Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Pestic Biochem Physiol ; 194: 105472, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532311

RESUMO

Conventional fungicides are used in IPM programs to manage fungal plant pathogens, but there are concerns about resistance development in target organisms, environmental contamination, and human health risks. This study explored the potential of calcium propionate (CaP), a common food preservative generally recognized as safe (GRAS) to control fungicide-resistant plant pathogens, mainly Botrytis cinerea, and botrytis blight in ornamentals. In-vitro experiments using mycelium growth inhibition indicated a mean EC50 value for CaP (pH 6.0) of 527 mg/L for six isolates of Botrytis cinerea as well as 618, 1354, and 1310 mg/L for six isolates each of Monilinia fructicola, Alternaria alternata, and Colletotrichum acutatum. In vitro efficacy tests indicated CaP equally inhibited mycelium growth of fungal isolates sensitive and resistant to FRAC codes 1, 2, 3, 7, 9, 11, 12, and 17 fungicides. CaP at 0.1% (pH 6.0-6.5) reduced infection cushion (IC) formation in vitro, botrytis blight on petunia flowers, and botrytis blight of cut flower roses with little to no visible phytotoxicity. Although higher concentrations strongly inhibited infection cushion formation, they did not improve efficacy and exhibited phytotoxicity. We hypothesize that high concentrations may create tissue damage that facilitates direct fungal penetration without the need for infection cushion and subsequent appressoria formation. This study indicates the potential usefulness of CaP for blossom blight disease management in ornamentals if applied at concentrations low enough to avoid phytotoxicity.


Assuntos
Fungicidas Industriais , Humanos , Fungicidas Industriais/farmacologia , Botrytis , Flores , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Farmacorresistência Fúngica
2.
Molecules ; 28(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770946

RESUMO

The chemical composition and aroma profile of industrial essential oils (EOs) from species of rose grown in China, including the native Kushui rose (R. sertata × R. rugosa) and R. rugosa Thunb. cv. Plena, and the recently introduced Damask rose (R. damascena Mill.), were studied in comparison by means of GC/MS and GC-FID. More than 150 individual compounds were detected in Chinese rose samples, of which 112 were identified and their quantitative content determined, representing 88.7%, 96.7% and 97.9% of the total EO content, respectively. It was found that the main constituents of the Chinese rose EOs were representatives of terpenoid compounds (mono- and sesquiterpenoids, predominantly) and aliphatic hydrocarbons. Comparative chemical profiling revealed different chemical composition and aroma profiles: while the R. damascena oil showed a balance between the eleoptene and stearoptene fractions of the oil (the average ratio between the main terpene alcohols and paraffins was 2.65), in the Kushui and R. rugosa oils, the odorous liquid phase strongly dominated over the stearopten, with a ratio of 16.91 and 41.43, respectively. The most abundant terpene was citronellol, ranging from 36.69% in R. damascena to 48.32% in R. rugosa oil. In addition, the citronellol enantiomers distribution, which is an important marker for rose oil authenticity, was studied for the first time in R. rugosa oil.


Assuntos
Óleos Voláteis , Rosa , Rosa/química , Terpenos/análise , Óleos Voláteis/química , China
3.
Environ Monit Assess ; 194(4): 307, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35353252

RESUMO

This study was conducted to determine lead tolerance and accumulation characteristics of Cubana Kordes rose, which is used in landscaping studies in areas with heavy traffic. In the study, 0%, 3%, and 6% leonardite was added to the sand growing medium, and Pb was applied at different doses (0, 200, 400, 800, and 1600 mg Pb kg-1). At the end of the experiment, the effect of Pb application on plant physiological properties was not statistically significant. The Pb concentration of flower and stem was between 4.50 and 8.92 mg kg-1 and 8.47 and 543.25 mg kg-1, respectively. The Pb concentration in the stem increased with an increase in the dose of Pb. The Pb concentration in the root was between 4.00 and 50.35 mg kg-1 and increased with an increase in the dose of Pb (p < 0.05). The available Pb concentration in the soil varied between 0.05 and 448.79 mg kg-1. The transfer factor value varied between 1.84 and 18.73 and the bioaccumulation factor value ranged between 0.00 and 10.46. The amount of Pb removed from the soil by the stem was between 124.7 and 8346.6 µg kg-1. From the results, we determined that Pb accumulated at a higher rate in the stem than in the root and the flower of Cubana Kordes roses. We found that these roses could tolerate the accumulation of Pb, and hence, they have a great potential to be used in the remediation of soil contaminated by Pb.


Assuntos
Rosa , Poluentes do Solo , Biodegradação Ambiental , Monitoramento Ambiental , Chumbo , Solo , Poluentes do Solo/análise
4.
Oecologia ; 197(4): 957-969, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32712874

RESUMO

Wild roses store and emit a large array of fragrant monoterpenes from their petals. Maximisation of fragrance coincides with floral maturation in many angiosperms, which enhances pollination efficiency, reduces floral predation, and improves plant fitness. We hypothesized that petal monoterpenes serve additional lifelong functions such as limiting metabolic damage from reactive oxygen species (ROS), and altering isoprenoid hormonal abundance to increase floral lifespan. Petal monoterpenes were quantified at three floral life-stages (unopened bud, open mature, and senescent) in 57 rose species and 16 subspecies originating from Asia, America, and Europe, and relationships among monoterpene richness, petal colour, ROS, hormones, and floral lifespan were analysed within a phylogenetic context. Three distinct types of petal monoterpene profiles, revealing significant developmental and functional differences, were identified: Type A, species where monoterpene abundance peaked in open mature flowers depleting thereafter; Type B, where monoterpenes peaked in senescing flowers increasing from bud stage, and a rare Type C (8 species) where monoterpenes depleted from bud stage to senescence. Cyclic monoterpenes peaked during early floral development, whereas acyclic monoterpenes (dominated by geraniol and its derivatives, often 100-fold more abundant than other monoterpenes) peaked during floral maturation in Type A and B roses. Early-diverging roses were geraniol-poor (often Type C) and white-petalled. Lifetime changes in hydrogen peroxide (H2O2) revealed a significant negative regression with the levels of petal geraniol at all floral life-stages. Geraniol-poor Type C roses also showed higher cytokinins (in buds) and abscisic acid (in mature petals), and significantly shorter floral lifespan compared with geraniol-rich Type A and B roses. We conclude that geraniol enrichment, intensification of petal colour, and lower potential for H2O2-related oxidative damage characterise and likely contribute to longer floral lifespan in monoterpene-rich wild roses.


Assuntos
Rosa , Monoterpenos Acíclicos , Cor , Peróxido de Hidrogênio , Longevidade , Monoterpenos , Filogenia
5.
Molecules ; 26(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34443579

RESUMO

A comprehensive chemical profiling of 1,1,1,2-tetrafluoroethane (freon R134a) subcritical extracts from the main genotypes of oil-bearing roses, was performed by gas chromatography-mass spectrometry (GC/MS) and gas chromatography with flame ionization detection (GC-FID) in order to reveal the differences in their chemical composition. One hundred and three individual compounds were identified using GC/MS and their quantitative content was determined using GC-FID, representing 89.8, 92.5, 89.7 and 93.7% of the total content of Rosa gallica L., Rosa damascena Mill., Rosa alba L. and Rosa centifolia L. extracts, respectively. The compounds found in the extracts are representatives of the following main chemical classes: mono-, sesqui- and triterpenoids, phenylethanoids and phenylpropanoids and aliphatic hydrocarbons. Fatty acids, esters and waxes were found, as well. The study revealed that 2-phenylethanol is the most abundant component, ranging 9.0-60.9% followed by nonadecane and nonadecene with 5.1-18.0% geraniol (2.9-14.4%), heneicosane (3.1-11.8%), tricosane (0.1-8.6%), nerol (1.3-6.1%) and citronellol (1.7-5.3%). The extracts demonstrate a specific chemical profile, depending on the botanical species-phenylethanoids and phenyl propanoids are the main group for R. damascena, aliphatic hydrocarbons for R. alba and R. centifolia, while both are found in almost equal amounts in R. gallica. The terpenoid compounds show relatively broad variations: monoterpenes-11.9-25.5% with maximum in R. centifolia; sesquiterpenes-0.6-7.0% with maximum in R. gallica and triterpenes-0.4-3.7% with maximum in R. gallica extract.


Assuntos
Óleos Voláteis/análise , Rosa/química , Cromatografia Gasosa-Espectrometria de Massas
6.
Sensors (Basel) ; 20(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086727

RESUMO

This work presents a monitoring system for the environmental conditions of rose flower-cultivation in greenhouses. Its main objective is to improve the quality of the crops while regulating the production time. To this end, a system consisting of autonomous quadruped vehicles connected with a wireless sensor network (WSN) is developed, which supports the decision-making on type of action to be carried out in a greenhouse to maintain the appropriate environmental conditions for rose cultivation. A data analysis process was carried out, aimed at designing an in-situ intelligent system able to make proper decisions regarding the cultivation process. This process involves stages for balancing data, prototype selection, and supervised classification. The proposed system produces a significant reduction of data in the training set obtained by the WSN while reaching a high classification performance in real conditions-amounting to 90 % and 97.5%, respectively. As a remarkable outcome, it is also provided an approach to ensure correct planning and selection of routes for the autonomous vehicle through the global positioning system.

7.
Environ Res ; 170: 1-6, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30554052

RESUMO

In the present study, we investigated the antifungal effects of engineered nanomaterials (ENMs) against Podosphaera pannosa (P. pannosa), a fungal pathogen that causes powdery mildew on plants in the rose family. Four commercial ENMs, including multi-wall carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), copper oxide (CuO) nanoparticles (NPs) and titanium dioxide (TiO2) NPs, were used to prepare 50 or 200 mg/L NP suspensions in deionized water. Rose leaves in water-agar plates were sprayed by different ENM suspensions mixed with P. pannosa conidia. After a 19-day standard infection test, the growth of P. pannosa on rose leaves was evaluated. All four ENMs inhibited infection by P. pannosa at the concentration 200 mg/L, whereas only CuO NPs decreased fungal growth at 50 mg/L. The phytohormone content of the leaves was measured across all treatments to investigate potential ENMs antifungal mechanisms. The results suggest that ENMs increased plant resistance to fungal infection by altering the content of endogenous hormones, particularly zeatin riboside (ZR). Our study demonstrates that ENMs exhibited distinctly antifungal effects against P. pannosa on roses, and could be utilized as a novel plant protection strategy after a comprehensive assessment of potential environmental risk.


Assuntos
Nanotubos de Carbono , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas , Folhas de Planta/microbiologia , Rosa/microbiologia , Humanos , Infecções , Nanoestruturas
8.
Ecotoxicol Environ Saf ; 159: 240-248, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29753826

RESUMO

Wastewater is an alternative to traditional sources of renewable irrigation water in agriculture, particularly in water-scarce regions. However, the possible risks due to heavy metals accumulation in plant tissues are often overlooked by producers. The present study aimed to identify heavy metals-induced structural modifications to roots of scented Rosa species that were irrigated with water of marginal quality. The chemical and mineral contents from the experimental irrigation canal water (control) and treated wastewater were below the limits recommended by the Pakistan Environmental Protection Agency (Pak-EPA) for medicinal plants. The experimentally untreated wastewater contained electrical conductivity (EC), chemical oxygen demand (COD), biological oxygen demand (BOD), and heavy metals (Co, Cu, Cd, Pb) that were above the recommended limits. The responses by wastewater-treated Rosa species (Rosa damascena, R. bourboniana, R. Gruss-an-Teplitz, and R. centifolia) were evaluated. The experimental data revealed that treated wastewater significantly increased the thickness of collenchyma (cortex and pith) and parenchyma tissues (vascular bundle, xylem, and phloem) of R. Gruss-an-Teplitz. Root dermal tissues (epidermis) of R. bourboniana also responded to treated wastewater. R. damascena and R. centifolia were the least affected species, under the experimental irrigation conditions. Collenchyma and dermal tissues were thicker in R. damascena and R. Gruss-an-Teplitz under untreated wastewater conditions. In parenchyma tissues, vascular bundles were thicker in R. damascena in untreated wastewater conditions, while the xylem and phloem of R. Gruss-an-Teplitz were thicker where treated wastewater was applied. In tissues other than the vascular bundle, the differences in anatomical metrics due to the experimental irrigation treatments were greater during the second year of the experiment than in the first year. The contents of metals other than chromium in the roots and stems of roses were below the WHO limits, under all of the experimental irrigation conditions. Rosa centifolia contained higher heavy metals content than the other experimental species, and heavy metals content was associated with anatomical changes due to the treatments. We conclude that, under conditions of wastewater irrigation, R. Gruss-an-Teplitz was highly resistant; R. damascena was moderately resistant while R. bourboniana and R. centifolia were the most susceptible to irrigation with marginal quality water. This is the first report of plant tissue responses to wastewater irrigation by the experimental species. Regarding the accumulation of heavy metals in rose plant tissues, the results confirm that untreated wastewater must be treated to grow Rosa species where water is scarce.


Assuntos
Metais Pesados/toxicidade , Rosa/efeitos dos fármacos , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Agricultura/métodos , Análise da Demanda Biológica de Oxigênio , Monitoramento Ambiental , Metais Pesados/análise , Paquistão , Rosa/crescimento & desenvolvimento , Rosa/metabolismo , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Qualidade da Água
9.
Can J Microbiol ; 62(12): 1021-1033, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27822959

RESUMO

We compared the bacterial communities associated with healthy scleractinian coral Porites sp. with those associated with coral infected with pink spot syndrome harvested during summer and winter from waters off the coast of southern Taiwan. Members of the bacterial community associated with the coral were characterized by means of denaturing gradient gel electrophoresis (DGGE) of a short region of the 16S rRNA gene and clone library analysis. Of 5 different areas of the 16S rRNA gene, we demonstrated that the V3 hypervariable region is most suited to represent the coral-associated bacterial community. The DNA sequences of 26 distinct bands extracted from DGGE gels and 269 sequences of the 16S rRNA gene from clone libraries were determined. We found that the communities present in diseased coral were more heterogeneous than the bacterial communities of uninfected coral. In addition, bacterial communities associated with coral harvested in the summer were more diverse than those associated with coral collected in winter, regardless of the health status of the coral. Our study suggested that the compositions of coral-associated bacteria communities are complex, and the population of bacteria varies greatly between seasons and in coral of differing health status.


Assuntos
Antozoários/microbiologia , Bactérias/classificação , Biodiversidade , Animais , Antozoários/parasitologia , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Biblioteca Gênica , RNA Ribossômico 16S/genética , Estações do Ano , Análise de Sequência de DNA , Taiwan , Trematódeos/patogenicidade
10.
Environ Evid ; 13(1): 2, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-39294762

RESUMO

BACKGROUND: Environmental DNA (eDNA) is the DNA that can be extracted from an environmental sample, enabling the monitoring of whole biological communities across a large number of samples, at a potentially lower cost, which can significantly benefit river conservation. A systematic mapping protocol was designed to investigate the use of eDNA in rivers, specifically in terms of research topics, geographic and taxonomic biases, as well as information gaps. Furthermore, the potential research opportunities of eDNA in rivers and possible paths to find this kind of information on available platforms are identified. METHODS: A published systematic map protocol was applied, consisting of a search for published articles and gray literature in two bibliographic databases and one search engine. All search results were submitted to a 2-stage screening for relevance and pertinence in accordance with pre-defined eligibility criteria. Data extraction and codification regarding country of study, year, taxonomic group, sequencing platform, and type of technique employed resulted in a publicly available database. RESULTS: From 7372 studies initially obtained by the search, 545 met the inclusion criteria spanning a period from 2003 to 2022. The five countries with most studies are: USA (134), Japan (61), China (54), Brazil (29) and the UK (25). The most used fragments to analyze DNA are 16S and COI, whilst 26S and 23S are the least used. Only 84 (15%) of the studies reported hypervariable regions, among which the most used are V4 and V5. Regarding taxonomic groups, fishes are most often studied (176), followed by bacteria (138) and virus (52), while fungi is the least studied group (3). Concerning data availability, 229 (42%) studies provided access to sequencing data. CONCLUSIONS: This study presents a comprehensive analysis of the available evidence regarding the implementation of the eDNA methods in rivers. The findings indicate that since the year 2003, this approach has been applied to aquatic lotic systems, and their recent increase can be attributed to the development of Next-Generation-Sequencing technologies and their reduced costs. However, there is a bias towards high-income countries, particularly USA and Europe. Widespread use and applications of this approach at a global level would allow for the generation of a large amount of information that can be compared between countries to understand if responses of aquatic systems follow similar patterns worldwide.

11.
Behav Sci (Basel) ; 14(8)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39199032

RESUMO

Social media's potential for knowledge dissemination is under-utilized due to limited user participation. This study systematically reviews factors affecting knowledge-sharing intentions on social platforms using the ROSES protocol. We searched Scopus and Web of Science for quality, relevance, and rigor, finding that 65% of the articles shared were published in high-quality journals (Q1 or Q2), with the Journal of Knowledge Management accounting for 15%. Since 2015, 62.5% of research has been published, highlighting increased activity. Quantitative methods dominated (95%), with Zhihu being the most studied platform. We identified four key themes-psychological, technological, environmental, and social-covering 47 determinants centered on trust and attitude, primarily based on individual and social behavior theories. This is the first systematic exploration of elements influencing knowledge-sharing intentions on social media, providing insights to enhance user interaction and guide social media strategies in knowledge-centric organizations.

12.
Plants (Basel) ; 13(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337955

RESUMO

Garden roses, known as Rosa × hybrida, hold a prominent position as one of the most important and economically valuable plants in horticulture. Additionally, their products-essential oil, rose water, concrete, and concentrate-find extensive use in the cosmetic, pharmaceutical, and food industries, due to their specific fragrances and potential health benefits. Rose flowers are rich in biologically active compounds, such as phenolics, flavonoids, anthocyanins, and carotenoids. This study aims to investigate the potential of five new garden rose genotypes with intensely colored flowers to serve as sources of biologically active compounds. Phenolic profile was evaluated by determination of total phenolic (TPC), flavonoid (TFC), and monomeric anthocyanins (TAC) contents and LC-MS/MS analysis of selected compounds. Antioxidant activity was evaluated via DPPH and FRAP assays, neuroprotective potential via acethylcholinesterase inhibition assay, and antidiabetic activity viaα-amylase and α-glucosidase inhibition assays. The flowers of investigated genotypes were rich in phenolics (TPC varied from 148 to 260 mg galic acid eq/g de, TFC from 19.9 to 59.7 mg quercetin eq/g de, and TAC from 2.21 to 13.1 mg cyanidin 3-O-glucoside eq/g de). Four out of five genotypes had higher TPC than extract of R. damascene, the most famous rose cultivar. The dominant flavonoids in all investigated genotypes were glycosides of quercetin and kaempferol. The extracts showed high antioxidant activity comparable to synthetic antioxidant BHT, very high α-glucosidase inhibitory potential, moderate neuroprotective activity, and low potential to inhibit α-amylase.

13.
Sci Rep ; 14(1): 12387, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811644

RESUMO

Chemical processing is among the significant keys to tackle agro-residues utilization field, aiming to obtain value-added materials. Extraction of cellulose nanocrystals (CNCs) is an emerging route to valorize lignocellulosic wastes into high value particles. In this investigation, effect of acidic hydrolysis duration was monitored on size and morphology of obtained crystals; namely: CNCs from Nile roses fibers (NRFs) (Eichhornia crassipes). Different acidic hydrolysis duration range or different characterization techniques set this article apart from relevant literature, including our group research articles. The grinded NRFs were firstly subjected to alkaline and bleaching pretreatments, then acid hydrolysis process was carried out with varied durations ranging from 5 to 30 min. Microcrystalline cellulose (MCC) was used as reference for comparison with NRFs based samples. The extracted CNCs samples were investigated using various techniques such as scanning electron microscopy (SEM), Atomic force microscopy (AFM), Raman spectroscopy, and thermogravimetric (TGA) analysis. The figures gotten from SEM and AFM depicted that NRFs based CNCs appeared as fibril-like shapes, with reduced average size when the NRFs underwent pulping and bleaching processes. This was indicated that the elimination of hemicellulose and lignin components got achieved successfully. This outcome was proven by chemical composition measurements and TGA/DTG curves. On the other hand, AFM-3D images indicated that CNCs topology and surface roughness were mostly affected by increasing hydrolysis durations, besides smooth and homogeneous surfaces were noticed. Moreover, Raman spectra demonstrated that the particle size and crystallinity degree of NRFs based CNCs can be affected by acidic hydrolysis durations and optimum extraction time was found to be 10 min. Thermal stability of extracted CNCs-NRFs and CNCs-MCC was measured by TGA/DTG and the kinetic models were suggested to identify the kinetic parameters of the thermal decomposition of CNCs for each acid hydrolysis duration. Increasing hydrolysis duration promoted thermal stability, particularly for NRFs based CNCs. Results showcased in this article add new perspective to Nile rose nanocellulose and pave down the way to fabricate NRFs based humidity nano-sensors.


Assuntos
Celulose , Eichhornia , Nanopartículas , Celulose/química , Nanopartículas/química , Eichhornia/química , Eichhornia/metabolismo , Hidrólise , Microscopia de Força Atômica , Análise Espectral Raman , Microscopia Eletrônica de Varredura , Termogravimetria , Lignina/química
14.
J Exp Bot ; 64(8): 2333-44, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23599274

RESUMO

Dehydration is a major factor resulting in huge loss from cut flowers during transportation. In the present study, dehydration inhibited petal cell expansion and resulted in irregular flowers in cut roses, mimicking ethylene-treated flowers. Among the five floral organs, dehydration substantially elevated ethylene production in the sepals, whilst rehydration caused rapid and elevated ethylene levels in the gynoecia and sepals. Among the five ethylene biosynthetic enzyme genes (RhACS1-5), expression of RhACS1 and RhACS2 was induced by dehydration and rehydration in the two floral organs. Silencing both RhACS1 and RhACS2 significantly suppressed dehydration- and rehydration-induced ethylene in the sepals and gynoecia. This weakened the inhibitory effect of dehydration on petal cell expansion. ß-glucuronidase activity driven by both the RhACS1 and RhACS2 promoters was dramatically induced in the sepals, pistil, and stamens, but not in the petals of transgenic Arabidopsis. This further supports the organ-specific induction of these two genes. Among the five rose ethylene receptor genes (RhETR1-5), expression of RhETR3 was predominantly induced by dehydration and rehydration in the petals. RhETR3 silencing clearly aggravated the inhibitory effect of dehydration on petal cell expansion. However, no significant difference in the effect between RhETR3-silenced flowers and RhETR-genes-silenced flowers was observed. Furthermore, RhETR-genes silencing extensively altered the expression of 21 cell expansion-related downstream genes in response to ethylene. These results suggest that induction of ethylene biosynthesis by dehydration proceeds in an organ-specific manner, indicating that ethylene can function as a mediator in dehydration-caused inhibition of cell expansion in rose petals.


Assuntos
Etilenos/metabolismo , Flores/fisiologia , Rosa/fisiologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Desidratação/metabolismo , Etilenos/análise , Flores/química , Flores/crescimento & desenvolvimento , Flores/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Rosa/metabolismo , Água/metabolismo , Água/fisiologia
15.
PeerJ ; 11: e15526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361039

RESUMO

The success of rose breeding programs is low due to poor seed sets and germination rates. Determining fertile parents and cross combinations that show high compatibility could increase the effectiveness of breeding programs. In this study, three rose varieties belonging to Rosa × hybrida (Jumilia, First Red and Magnum), and two old garden rose species (Black Rose and Cabbage Rose) with known ploidy levels were reciprocally crossbred under controlled conditions to determine the successful crosses by checking fertility. The pollen germination rate (PG), crossability rate (CR), seed number per fruit (SNpF), seed production efficiency (SPE), seed germination rate (SGR), fruit weight (FW), seed weight (SW) and stigma number (SiN), etc. were recorded. Comprehensive fertility index value was calculated. Principal component analysis (PCA), correlation matrix, and hierarchical heat map were used to evaluate the data. The findings showed that old garden roses had more viable pollen than hybrid tea roses. The crossing success improved as pollen fertility increased. Also, female parent fertility improved crossing success just as much as pollen fertility. Although the pollen fertility and stigma numbers were low, some combinations had higher CR and SPE. The maximum SPE (from 8.67% to 19.46%) was determined in combinations where Black Rose was the female parent despite the lower stigma number and low pollen fertility. The highest CR was recorded in Black Rose × First Red (94.36%). All combinations in which Black Rose was used as the female parent had a more stable CR. The SNpF of combinations where hybrid rose varieties were female parents and old garden roses were pollen parents was higher than other combinations where hybrid rose varieties were both female and pollen parents. The SPE in intraspecific crosses was lower than that obtained from interspecific crosses. Moreover, the SGR decreased in combinations that produced heavier seeds. The results suggested that SPE is a more accurate parameter than SNpF in demonstrating combination success in breeding programs. Black Rose × First Red, Black Rose × Jumilia, Black Rose × Magnum and Black Rose × Cabbage Rose combinations can be used successfully as the PCA and heat map showed. Black Rose showed better performance as both seed and pollen parents according to the comprehensive fertility index. From the correlation matrix, it is understood that the number of stigmas cannot be an important criterion in parent selection. Old garden roses can be used as parents to increase the success of breeding programs. However, it is necessary to reveal how successful they are in transferring desired characteristics such as scent, petal number, and color.


Assuntos
Rosa , Rosa/genética , Melhoramento Vegetal , Hibridização Genética , Fertilidade/genética , Chá
16.
J Hazard Mater ; 442: 130104, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36303346

RESUMO

The presence of pesticide residues in rose makes it necessary to pay special attention to the proper cultivation to consumption. In this study, the inherent regularity of residue behaviors, processing factors and transfer rates of pesticides and potential metabolites during rose planting, drying and brewing was researched. The half-lives in the bud, corolla and leaf were 0.5-2.9, 0.3-1.7 and 2.6-25.9 d, respectively. Residues were more distributed in leaf, followed by corolla, bud and root. Systemic pesticides could appear in the root 1 day after application, and non-systemic pesticides were not detected in the root. The effect of sun and oven drying (80 °C) was more significant in promoting the degradation of cyazofamid, bifenazate, thiamethoxam and imidacloprid. The processing factors (PFs) of other pesticides were > 1. Our results showed that the transfer rate of residues during brewing was negatively correlated exponentially with Log Kow and positively logarithmically correlated with melting point and water solubility. The transfer rate of residues and antioxidant capacity in infusion were significantly affected by different brewing conditions.


Assuntos
Resíduos de Praguicidas , Praguicidas , Praguicidas/análise , Resíduos de Praguicidas/análise , Tiametoxam/metabolismo
17.
Front Plant Sci ; 14: 1121012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342141

RESUMO

Herbicide application is a critical component of modern horticulture. Misuse of herbicides can result in damage to economically important plants. Currently, such damage can be detected only at symptomatic stages by subjective visual inspection of plants, which requires substantial biological expertise. In this study, we investigated the potential of Raman spectroscopy (RS), a modern analytical technique that allows sensing of plant health, for pre-symptomatic diagnostics of herbicide stresses. Using roses as a model plant system, we investigated the extent to which stresses caused by Roundup (Glyphosate) and Weed-B-Gon (2, 4-D, Dicamba and Mecoprop-p (WBG), two of the most commonly used herbicides world-wide, can be diagnosed at pre- and symptomatic stages. We found that spectroscopic analysis of rose leaves enables ~90% accurate detection of Roundup- and WBG-induced stresses one day after application of these herbicides on plants. Our results also show that the accuracy of diagnostics of both herbicides at seven days reaches 100%. Furthermore, we show that RS enables highly accurate differentiation between the stresses induced by Roundup- and WBG. We infer that this sensitivity and specificity arises from the differences in biochemical changes in plants that are induced by both herbicides. These findings suggest that RS can be used for a non-destructive surveillance of plant health to detect and identify herbicide-induced stresses in plants.

18.
Front Plant Sci ; 14: 1296473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273951

RESUMO

Introduction: Hyperspectral imaging (HSI) and deep learning techniques have been widely applied to predict postharvest quality and shelf life in multiple horticultural crops such as vegetables, mushrooms, and fruits; however, few studies show the application of these techniques to evaluate the quality issues of cut flowers. Therefore, in this study, we developed a non-contact and rapid detection technique for the emergence of gray mold disease (GMD) and the potential longevity of cut roses using deep learning techniques based on HSI data. Methods: Cut flowers of two rose cultivars ('All For Love' and 'White Beauty') underwent either dry transport (thus impaired cut flower hydration), ethylene exposure, or Botrytis cinerea inoculation, in order to identify the characteristic light wavelengths that are closely correlated with plant physiological states based on HSI. The flower bud of cut roses was selected for HSI measurement and the development of a vase life prediction model utilizing YOLOv5. Results and discussion: The HSI results revealed that spectral reflectance between 470 to 680 nm was strongly correlated with gray mold disease (GMD), whereas those between 700 to 900 nm were strongly correlated with flower wilting or vase life. To develop a YOLOv5 prediction model that can be used to anticipate flower longevity, the vase life of cut roses was classed into two categories as over 5 d (+5D) and under 5 d (-5D), based on scoring a grading standard on the flower quality. A total of 3000 images from HSI were forwarded to the YOLOv5 model for training and prediction of GMD and vase life of cut flowers. Validation of the prediction model using independent data confirmed its high predictive accuracy in evaluating the vase life of both 'All For Love' (r2 = 0.86) and 'White Beauty' (r2 = 0.83) cut flowers. The YOLOv5 model also accurately detected and classified GMD in the cut rose flowers based on the image data. Our results demonstrate that the combination of HSI and deep learning is a reliable method for detecting early GMD infection and evaluating the longevity of cut roses.

19.
Front Psychol ; 14: 1159458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179850

RESUMO

Introduction: As modern societies are often stressful due to urbanization and artificialization, the physiological relaxing effects of natural environments or nature-derived stimuli on humans have attracted attention and scientific data are being accumulated. It is known that there is inter-individual variation in these effects. The study aim was to apply the law of initial values to investigate the physiological adjustment effect of viewing fresh roses on sympathetic nervous activity. Methods: In this crossover study, a total of 214 high school students, office workers, healthcare workers, and elderly people were analyzed. The participants viewed fresh roses in a vase for 4 min. In the control condition, participants did not view any fresh roses during the period. To offset any order effect, participants received visual stimuli in the order of fresh roses then the control (no fresh roses) or the control and then fresh roses. ln (LF/HF) of heart rate variability (HRV) obtained from a-a interval measurements using an acceleration plethysmograph and used as an index of sympathetic nervous activity. The initial value was ln (LF/HF) of HRV during the control viewing (no fresh roses), and the change value was ln(LF/HF) of HRV during visual stimulation by fresh roses minus the control viewing. Results and Discussion: The correlation between the two was assessed by determining Pearson's correlation coefficient r, which was significantly negative. A physiological adjustment effect was observed such that participants with high initial sympathetic nervous activity showed a decrease in activity after visual stimulation with fresh roses, whereas participants with low initial activity showed an increase.

20.
Life (Basel) ; 13(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37763199

RESUMO

Diabetes mellitus is one of the most dangerous metabolic diseases. The incidence of this disease continues to increase and is often associated with severe complications. Plants and natural plant products with a healing effect have been successfully used in the treatment of many disease entities since the beginning of the history of herbalism and medicine. At present, great emphasis is placed on the biodiversity of crops and the replacement of the monoculture production system of popular temperate climate plants, such as apple, pear, plum, and vine, with alternative fruit species. Very promising fruit plants are Cornelian cherry (Cornus mas); mulberry (Morus alba); bird cherry (Prunus padus); sour cherry (Prunus cerasus); plants of the genus Amelanchier, Sorbus, and Crategus; medlar (Mespilus germanica); quince (Cydonia oblonga); plants of the genus Vaccinium; and wild roses. When promoting the cultivation of alternative fruit-bearing plants, it is worth emphasizing their beneficial effects on health. This systematic review indicates that the antidiabetic effect of various parts of fruit plants is attributed to the presence of polyphenols, especially anthocyanins, which have different mechanisms of antidiabetic action and can be used in the treatment of diabetes and various complications associated with this disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA