPH), MT861007 (ACT), and MT861008 (CHS-1). BLAST searches of the obtained sequences of the ITS, GADPH, ACT, and CHS-1 genes revealed 100% (554/554 nucleotides), 100% (245/245 nucleotides), 97.43% (265/272 nucleotides), and 99.64% (279/280 nucleotides) homology with those of C. boninense in GenBank (JQ005160, JQ005247, JQ005508, and JQ005334, respectively). Phylogenetic analysis (MEGA 6.0) using the maximum likelihood method placed the isolate GZUMH01 in a well-supported cluster with C. boninense. The pathogen was thus identified as C. boninense based on its morphological and molecular characteristics. To our knowledge, this is the first report of the anthracnose disease on R. chinensis caused by C. boninense in the world.

11.
Plant Mol Biol ; 102(4-5): 417-430, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31898146

RESUMO

KEY MESSAGE: We genome-wide identified 28 JmjC domain-containing genes, further spatio-temporal expression profiling and genetic analysis defined them as epigenetic regulators in flowering initiation of Rosa chinensis. The JmjC domain-containing histone demethylases play critical roles in maintaining homeostasis of histone methylations, thus are vital for plant growth and development. Genome-wide identification of the JmjC domain-containing genes have been reported in several species, however, no systematic study has been performed in rose plants. In this paper, we identified 28 JmjC domain-containing genes from the newly published genome database of Rosa chinensis. The JmjC domain-containing proteins in R. chinensis were divided into seven groups, KDM3 was the largest group with 13 members, and JmjC domain-only A and KDM5B were the smallest clades both with only one member. Although all the JmjC domain proteins having a conserved JmjC domain, the gene and protein structure experienced differentiation and specification during the evolution, especially in KDM3 clade, one gene (RcJMJ40) was found carrying site deletions for cofactors Fe (II) and α-KG binding which were crucial for demethylase activities, three genes (RcJMJ41, RcJMJ43 and RcJMJ44) had no intron while two of them had tandem JmjC domains. Spatial expression pattern analysis of these JmjC domain-containing genes in different tissues showed most of them were highly expressed in reproductive tissues such as floral meristem and closed flowers than vegetative tissues, demonstrating their important functions in developmental switch from vegetative to reproductive growth of roses. Temporal expression profiling indicated majority of JmjC domain-containing genes from R. chinensis fluctuated along with floral bud differentiation and development, further proving their essential roles in flower organogenesis. VIGS induced silencing of RcJMJ12 led to delayed flowering time, and decreased the expression levels of flowering integrator such as RcFT, RcSOC1, RcFUL, RcLFY and RcAP1, therefore providing the genetic evidence of RcJMJ12 in flowering initiation. Collectively, spatio-temporal expression profiling and genetic analysis defined the JmjC domain-containing genes as important epigenetic regulators in flower development of R. chinensis.


Assuntos
Epigênese Genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Histona Desmetilases com o Domínio Jumonji/genética , Meristema/genética , Rosa/genética , Deleção de Genes , Perfilação da Expressão Gênica , Inativação Gênica , Genoma de Planta , Histona Desmetilases com o Domínio Jumonji/fisiologia , Metilação , Filogenia , Proteínas de Plantas/genética , Domínios Proteicos , Transcriptoma
12.
Plant Mol Biol ; 104(1-2): 81-95, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32621166

RESUMO

KEY MESSAGE: Genome-wide identification of WD40-like genes reveals a duplication of COP1-like genes, one of the key players involved in regulation of flowering time and photomorphogenesis, with strong functional diversification in Rosaceae. WD40 proteins play crucial roles in a broad spectrum of developmental and physiological processes. Here, we conducted a systematic characterization of this family of genes in Rosa chinensis 'Old Blush' (OB), a founder genotype for modern rose domestication. We identified 187 rose WD40 genes and classified them into 5 clusters and 15 subfamilies with 11 of RcWD40s presumably generated via tandem duplication. We found RcWD40 genes were expressed differentially following stages of vegetative and reproductive development. We detected a duplication of CONSTITUTIVE PHOTOMORPHOGENIC1-like genes in rose (RcCOP1 and RcCOP1L) and other Rosaceae plants. Featuring a distinct expression pattern and a different profile of cis-regulatory-elements in the transcriptional regulatory regions, RcCOP1 seemed being evolutionarily conserved while RcCOP1L did not dimerize with RcHY5 and RcSPA4. Our data thus reveals a functional diversification of COP1-like genes in Rosacaeae plants, and provides a valuable resource to explore the potential function and evolution of WD40-like genes in Rosaceae plants.


Assuntos
Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rosaceae/genética , Rosaceae/metabolismo , Ubiquitina-Proteína Ligases/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Cromossomos de Plantas/genética , Domesticação , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Filogenia , Plantas Geneticamente Modificadas , Rosa/genética , Rosa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
13.
J Exp Bot ; 71(14): 4057-4068, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32227095

RESUMO

Photoperiodic flowering responses are classified into three major types: long day (LD), short day (SD), and day neutral (DN). The inverse responses to daylength of LD and SD plants have been partly characterized in Arabidopsis and rice; however, the molecular mechanism underlying the DN response is largely unknown. Modern roses are economically important ornamental plants with continuous flowering (CF) features, and are generally regarded as DN plants. Here, RcCO and RcCOL4 were identified as floral activators up-regulated under LD and SD conditions, respectively, in the CF cultivar Rosa chinensis 'Old-Blush'. Diminishing the expression of RcCO or/and RcCOL4 by virus-induced gene silencing (VIGS) delayed flowering time under both SDs and LDs. Interestingly, in contrast to RcCO-silenced plants, the flowering time of RcCOL4-silenced plants was more delayed under SD than under LD conditions, indicating perturbed plant responses to day neutrality. Further analyses revealed that physical interaction between RcCOL4 and RcCO facilitated binding of RcCO to the CORE motif in the promoter of RcFT and induction of RcFT. Taken together, the complementary expression of RcCO in LDs and of RcCOL4 in SDs guaranteed flowering under favorable growth conditions regardless of the photoperiod. This finding established the molecular foundation of CF in roses and further shed light on the underlying mechanisms of DN responses.


Assuntos
Proteínas de Arabidopsis , Rosa , Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rosa/genética , Rosa/metabolismo
14.
Int J Mol Sci ; 20(14)2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31330828

RESUMO

Rosa chinensis is one of the most popular flower plants worldwide. The recurrent flowering trait greatly enhances the ornamental value of roses, and is the result of the constant formation of new flower buds. Flower bud differentiation has always been a major topic of interest among researchers. The APETALA1 (AP1) MADS-box (Mcm1, Agamous, Deficiens and SRF) transcription factor-encoding gene is important for the formation of the floral meristem and floral organs. However, research on the rose AP1 gene has been limited. Thus, we isolated AP1 from Rosa chinensis 'Old Blush'. An expression analysis revealed that RcAP1 was not expressed before the floral primordia formation stage in flower buds. The overexpression of RcAP1 in Arabidopsis thaliana resulted in an early-flowering phenotype. Additionally, the virus-induced down-regulation of RcAP1 expression delayed flowering in 'Old Blush'. Moreover, RcAP1 was specifically expressed in the sepals of floral organs, while its expression was down-regulated in abnormal sepals and leaf-like organs. These observations suggest that RcAP1 may contribute to rose bud differentiation as well as floral organ morphogenesis, especially the sepals. These results may help for further characterization of the regulatory mechanisms of the recurrent flowering trait in rose.


Assuntos
Flores/embriologia , Flores/metabolismo , Proteínas de Plantas/metabolismo , Rosa/embriologia , Rosa/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Morfogênese/genética , Morfogênese/fisiologia , Proteínas de Plantas/genética
15.
Molecules ; 23(2)2018 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-29439505

RESUMO

Rosa chinensis var. spontanea, an endemic and endangered plant of China, is one of the key ancestors of modern roses and a source for famous traditional Chinese medicines against female diseases, such as irregular menses and dysmenorrhea. In this study, the complete chloroplast (cp) genome of R. chinensis var. spontanea was sequenced, analyzed, and compared to congeneric species. The cp genome of R. chinensis var. spontanea is a typical quadripartite circular molecule of 156,590 bp in length, including one large single copy (LSC) region of 85,910 bp and one small single copy (SSC) region of 18,762 bp, separated by two inverted repeat (IR) regions of 25,959 bp. The GC content of the whole genome is 37.2%, while that of LSC, SSC, and IR is 42.8%, 35.2% and 31.2%, respectively. The genome encodes 129 genes, including 84 protein-coding genes (PCGs), 37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. Seventeen genes in the IR regions were found to be duplicated. Thirty-three forward and five inverted repeats were detected in the cp genome of R. chinensis var. spontanea. The genome is rich in SSRs. In total, 85 SSRs were detected. A genome comparison revealed that IR contraction might be the reason for the relatively smaller cp genome size of R. chinensis var. spontanea compared to other congeneric species. Sequence analysis revealed that the LSC and SSC regions were more divergent than the IR regions within the genus Rosa and that a higher divergence occurred in non-coding regions than in coding regions. A phylogenetic analysis showed that the sampled species of the genus Rosa formed a monophyletic clade and that R. chinensis var. spontanea shared a more recent ancestor with R. lichiangensis of the section Synstylae than with R. odorata var. gigantea of the section Chinenses. This information will be useful for the conservation genetics of R. chinensis var. spontanea and for the phylogenetic study of the genus Rosa, and it might also facilitate the genetics and breeding of modern roses.


Assuntos
Cloroplastos/genética , Genes de Plantas , Genoma de Cloroplastos , Filogenia , Rosa/genética , Composição de Bases , Evolução Biológica , China , Duplicação Gênica , Ontologia Genética , Tamanho do Genoma , Sequências Repetidas Invertidas , Anotação de Sequência Molecular , Fases de Leitura Aberta , Rosa/classificação , Análise de Sequência de DNA
16.
Sci Rep ; 14(1): 13917, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886497

RESUMO

Chinese rose (Rosa chinensis) is an important ornamental plant, with economic, cultural, and symbolic significance. During the application of outdoor greening, adverse environments such as high temperature and drought are often encountered, which affect its application scope and ornamental quality. The starch phosphorylase (Pho) gene family participate in the synthesis and decomposition of starch, not only related to plant energy metabolism, but also plays an important role in plant stress resistance. The role of Pho in combating salinity and high temperature stress in R. chinensis remains unknown. In this work, 4 Phos from R. chinensis were detected with Pfam number of Pho (PF00343.23) and predicted by homolog-based prediction (HBP). The Phos are characterized by sequence lengths of 821 to 997 bp, and the proteins are predicted to subcellularly located in the plastid and cytoplasm. The regulatory regions of the Phos contain abundant stress and phytohormone-responsive cis-acting elements. Based on transcriptome analysis, the Phos were found to respond to abiotic stress factors such as drought, salinity, high temperature, and plant phytohormone of jasmonic acid and salicylic acid. The response of Phos to abiotic stress factors such as salinity and high temperature was confirmed by qRT-PCR analysis. To evaluate the genetic characteristics of Phos, a total of 69 Phos from 17 species were analyzed and then classified into 3 groups in phylogenetic tree. The collinearity analysis of Phos in R. chinensis and other species was conducted for the first time. This work provides a view of evolution for the Pho gene family and indicates that Phos play an important role in abiotic stress response of R. chinensis.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Rosa , Amido Fosforilase , Estresse Fisiológico , Estresse Fisiológico/genética , Rosa/genética , Rosa/enzimologia , Rosa/metabolismo , Amido Fosforilase/genética , Amido Fosforilase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Secas , Genoma de Planta , Salinidade
17.
Mol Hortic ; 4(1): 14, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622744

RESUMO

Roses are consistently ranked at the forefront in cut flower production. Increasing demands of market and changing climate conditions have resulted in the need to further improve the diversity and quality of traits. However, frequent hybridization leads to highly heterozygous nature, including the allelic variants. Therefore, the absence of comprehensive genomic information leads to them making it challenging to molecular breeding. Here, two haplotype-resolved chromosome genomes for Rosa chinensis 'Chilong Hanzhu' (2n = 14) which is high heterozygous diploid old Chinese rose are generated. An amount of genetic variation (1,605,616 SNPs, 209,575 indels) is identified. 13,971 allelic genes show differential expression patterns between two haplotypes. Importantly, these differences hold valuable insights into regulatory mechanisms of traits. RcMYB114b can influence cyanidin-3-glucoside accumulation and the allelic variation in its promoter leads to differences in promoter activity, which as a factor control petal color. Moreover, gene family expansion may contribute to the abundance of terpenes in floral scents. Additionally, RcANT1, RcDA1, RcAG1 and RcSVP1 genes are involved in regulation of petal number and size under heat stress treatment. This study provides a foundation for molecular breeding to improve important characteristics of roses.

18.
Plants (Basel) ; 13(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674474

RESUMO

WRKY transcription factors are important players in plant regulatory networks, where they control and integrate various physiological processes and responses to biotic and abiotic stresses. Here, we analysed six rose genomes of 5 different species (Rosa chinensis, R. multiflora, R. roxburghii, R. sterilis, and R. rugosa) and extracted a set of 68 putative WRKY genes, extending a previously published set of 58 WRKY sequences based on the R. chinensis genome. Analysis of the promoter regions revealed numerous motifs related to induction by abiotic and, in some cases, biotic stressors. Transcriptomic data from leaves of two rose genotypes inoculated with the hemibiotrophic rose black spot fungus Diplocarpon rosae revealed the upregulation of 18 and downregulation of 9 of these WRKY genes after contact with the fungus. Notably, the resistant genotype exhibited the regulation of 25 of these genes (16 upregulated and 9 downregulated), while the susceptible genotype exhibited the regulation of 20 genes (15 upregulated and 5 downregulated). A detailed RT-qPCR analysis of RcWRKY37, an orthologue of AtWRKY75 and FaWRKY1, revealed induction patterns similar to those of the pathogenesis-related (PR) genes induced in salicylic acid (SA)-dependent defence pathways in black spot inoculation experiments. However, the overexpression of RcWRKY37 in rose petals did not induce the expression of any of the PR genes upon contact with black spot. However, wounding significantly induced the expression of RcWRKY37, while heat, cold, or drought did not have a significant effect. This study provides the first evidence for the role of RcWRKY37 in rose signalling cascades and highlights the differences between RcWRKY37 and AtWRKY75. These results improve our understanding of the regulatory function of WRKY transcription factors in plant responses to stress factors. Additionally, they provide foundational data for further studies.

19.
Carbohydr Polym ; 337: 122139, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710550

RESUMO

A novel RG-I pectin-like polysaccharide, YJ3A1, was purified from the flowers of Rosa chinensis and its structure and hepatoprotective effect in vivo and in vitro were investigated. The backbone of this polysaccharide is mainly composed of 1, 4-galactan, 1, 4-linked α-GalpA and 1, 2-linked α-Rhap disaccharide repeating unit attached by 1, 6-linked ß-Galp or 1, 5-linked α-Araf on C-4 of the Rhap. Interestingly, oral administration of YJ3A1 significantly ameliorates NASH-associated inflammation, oxidative stress and fibrosis and does not affect the liver morphology of normal mice at a dose of 50 mg/kg. The mechanism study suggests that the biological activity may associate to inactivating of high-mobility group box 1 protein (HMGB1)/TLR4/NF-κB and Akt signaling pathways by restraining the expression and release of HMGB1, thereby impeding the effect of NASH. The current findings outline a novel leading polysaccharide for new drug candidate development against NASH.


Assuntos
Proteína HMGB1 , NF-kappa B , Hepatopatia Gordurosa não Alcoólica , Pectinas , Rosa , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Rosa/química , Receptor 4 Toll-Like/metabolismo , Proteína HMGB1/metabolismo , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais/efeitos dos fármacos , Camundongos , Pectinas/farmacologia , Pectinas/química , Pectinas/isolamento & purificação , Masculino , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos
20.
3 Biotech ; 14(9): 204, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39161880

RESUMO

Heat shock protein 90 (HSP90) is important for many organisms, including plants. Based on the whole genome information, the gene number, gene structure, evolutionary relationship, protein structure, and active site of the HSP90 gene family in Rosa chinensis and Rubus idaeus were determined, and the expression of the HSP90 gene under salt, and drought stresses in two rose varieties Wangxifeng and Sweet Avalanche were analyzed. Six and eight HSP90 genes were identified from R. chinensis and Ru. idaeus, respectively. Phylogenetic analysis revealed that the analyzed genes were divided into two Groups and four subgroups (Classes 1a, 1b, 2a, and 2b). Although members within the same classes displayed highly similar gene structures, while the gene structures and conserved domains of Group 1 (Class 1a and 1b) and the Group 2 (Class 2a and 2b) are different. Tandem and segmental duplication genes were found in Ru. idaeus, but not in R. chinensis, perhaps explaining the difference in HSP90 gene quantity in the two analyzed species. Analysis of cis-acting elements revealed abundant abiotic stress, photolight-response, and hormone-response elements in R. chinensis HSP90s. qRT-PCR analysis suggested that RcHSP90-1-1, RcHSP90-5-1 and RcHSP90-6-1 in Sweet Avalanche and Wangxifeng varieties played important regulatory roles under salt and drought stress. The analysis of protein structure and active sites indicate that the potential different roles of RcHSP90-1-1, RcHSP90-5-1, and RcHSP90-6-1 in salt and drought stresses may come from the differences of corresponding protein structures and activation sites. These data will provide information for the breeding of rose varieties with high stress resistance. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04052-0.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA