Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Divers ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964456

RESUMO

Tuberculosis (TB), an infectious disease caused by the Mycobacterium tuberculosis (Mtb), has been responsible for the deaths of millions of individuals around the globe. A vital protein in viral pathogenesis known as resuscitation promoting factor (RpfB) has been identified as a potential therapeutic target of anti-tuberculosis drugs. This study offered an in silico process to examine possible RpfB inhibitors employing a computational drug design pipeline. In this study, a total of 1228 phytomolecules were virtually tested against the RpfB of Mtb. These phytomolecules were sourced from the NP-lib database of the MTi-OpenScreen server, and five top hits (ZINC000044404209, ZINC000059779788, ZINC000001562130, ZINC000014766825, and ZINC000043552589) were prioritized for compute intensive docking with dock score ≤ - 8.5 kcal/mole. Later, molecular dynamics (MD) simulation and principal component analysis (PCA) were used to validate these top five hits. In the list of these top five hits, the ligands ZINC000044404209, ZINC000059779788, and ZINC000043552589 showed hydrogen bond formation with the functional residue Glu292 of the RpfB protein suggesting biological significance of the binding. The RMSD study showed stable protein-ligand complexes and higher conformational consistency for the ligands ZINC000014766825, and ZINC000043552589 with RMSD 3-4 Å during 100 ns MD simulation. The overall analysis performed in the study suggested promising binding of these compounds with the RpfB protein of the Mtb at its functional site, further experimental investigation is needed to validate the computational finding.

2.
BMC Infect Dis ; 20(1): 469, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32615981

RESUMO

BACKGROUND: Interferon-γ release assays (IGRA) with Resuscitation promoting factor (Rpf) proteins enhanced tuberculosis (TB) screening and diagnosis in adults but have not been evaluated in children. Children often develop paucibacillary TB and their immune response differs from that of adults, which together affect TB disease diagnostics and immunodiagnostics. We assessed the ability of Rpf to identify infection among household TB-exposed children in The Gambia and investigated their ability to discriminate Mycobacterium tuberculosis complex (MTBC) infection from active TB disease in children. METHODS: Detailed clinical investigations were done on 93 household TB-exposed Gambian children and a tuberculin skin test (TST) was administered to asymptomatic children. Venous blood was collected for overnight stimulation with ESAT-6/CFP-10-fusion protein (EC), purified protein derivative and RpfA, B, C, D and E. Interferon gamma (IFN-γ) production was measured by ELISA in supernatants and corrected for the background level. Infection status was defined by IGRA with EC and TB disease by mycobacterial confirmation and/or clinical diagnosis. We compared IFN-γ levels between infected and uninfected children and between infected and TB diseased children using a binomial logistic regression model while correcting for age and sex. A Receiver Operating Characteristics analysis was done to find the best cut-off for IFN-γ level and calculate sensitivity and specificity. RESULTS: Interferon gamma production was significantly higher in infected (IGRA+, n = 45) than in uninfected (IGRA-, n = 20) children after stimulation with RpfA, B, C, and D (P = 0.03; 0.007; 0.03 and 0.003, respectively). Using RpfB and D-specific IFN-γ cut-offs (33.9 pg/mL and 67.0 pg/mL), infection was classified with a sensitivity-specificity combination of 73-92% and 77-72% respectively, which was similar to and better than 65-75% for TST. Moreover, IFN-γ production was higher in infected than in TB diseased children (n = 28, 5 bacteriologically confirmed, 23 clinically diagnosed), following RpfB and D stimulation (P = 0.02 and 0.03, respectively). CONCLUSION: RpfB and RpfD show promising results for childhood MTBC infection screening, and both performed similar to and better than the TST in our study population. Additionally, both antigens appear to discriminate between infection and disease in children and thus warrant further investigation as screening and diagnostic antigens for childhood TB.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Citocinas/imunologia , Testes de Liberação de Interferon-gama/métodos , Tuberculose Latente/diagnóstico , Tuberculose Latente/epidemiologia , Programas de Rastreamento/métodos , Mycobacterium tuberculosis/imunologia , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Características da Família , Feminino , Gâmbia/epidemiologia , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Tuberculose Latente/microbiologia , Masculino , Sensibilidade e Especificidade , Teste Tuberculínico
3.
J Biomol Struct Dyn ; 42(2): 948-959, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37139795

RESUMO

The majority of the world population (around 25%) has latent Mycobacterium tuberculosis (Mtb) infection, among which only 5-10% of individuals develop active tuberculosis (TB), and 90-95% continue to have latent tuberculosis infection. This makes it the biggest global health concern. It has been reported that the resuscitation-promoting factor B (RpfB) is an exciting potential target for tuberculosis drug discovery due to its significant role in the reactivation of latent TB infection to an active infection. Several attempts have been made to investigate potential inhibitors against RpfB utilizing in-silico approaches. The present study also utilized a computational approach to investigate microbially derived natural compounds against the Mtb RpfB protein which is a very cost-effective This evaluation used structure-based virtual screening (SBVS), drug-likeness profiling, molecular docking, molecular dynamics simulation, and free-binding energy calculations. Six potential natural compounds, viz. Cyclizidine I, Boremexin C, Xenocoumacin 2, PM-94128, Cutinostatin B, and (+)1-O-demethylvariecolorquinone A were selected, which displayed a potential binding affinity between -52.39 and -60.87 Kcal/mol MMGBSA score and docking energy between -7.307 Kcal/mol to -6.972 Kcal/mol. All the complexes showed acceptable stability (<2.7 Å RMSD) during 100 ns MD simulation time except the RpfB protein-xenocoumacin 2 complex. This result exhibited that the selected compounds have high efficiency in inhibiting the Mtb RpfB and can be taken into account for additional in vitro and in vivo experimental validation.Communicated by Ramaswamy H. Sarma.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/metabolismo , Fator B do Complemento/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Bactérias/química , Simulação de Dinâmica Molecular
4.
Front Pharmacol ; 14: 1325227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094882

RESUMO

Tuberculosis (TB), an infectious disease caused by multi-drug resistant Mycobacterium tuberculosis (Mtb), has been a global health concern. Mtb affects over a third of the world's population, causing two million deaths annually due to its dormancy and propensity to spread infection during this period. Resuscitation-promoting factor B (RpfB) plays a pivotal role in the growth of Mtb during dormant periods, making it a critical target for eliminating Mtb and curing TB. Gymnema sylvestre is a famous medicinal plant with several medicinal properties, including antimicrobial activity; however, the therapeutic potential of the various reported metabolites of this plant against Mtb has not yet been explored. The aim of this study was to explore the reported natural products of G. sylvestre against the RpfB of the Mtb. A total of 131 reported secondary metabolites of this plant were collected and virtually screened against the RpfB. We particularly targeted the Glu292 residue of RpfB as it is crucial for the catalysis of this protein. From our in-house library, 114 compounds showed a binding affinity higher than the standard drug. The binding stability of the top three lead compounds was further confirmed through MD simulation analysis. Drug likeness analyses indicated that the ten hits had zero violations of the Lipinski rule of five. In addition, analyses of pharmacokinetics, toxicity, and target prediction revealed that the top compounds are devoid of toxicity and do not affect human proteins. Additionally, they reflect multifaceted approach as anti-TB agents. Our selected hits not only exhibit molecular properties favoring physiological compatibility but also exhibit properties enhancing their potential efficacy as therapeutic candidates. The compounds investigated here are worthy of experimental validation for the discovery of novel treatments against TB. Further, this study also provides a promising avenue for research on the pharmacological potential of G. sylvestre.

5.
mBio ; 13(2): e0364421, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35254135

RESUMO

Plant colonization by phytopathogens is a very complex process in which numerous factors are involved. Upon infection by phytopathogens, plants produce salicylic acid (SA) that triggers gene expression within the plant to counter the invading pathogens. The present study demonstrated that SA signal also directly acts on the quorum-sensing (QS) system of the invading pathogen Xanthomonas campestris pv. campestris to affect its virulence by inducing turnover of the diffusible signaling factor (DSF) family QS signal. First, Xanthomonas campestris pv. campestris infection induces SA biosynthesis in the cabbage host plant. SA cannot be degraded by Xanthomonas campestris pv. campestris during culturing. Exogenous addition of SA or endogenous production of SA induces DSF signal turnover during late growth phase of Xanthomonas campestris pv. campestris in XYS medium that mimics plant vascular environments. Further, the DSF turnover gene rpfB is required for SA induction of DSF turnover. However, SA does not affect the expression of rpfB and DSF biosynthesis gene rpfF at the transcriptional level. SA induction of DSF turnover only occurs under acidic conditions in XYS medium. Furthermore, addition of SA to XYS medium significantly increased both culture and cytoplasmic pH. Increased cytoplasmic pH induced DSF turnover in a rpfB-dependent manner. In vitro RpfB-dependent DSF turnover activity increased when pH increased from 6 to 8. SA exposure did not affect the RpfB-dependent DSF turnover in vitro. Finally, SA-treated Xanthomonas campestris pv. campestris strain exhibited enhanced virulence when inoculated on cabbage. These results provide new insight into the roles of SA in host plants and the molecular interactions between Xanthomonas campestris pv. campestris and cruciferous plants. IMPORTANCE SA is a phenolic acid plant hormone that plays an essential role in plant defenses against biotrophic and semibiotrophic pathogens. Substantial progress has been made in understanding the pivotal role of SA in plant immunity. However, the roles of SA in inhibiting invading plant pathogens and the associated underlying molecular mechanisms are not yet fully understood. The present study demonstrated that the SA signal directly acts on the quorum-sensing (QS) system of the invading pathogen Xanthomonas campestris pv. campestris to affect its virulence by inducing turnover of the DSF family QS signal via a pH-dependent manner. These findings provide new insight into the roles of SA and expand our understanding of the molecular interactions between pathogens and plant hosts.


Assuntos
Brassica , Xanthomonas campestris , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Percepção de Quorum/genética , Ácido Salicílico/metabolismo , Xanthomonas campestris/genética
6.
J Agric Food Chem ; 69(11): 3496-3510, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33724028

RESUMO

Bacillus cereus is a Gram-positive endospore-forming foodborne pathogen that causes lethal food poisoning and significant economic losses, usually through biofilm- and endospore-induced recurrent cross- and postprocessing contamination. Due to the lack of critical inhibitory targets and control strategies, B. cereus biofilm contamination is a problem that urgently needs a solution. In this study, the antibacterial and antibiofilm activities of several natural potential bacterial quorum sensing (QS) interferers, a group of spice-originated monoterpenoids, were screened, and terpinen-4-ol effectively inhibited B. cereus growth and biofilm and spore germination with minimum growth inhibition and 50% biofilm inhibitory concentrations of 8 and 2 µmol/mL, respectively. FESEM/CLSM and phenotypic research illustrated that in addition to a decrease in the number of attached B. cereus cells, (+)-terpinen-4-ol also obviously reduced extracellular matrix synthesis, especially exopolysaccharides, and inhibited the swarming motility and protease activity of B. cereus. (+)-Terpinen-4-ol did not exert a significant effect on AI-2 signals in B. cereus. Accordingly, the B. cereus-produced interspecies QS signals diffusing signal factors (DSFs, C8-C15) and diketopiperazines (DKPs) were detected and identified here, which suppressed B. cereus biofilm formation in a concentration-dependent manner. (+)-Terpinen-4-ol significantly increased the levels of specific DSF and DKP signals in B. cereus and down-regulated the gene expression of some rpfB homologues in transcription level. Moreover, both DKPs and DSFs inhibited swarming motility and protease activity in B. cereus, while just the DSF signals 2-dodecenoic acid and 11-methyl-2-dodecenoic acid inhibited exopolysaccharide synthesis like (+)-terpinen-4-ol. In summary, B. cereus strains were found to produce nine DSF- and six DKP-type QS signaling molecules, which repressed B. cereus biofilm formation. (+)-Terpinen-4-ol was confirmed to be a promising antibacterial and antibiofilm agent against B. cereus upregulating DSFs and DKPs levels, and it could target the critical genes rpfB for DSFs turnover.


Assuntos
Bacillus cereus , Percepção de Quorum , Biofilmes , Dicetopiperazinas , Terpenos
7.
Infect Genet Evol ; 83: 104356, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32438079

RESUMO

Among the various strategies of curbing tuberculosis, suppression of Mycobacterium tuberculosis (Mtb) is a primary goal of the WHO to stop its infection, which is further strengthened by the presence of a massive reservoir of latently infected individuals. Several efforts have been made to explore potential candidates, including drug-repurposing, phytomolecules evaluation, and de novo designs. Compared to other strategies, investigation of phytomolecules with known experimental evidence represents a highly cost-effective and less time-consuming approach. Interestingly, some of the phytomolecules, previously known to show anti-tuberculosis effects, are known. While, these compounds have not yet been tested for their additional abilities to interact with resuscitation-promoting factor B (RpfB), an essential protein involved in revoking of Mtb dormancy. We, therefore, performed an initial computational study to evaluate the binding affinity of 38 phytomolecules to select the most effective ligands against RpfB. The studies were carried out using AutoDock and associated tools for static interaction analysis, while molecular dynamics (MD) simulations were performed to examine the stability of predicted protein-ligand complexes using the Desmond MD package. As an outcome of this study, we have reported four potential compounds, viz. diospyrin, 2'-Nortiliacorinine, 5,4'-dihydroxy-3,7,8,3'-tetramethoxyflavone, and tiliacorine which showed a putative binding affinity with significant intermolecular interactions, docking energy of -8.0 kcal/mol or higher, and vital complex stability (~2.4 Å RMSD) during 100 ns MD simulation. The findings of this study indicated that phytomolecules are capable to efficiently inhibit the RpfB, which is vital for reactivation of dormant Mtb. Characterization of the molecular targets for hits with intriguingly selective activity against dormant Mtb would be helpful to elucidate the essential mechanisms underlying the survival of dormant Mtb during latent infections.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Tuberculose Latente/microbiologia , Antituberculosos/metabolismo , Antituberculosos/farmacocinética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Benzilisoquinolinas/química , Benzilisoquinolinas/metabolismo , Benzilisoquinolinas/farmacologia , Humanos , Tuberculose Latente/tratamento farmacológico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Naftoquinonas/química , Naftoquinonas/metabolismo , Naftoquinonas/farmacologia , Plantas/química , Relação Estrutura-Atividade
8.
FEBS J ; 282(13): 2500-11, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25846449

RESUMO

Resuscitation-promoting factor proteins (Rpfs) are known to participate in reactivating the dormant forms of actinobacteria. Structural analysis of the Rpf catalytic domain demonstrates its similarity to lysozyme and to lytic transglycosylases - the groups of enzymes that cleave the ß-1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and GlcNAc, and concomitantly form a 1,6-anhydro ring at the MurNAc residue. Analysis of the products formed from mycobacterial peptidoglycan hydrolysis reactions containing a mixture of RpfB and resuscitation-promoting factor interacting protein (RipA) allowed us to identify the suggested product of their action - N-acetylglucosaminyl-ß(1 → 4)-N-glycolyl-1,6-anhydromuramyl-L-alanyl-D-isoglutamate. To identify the role of this resulting product in resuscitation, we used a synthetic 1,6-anhydrodisaccharide-dipeptide, and tested its ability to stimulate resuscitation by using the dormant Mycobacterium smegmatis model. It was found that the disaccharide-dipeptide was the minimal structure capable of resuscitating the dormant mycobacterial cells over the concentration range of 9-100 ng · mL(-1). The current study therefore provides the first insights into the molecular mechanism of resuscitation from dormancy involving a product of RpfB/RipA-mediated peptidoglycan cleavage.


Assuntos
Proteínas de Bactérias/fisiologia , Citocinas/fisiologia , Mycobacterium/fisiologia , Digestão , Peptidoglicano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA