Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
FASEB J ; 38(9): e23624, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747001

RESUMO

The Retinitis pigmentosa GTPase regulator interacting protein 1-like (RPGRIP1L) gene encodes an important protein that performs various physiological functions. Variants of RPGRIP1L are related to a number of diseases. However, it is currently unknown whether RPGRIP1L is correlated with breast invasive carcinoma (BRCA). In BRCA tissue specimens, the expression of RPGRIP1L was found to be elevated in comparison to its levels in normal breast tissue. A notable decline in survival rates was associated with patients exhibiting heightened RPGRIP1L gene expression. Consistent with these findings, our data also show the above results. Furthermore, elevated expression of RPGRIP1L corresponded with a spectrum of unfavorable clinicopathological features, including the presence of human epidermal growth factor receptor 2 (HER2) positive, estrogen receptor (ER) positive, over 60 years old, T2, N0, and N3. At the same time, our research indicated that 50 genes and 15 proteins were positively related to RPGRIP1L, and that these proteins and genes were mostly involved in T cell proliferation, immune response, cytokine activity, and metabolic regulation. In addition, in the present study, there was a significant correlation between RPGRIP1L expression and immune cell infiltration. Finally, we found that four Chemicals could downregulate the expression of RPGRIP1L. Altogether, our results strongly indicated that RPGRIP1L might serve as a new prognostic biomarker for BRCA.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Prognóstico , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Idoso , Adulto
2.
Semin Cell Dev Biol ; 110: 43-50, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32466971

RESUMO

An emerging number of rare genetic disorders termed ciliopathies are associated with pediatric obesity. It is becoming clear that the mechanisms associated with cilia dysfunction and obesity in these syndromes are complex. In addition to ciliopathic syndromic forms of obesity, several cilia-associated signaling gene mutations also lead to morbid obesity. While cilia have critical and diverse functions in energy homeostasis including their roles in centrally mediated food intake as well as in peripheral tissues, many questions remain. Here, we briefly discuss the syndromic ciliopathies and monoallelic cilia signaling gene mutations associated with obesity. We also describe potential ways cilia may be involved in common obesity. We discuss how neuronal cilia impact food intake potentially through leptin signaling and changes in ciliary G protein-coupled receptor (GPCR) signaling. We highlight several recent studies that have implicated the potential for cilia in peripheral tissues such as adipose and the pancreas to contribute to metabolic dysfunction. Then we discuss the potential for cilia to impact energy homeostasis through their roles in both development and adult tissue homeostasis. The studies discussed in this review highlight how a comprehensive understanding of the requirement of cilia for the regulation of diverse biological functions will contribute to our understanding of common forms of obesity.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Cílios/metabolismo , Ciliopatias/genética , Leptina/genética , Obesidade Mórbida/genética , Obesidade Infantil/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adulto , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Criança , Cílios/patologia , Ciliopatias/metabolismo , Ciliopatias/patologia , Ingestão de Alimentos/genética , Regulação da Expressão Gênica , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Leptina/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Obesidade Mórbida/metabolismo , Obesidade Mórbida/patologia , Pâncreas/metabolismo , Pâncreas/patologia , Obesidade Infantil/metabolismo , Obesidade Infantil/patologia , Transdução de Sinais
3.
EMBO J ; 37(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29650680

RESUMO

Ciliopathies are life-threatening human diseases caused by defective cilia. They can often be traced back to mutations of genes encoding transition zone (TZ) proteins demonstrating that the understanding of TZ organisation is of paramount importance. The TZ consists of multimeric protein modules that are subject to a stringent assembly hierarchy. Previous reports place Rpgrip1l at the top of the TZ assembly hierarchy in Caenorhabditis elegans By performing quantitative immunofluorescence studies in RPGRIP1L-/- mouse embryos and human embryonic cells, we recognise a different situation in vertebrates in which Rpgrip1l deficiency affects TZ assembly in a cell type-specific manner. In cell types in which the loss of Rpgrip1l alone does not affect all modules, additional truncation or removal of vertebrate-specific Rpgrip1 results in an impairment of all modules. Consequently, Rpgrip1l and Rpgrip1 synergistically ensure the TZ composition in several vertebrate cell types, revealing a higher complexity of TZ assembly in vertebrates than in invertebrates.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Cílios/fisiologia , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Proteínas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antígenos de Neoplasias , Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular , Estruturas da Membrana Celular , Células Cultivadas , Proteínas do Citoesqueleto , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia
4.
BMC Pediatr ; 22(1): 433, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858853

RESUMO

BACKGROUND: Joubert Syndrome (JS) is a rare genetic developmental disorder. We are aiming for increasing awareness of this disease especially kidney involvement in children with JS. METHODS: Clinical and genetic data of 17 cases of JS in Beijing children's hospital in the past 21 years were collected retrospectively. RESULTS: Twelve males and 5 females, aged from 12d to 15y8m. The most common involvement was neurological system involvement. The second most common involvement was renal involvement: end stage kidney disease in 6 cases (35%), hematuria in 5 cases (29%), proteinuria in 5 cases (29%), renal diffuse lesions in 4 cases (24%), renal cystic lesions in 2 cases (12%), and echogenic enhancement of parenchyma in 2 cases (12%). 10 cases did genetic tests. 3 cases with renal deficiency all had RPGRIP1L gene mutation. CONCLUSIONS: The most common involvement of JS is neurological involvement, and the second is renal involvement. Pediatricians should improve awareness of JS and conduct systemic evaluation of children. More attention should be paid to renal involvement which may be onset hidden but fatal. Early recognition and diagnosis are the goals to delay the start to dialysis and improve quality of patients' life. The RPGRIP1L gene mutation maybe the most common gene mutation in JS and may have correlations with renal involvement.


Assuntos
Anormalidades Múltiplas , Anormalidades do Olho , Doenças Renais Císticas , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Cerebelo/anormalidades , Cerebelo/diagnóstico por imagem , Criança , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Feminino , Humanos , Doenças Renais Císticas/diagnóstico por imagem , Doenças Renais Císticas/genética , Masculino , Retina/anormalidades , Retina/diagnóstico por imagem , Estudos Retrospectivos
5.
Neurobiol Dis ; 150: 105236, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33383187

RESUMO

Development of the forebrain critically depends on the Sonic Hedgehog (Shh) signaling pathway, as illustrated in humans by the frequent perturbation of this pathway in holoprosencephaly, a condition defined as a defect in the formation of midline structures of the forebrain and face. The Shh pathway requires functional primary cilia, microtubule-based organelles present on virtually every cell and acting as cellular antennae to receive and transduce diverse chemical, mechanical or light signals. The dysfunction of cilia in humans leads to inherited diseases called ciliopathies, which often affect many organs and show diverse manifestations including forebrain malformations for the most severe forms. The purpose of this review is to provide the reader with a framework to understand the developmental origin of the forebrain defects observed in severe ciliopathies with respect to perturbations of the Shh pathway. We propose that many of these defects can be interpreted as an imbalance in the ratio of activator to repressor forms of the Gli transcription factors, which are effectors of the Shh pathway. We also discuss the complexity of ciliopathies and their relationships with forebrain disorders such as holoprosencephaly or malformations of cortical development, and emphasize the need for a closer examination of forebrain defects in ciliopathies, not only through the lens of animal models but also taking advantage of the increasing potential of the research on human tissues and organoids.


Assuntos
Encéfalo/anormalidades , Cílios/genética , Ciliopatias/embriologia , Anormalidades Craniofaciais/embriologia , Proteínas Hedgehog/fisiologia , Prosencéfalo/embriologia , Anormalidades Múltiplas/embriologia , Anormalidades Múltiplas/genética , Encéfalo/embriologia , Cerebelo/anormalidades , Cerebelo/embriologia , Transtornos da Motilidade Ciliar/embriologia , Transtornos da Motilidade Ciliar/genética , Ciliopatias/genética , Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/genética , Encefalocele/embriologia , Encefalocele/genética , Anormalidades do Olho/embriologia , Anormalidades do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento , Holoprosencefalia/embriologia , Holoprosencefalia/genética , Humanos , Doenças Renais Císticas/embriologia , Doenças Renais Císticas/genética , Doenças Renais Policísticas/embriologia , Doenças Renais Policísticas/genética , Retina/anormalidades , Retina/embriologia , Retinose Pigmentar/embriologia , Retinose Pigmentar/genética , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/genética
6.
Clin Exp Pharmacol Physiol ; 48(7): 954-965, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33735452

RESUMO

Obesity has become a genuine global pandemic due to lifestyle and environmental modifications, and is associated with chronic lethal comorbidities. Various environmental factors such as lack of physical activity due to modernization and higher intake of energy-rich diets are primary obesogenic factors in pathogenesis of obesity. Genome-wide association study has identified the crucial role of FTO (fat mass and obesity) in human obesity. A bunch of SNPs in the first intron of FTO has been identified and subsequently correlated to body mass index and body composition. Findings of in silico, in vitro, and in vivo studies have manifested the robust role of FTO in regulation of energy expenditure and food consumption. Numerous studies have highlighted the mechanistic pathways behind the concomitant functions of FTO in adipogenesis and body size. Current investigation has also revealed the link of FTO neighbouring genes i.e., RPGRIP1L, IRX3 and IRX5 and epigenetic factors with obesity phenotypes. The motive behind this review is to cite the consequences of FTO on obesity vulnerability.


Assuntos
Estudo de Associação Genômica Ampla , Obesidade , Índice de Massa Corporal , Metabolismo Energético , Humanos , Polimorfismo de Nucleotídeo Único
7.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808286

RESUMO

X-linked retinitis pigmentosa (XLRP) is frequently caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. A complex splicing process acts on the RPGR gene resulting in three major isoforms: RPGRex1-19, RPGRORF15 and RPGRskip14/15. We characterized the widely expressed, alternatively spliced transcript RPGRskip14/15 lacking exons 14 and 15. Using the CRISPR/eSpCas9 system, we generated HEK293T cell lines exclusively expressing the RPGRskip14/15 transcript from the endogenous RPGR gene. RPGRex1-19 and RPGRORF15 were knocked out. Immunocytochemistry demonstrated that the RPGRskip14/15 protein localizes along primary cilia, resembling the expression pattern of RPGRex1-19. The number of cilia-carrying cells was not affected by the absence of the RPGRex1-19 and RPGRORF15 isoforms. Co-immunoprecipitation assays demonstrated that both RPGRex1-19 and RPGRskip14/15 interact with PDE6D, further supporting that RPGRskip14/15 is associated with the protein networks along the primary cilium. Interestingly, interaction complexes with INPP5E or RPGRIP1L were only detectable with isoform RPGRex1-19, but not with RPGRskip14/15, demonstrating distinct functional properties of the major RPGR isoforms in spite of their similar subcellular localization. Our findings lead to the conclusion that protein binding sites within RPGR are mediated through alternative splicing. A tissue-specific expression ratio between RPGRskip14/15 and RPGRex1-19 seems required to regulate the ciliary concentration of RPGR interaction partners.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Olho/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Processamento Alternativo/genética , Sítios de Ligação , Cílios/genética , Cílios/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Éxons/genética , Proteínas do Olho/metabolismo , Células HEK293 , Humanos , Mutação/genética , Monoéster Fosfórico Hidrolases/genética , Isoformas de Proteínas/genética , Splicing de RNA/genética , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo
8.
J Neurosci ; 39(13): 2398-2415, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30692221

RESUMO

Primary cilia are essential for CNS development. In the mouse, they play a critical role in patterning the spinal cord and telencephalon via the regulation of Hedgehog/Gli signaling. However, despite the frequent disruption of this signaling pathway in human forebrain malformations, the role of primary cilia in forebrain morphogenesis has been little investigated outside the telencephalon. Here we studied development of the diencephalon, hypothalamus and eyes in mutant mice in which the Ftm/Rpgrip1l ciliopathy gene is disrupted. At the end of gestation, Ftm-/- fetuses displayed anophthalmia, a reduction of the ventral hypothalamus and a disorganization of diencephalic nuclei and axonal tracts. In Ftm-/- embryos, we found that the ventral forebrain structures and the rostral thalamus were missing. Optic vesicles formed but lacked the optic cups. In Ftm-/- embryos, Sonic hedgehog (Shh) expression was virtually lost in the ventral forebrain but maintained in the zona limitans intrathalamica (ZLI), the mid-diencephalic organizer. Gli activity was severely downregulated but not lost in the ventral forebrain and in regions adjacent to the Shh-expressing ZLI. Reintroduction of the repressor form of Gli3 into the Ftm-/- background restored optic cup formation. Our data thus uncover a complex role of cilia in development of the diencephalon, hypothalamus and eyes via the region-specific control of the ratio of activator and repressor forms of the Gli transcription factors. They call for a closer examination of forebrain defects in severe ciliopathies and for a search for ciliopathy genes as modifiers in other human conditions with forebrain defects.SIGNIFICANCE STATEMENT The Hedgehog (Hh) signaling pathway is essential for proper forebrain development as illustrated by a human condition called holoprosencephaly. The Hh pathway relies on primary cilia, cellular organelles that receive and transduce extracellular signals and whose dysfunctions lead to rare inherited diseases called ciliopathies. To date, the role of cilia in the forebrain has been poorly studied outside the telencephalon. In this paper we study the role of the Ftm/Rpgrip1l ciliopathy gene in mouse forebrain development. We uncover complex functions of primary cilia in forebrain morphogenesis through region-specific modulation of the Hh pathway. Our data call for further examination of forebrain defects in ciliopathies and for a search for ciliopathy genes as modifiers in human conditions affecting forebrain development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Olho/embriologia , Olho/metabolismo , Hipotálamo/embriologia , Hipotálamo/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Tálamo/embriologia , Tálamo/metabolismo
9.
BMC Bioinformatics ; 20(1): 470, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31521111

RESUMO

BACKGROUND: Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes and cell cycle durations set up the final neuronal output. To understand the respective roles of these factors in the neurogenesis process, we combine experimental in vivo studies with mathematical modeling and numerical simulations of the dynamics of neural progenitor cells. A special focus is put on the population of intermediate progenitors (IPs), a transit amplifying progenitor type critically involved in the size of the final neuron pool. RESULTS: A multiscale formalism describing IP dynamics allows one to track the progression of cells along the subsequent phases of the cell cycle, as well as the temporal evolution of the different cell numbers. Our model takes into account the dividing apical progenitors (AP) engaged into neurogenesis, both neurogenic and proliferative IPs, and the newborn neurons. The transfer rates from one population to another are subject to the mode of division (proliferative, or neurogenic) and may be time-varying. The model outputs are successfully fitted to experimental cell numbers from mouse embryos at different stages of cortical development, taking into account IPs and neurons, in order to adjust the numerical parameters. We provide additional information on cell kinetics, such as the mitotic and S phase indexes, and neurogenic fraction. CONCLUSIONS: Applying the model to a mouse mutant for Ftm/Rpgrip1l, a gene involved in human ciliopathies with severe brain abnormalities, reveals a shortening of the neurogenic period associated with an increased influx of newborn IPs from apical progenitors at mid-neurogenesis. Our model can be used to study other mouse mutants with cortical neurogenesis defects and can be adapted to study the importance of progenitor dynamics in cortical evolution and human diseases.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Modelos Biológicos , Neurogênese , Animais , Ciclo Celular , Divisão Celular , Córtex Cerebral/fisiopatologia , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Humanos , Camundongos , Mutação , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Proteínas/genética
11.
Br J Nutr ; 116(4): 576-92, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27323230

RESUMO

Primary cilia are organelles that are present on many different cell types, either transiently or permanently. They play a crucial role in receiving signals from the environment and passing these signals to other parts of the cell. In that way, they are involved in diverse processes such as adipocyte differentiation and olfactory sensation. Mutations in genes coding for ciliary proteins often have pleiotropic effects and lead to clinical conditions, ciliopathies, with multiple symptoms. In this study, we reviewed observations from ciliopathies with obesity as one of the symptoms. It shows that variation in cilia-related genes is itself not a major cause of obesity in the population but may be a part of the multifactorial aetiology of this complex condition. Both common polymorphisms and rare deleterious variants may contribute to the obesity risk. Genotype-phenotype relationships have been noticed. Among the ciliary genes, obesity differs with regard to severity and age of onset, which may relate to the influence of each gene on the balance between pro- and anti-adipogenic processes. Analysis of the function and location of the proteins encoded by these ciliary genes suggests that obesity is more linked to activities at the basal area of the cilium, including initiation of the intraflagellar transport, but less to the intraflagellar transport itself. Regarding the role of cilia, three possible mechanistic processes underlying obesity are described: adipogenesis, neuronal food intake regulation and food odour perception.


Assuntos
Cílios/fisiologia , Obesidade/etiologia , Adipogenia/fisiologia , Transporte Biológico , Diferenciação Celular , Cílios/genética , Variação Genética , Humanos , Mutação , Obesidade/fisiopatologia , Fatores de Risco
12.
Elife ; 132024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39388365

RESUMO

Cilia defects lead to scoliosis in zebrafish, but the underlying pathogenic mechanisms are poorly understood and may diverge depending on the mutated gene. Here, we dissected the mechanisms of scoliosis onset in a zebrafish mutant for the rpgrip1l gene encoding a ciliary transition zone protein. rpgrip1l mutant fish developed scoliosis with near-total penetrance but asynchronous onset in juveniles. Taking advantage of this asynchrony, we found that curvature onset was preceded by ventricle dilations and was concomitant to the perturbation of Reissner fiber polymerization and to the loss of multiciliated tufts around the subcommissural organ. Rescue experiments showed that Rpgrip1l was exclusively required in foxj1a-expressing cells to prevent axis curvature. Genetic interactions investigations ruled out Urp1/2 levels as a main driver of scoliosis in rpgrip1 mutants. Transcriptomic and proteomic studies identified neuroinflammation associated with increased Annexin levels as a potential mechanism of scoliosis development in rpgrip1l juveniles. Investigating the cell types associated with annexin2 over-expression, we uncovered astrogliosis, arising in glial cells surrounding the diencephalic and rhombencephalic ventricles just before scoliosis onset and increasing with time in severity. Anti-inflammatory drug treatment reduced scoliosis penetrance and severity and this correlated with reduced astrogliosis and macrophage/microglia enrichment around the diencephalic ventricle. Mutation of the cep290 gene encoding another transition zone protein also associated astrogliosis with scoliosis. Thus, we propose astrogliosis induced by perturbed ventricular homeostasis and associated with immune cell activation as a novel pathogenic mechanism of zebrafish scoliosis caused by cilia dysfunction.


Assuntos
Cílios , Escoliose , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Escoliose/genética , Escoliose/metabolismo , Escoliose/patologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Cílios/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Gliose/patologia , Gliose/metabolismo , Mutação
13.
Front Genet ; 13: 982127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061204

RESUMO

Ciliopathies are a class of inherited severe human disorders that occur due to defective formation or function of cilia. The RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein1-like) gene encodes for a ciliary protein involved in regulating cilia formation and function. Mutations in RPGRIP1L cause ciliopathies associated with severe embryonic defects, such as Meckel-Gruber Syndrome (MKS). Here we report RPGRIP1L mutation analysis in a family diagnosed with MKS. The clinical manifestations of the fetus included thoraco-lumbar open neural tube defect with associated Chiari type II malformation and hydrocephalus, bilateral club feet, and single right kidney/ureter. Analysis of the parental DNA samples revealed that the father carried a previously reported mutation R1236C/+ whereas the mother had a novel splice site mutation IVS6+1 G > A/+ in RPGRIP1L. The splice site mutation resulted in the exclusion of in-frame exon 6 of RPGRIP1L (RPGRIP1L-∆Ex6) but expressed a stable protein in fibroblasts derived from the parents' skin biopsies. The GFP-RPGRIP1L-∆Ex6 mutant protein exhibited relatively reduced ciliary localization in transiently-transfected cultured RPE-1 cells. Taken together, this study identifies a novel RPGRIP1L variant RPGRIP1L-∆Ex6, which in combination with RPGRIP1L-R1236C is associated with MKS. We also suggest that the deletion of exon 6 of RPGRIP1L leads to reduced ciliary localization of RPGRIP1L, indicating a plausible mechanism of associated disease.

14.
Reprod Sci ; 29(8): 2200-2207, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35233738

RESUMO

Meckel syndrome (MKS, OMIM:249000) is a severe multiorgan dysplastic lethal ciliopathy with extreme genetic heterogeneity. Defects in RPGRIP1L are the cause of MKS type 5 (MKS5, OMIM:611561). However, only six different variants have been reported in eight MKS5 cases with biallelic variants. Here, we describe the case of a Chinese family with recurrent fetal malformations. The proband was a 14-week gestation fetus with occipital encephalocele, polycystic kidneys, polydactyly, and single ventricular heart. Trio whole-exome sequencing was performed, and two novel compound heterozygous variants of RPGRIP1L (c.427C > T, p.Gln143Ter and c.1351-11A > G) were identified. cDNA studies of the splicing variant demonstrated a reading-frame shift with a subsequent premature stop codon (p.Glu451Serfs*6). After the proband was diagnosed with MKS5, the couple chose preimplantation genetic testing for monogenic disorders (PGT-M) and prenatal genetic diagnosis (PND) to prevent the transmission of pathogenic variants, which led to a successful pregnancy recently. In summary, we have identified two novel variants of RPGRIP1L in a Chinese family, which expand the variant spectrum of MKS5. Furthermore, we have described the successful application of PGT-M and PND in this family. These techniques could assist couples with a genetic predisposition in avoiding the transmission of genetic diseases to their offspring.


Assuntos
Encefalocele , Doenças Renais Policísticas , Proteínas Adaptadoras de Transdução de Sinal/genética , China , Transtornos da Motilidade Ciliar , Encefalocele/diagnóstico , Encefalocele/genética , Encefalocele/patologia , Feminino , Testes Genéticos/métodos , Humanos , Doenças Renais Policísticas/diagnóstico , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Gravidez , Retinose Pigmentar
15.
Front Genet ; 12: 620472, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33597970

RESUMO

A 78 years old Chinese woman with five different cancer types and a family history of malignancy was the subject of this study. Pancreatic adenocarcinoma and gingival squamous cell carcinoma tissues were obtained from the patient and sequenced using Whole Exome Sequencing. Whole exome sequencing identified 20 mutation sites in six candidate genes. Sanger Sequencing was used for further validation. The results verified six mutations in three genes, OBSCN, TTN, and RPGRIP1L, in at least one cancer type. Immunohistochemistry was used to verify protein expression. mRNA expression analysis using The Cancer Genome Atlas database revealed that RPGRIP1L was highly expressed in several cancer types, especially in pancreatic adenocarcinoma, and correlated with patient survival and sensitivity to paclitaxel, probably through the TGF-ß signaling pathway. The newly identified somatic mutations in RPGRIP1L might contribute to pathogenesis in the patients. Protein conformation simulation demonstrated that the alterations had caused the binding pocket at position 708 to change from concave to convex, which could restrict contraction and extension, and interfere with the physiological function of the protein. Further studies are required to determine the implication of RPGRIP1L in this family and in multiple primary tumors.

16.
Mol Neuropsychiatry ; 5(Suppl 1): 97-106, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32399473

RESUMO

The retinitis pigmentosa GTPase regulator interacting protein 1-like (RPGRIP1L) gene encodes a ciliary protein that is critical for processes related to brain development, including development of left-right asymmetry, sonic hedgehog signaling, and neural tube formation. RPGRIP1L is a risk factor for retinal degeneration, and rare, deleterious variants in the RPGRIP1L gene cause Joubert syndrome and Meckel syndrome, both autosomal recessive disorders. These syndromes are characterized by dysfunctional primary cilia that result in abnormal development - and even lethality in the case of Meckel syndrome. Genetic studies have also implicated RPGRIP1L in psychiatric disorders by suggestive findings from genome-wide association studies and findings from rare-variant exome analyses for bipolar disorder and de novo mutations in autism. In this study we identify a common variant in RPGRIP1L, rs7203525, that influences alternative splicing, increasing the inclusion of exon 20 of RPGRIP1L. We detected this alternative splicing association in human postmortem brain tissue samples and, using a minigene assay combined with in vitro mutagenesis, confirmed that the alternative splicing is attributable to the alleles of this variant. The predominate RPGRIP1L isoform expressed in adult brains does not contain exon 20; thus, a shift to include this exon may impact brain function.

17.
Cells ; 8(3)2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875746

RESUMO

Protein degradation is a pivotal process for eukaryotic development and homeostasis. The majority of proteins are degraded by the ubiquitin⁻proteasome system and by autophagy. Recent studies describe a crosstalk between these two main eukaryotic degradation systems which allows for establishing a kind of safety mechanism. If one of these degradation systems is hampered, the other compensates for this defect. The mechanism behind this crosstalk is poorly understood. Novel studies suggest that primary cilia, little cellular protrusions, are involved in the regulation of the crosstalk between the two degradation systems. In this review article, we summarise the current knowledge about the association between cilia, the ubiquitin⁻proteasome system and autophagy.


Assuntos
Autofagia , Cílios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Ciliopatias/patologia , Humanos , Transdução de Sinais
18.
Nephron ; 140(1): 74-78, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29991045

RESUMO

Nephronophthisis-related ciliopathies (NPHP-RC) are autosomal recessive disorders characterized by renal corticomedullary cysts with the extrarenal symptoms. Typically, patients with NPHP-RC reach end-stage kidney disease (ESKD) before the age of 30 years. We herein report a Japanese woman with NPHP-RC who had unusually delayed progression to ESKD after 6 decades. She exhibited liver dysfunction at the age of 23 years. She also showed mild renal dysfunction at the age of 43 years. Ultrasonography revealed bilateral multiple renal cysts with loss of corticomedullary differentiation. Her liver and renal functions gradually deteriorated. She was diagnosed with liver fibrosis as a result of biopsy, and initiated the maintenance hemodiafiltration therapy for ESKD at the age of 61 years. Because of a unique combination of multiple renal cysts and liver fibrosis, ciliopathy was suspected and medical exome analysis was performed. A novel homozygous missense mutation was identified in RPGRIP1L (c.1810G>A p.Glu604Lys), a causative gene for NPHP-RC. To the best of our knowledge, this patient is the oldest one who progressed to ESKD in NPHP-RC. Our case illustrates that NPHP-RC should be included in the differential diagnosis of the patient with corticomedullary polycystic kidneys accompanied by the extrarenal organ involvements, even if the patient is elderly.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Ciliopatias/genética , Doenças Renais Policísticas/genética , Adulto , Cistos/diagnóstico por imagem , Feminino , Hemodiafiltração , Humanos , Japão , Falência Renal Crônica/etiologia , Falência Renal Crônica/genética , Cirrose Hepática/complicações , Cirrose Hepática/genética , Imageamento por Ressonância Magnética , Mutação de Sentido Incorreto/genética , Ultrassonografia
19.
Int J Biol Sci ; 13(5): 615-629, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28539834

RESUMO

In the 21st century, obesity has become a serious problem because of increasing obese patients and numerous metabolic complications. The primary reasons for this situation are environmental and genetic factors. In 2007, FTO (fat mass and obesity associated) was the first gene identified through a genome-wide association study (GWAS) associated with obesity in humans. Subsequently, a cluster of single nucleotide polymorphisms (SNPs) in the first intron of the FTO gene was discovered to be associated with BMI and body composition. Various studies have explored the mechanistic basis behind this association. Thus, emerging evidence showed that FTO plays a key role regulating adipose tissue development and functions in body size and composition. Recent prevalent research topic concentrated in the three neighboring genes of FTO: RPGRIP1L, IRX3 and IRX5, as having a functional link between obesity-associated common variants within FTO and the observed human phenotypes. The purpose of this review is to present a comprehensive picture of the impact of FTO on obesity susceptibility and to illuminate these new studies of FTO function in adipose tissue.


Assuntos
Obesidade/metabolismo , Tecido Adiposo/metabolismo , Animais , Estudo de Associação Genômica Ampla , Humanos , Obesidade/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
J Dev Biol ; 4(3)2016 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615591

RESUMO

The Hedgehog signalling pathway is evolutionarily highly conserved and essential for embryonic development of invertebrates and vertebrates. Consequently, impaired Hedgehog signalling results in very severe human diseases, ranging from holoprosencephaly to Pallister-Hall syndrome. Due to this great importance for human health, the focus of numerous research groups is placed on the investigation of the detailed mechanisms underlying Hedgehog signalling. Today, it is known that tiny cell protrusions, known as primary cilia, are necessary to mediate Hedgehog signalling in vertebrates. Although the Hedgehog pathway is one of the best studied signalling pathways, many questions remain. One of these questions is: How do primary cilia control Hedgehog signalling in vertebrates? Recently, it was shown that primary cilia regulate a special kind of proteasome which is essential for proper Hedgehog signalling. This review article will cover this novel cilia-proteasome association in embryonic Hedgehog signalling and discuss the possibilities provided by future investigations on this topic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA