Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(3): 890-896, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38198643

RESUMO

Motivated by the recent developments in moiré superlattices of van der Waals magnets and the desire to control the magnetic interactions of α-RuCl3, here we present a comprehensive theory of the long-range ordered magnetic phases of twisted bilayer α-RuCl3. Using a combination of first-principles calculations and atomistic simulations, we show that the stacking-dependent interlayer exchange gives rise to an array of magnetic phases that can be realized by controlling the twist angle. In particular, we discover a complex hexagonal domain structure in which multiple zigzag orders coexist. This multidomain order minimizes the interlayer energy while enduring the energy cost due to domain wall formation. Further, we show that quantum fluctuations can be enhanced across the phase transitions. Our results indicate that magnetic frustration due to stacking-dependent interlayer exchange in moiré superlattices can be exploited to tune quantum fluctuations and the magnetic ground state of α-RuCl3.

2.
Nano Lett ; 24(20): 5937-5943, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38712885

RESUMO

Advanced microelectronics in the future may require semiconducting channel materials beyond silicon. Two-dimensional (2D) semiconductors, with their atomically thin thickness, hold great promise for future electronic devices. One challenge to achieving high-performance 2D semiconductor field effect transistors (FET) is the high contact resistance at the metal-semiconductor interface. In this study, we develop a charge-transfer doping strategy with WSe2/α-RuCl3 heterostructures to achieve low-resistance ohmic contact for p-type monolayer WSe2 transistors. We show that hole doping as high as 3 × 1013 cm-2 can be achieved in the WSe2/α-RuCl3 heterostructure due to its type-III band alignment, resulting in an ohmic contact with resistance of 4 kΩ µm. Based on that, we demonstrate p-type WSe2 transistors with an on-current of 35 µA·µm-1 and an ION/IOFF ratio exceeding 109 at room temperature.

3.
Nano Lett ; 23(22): 10334-10341, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37955966

RESUMO

Intercalation reactions modify the charge density in van der Waals (vdW) materials through coupled electronic-ionic charge accumulation and are susceptible to modulation by interlayer hybridization in vdW heterostructures. Here, we demonstrate that charge transfer between graphene and α-RuCl3, which hole-dopes the graphene, greatly favors the intercalation of lithium ions into graphene-based vdW heterostructures. We systematically tune this effect on Li+ ion intercalation, modulating the intercalation potential, by using varying thicknesses of hexagonal boron nitride (hBN) as spacer layers between graphene and α-RuCl3. Confocal Raman spectroscopy and electronic transport measurements are used to monitor electrochemical intercalation, and density functional theory computations help quantify charge transfer to both α-RuCl3 and graphene upon Li intercalation. This work demonstrates a versatile approach for systematically modulating the electrochemical intercalation behavior of two-dimensional layers akin to electron donating/withdrawing substituent effects used to tune molecular redox potentials.

4.
Nano Lett ; 23(18): 8712-8718, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37695730

RESUMO

Laser-induced ultrafast demagnetization is a phenomenon of utmost interest and attracts significant attention because it enables potential applications in ultrafast optoelectronics and spintronics. As a spin-orbit coupling assisted magnetic insulator, α-RuCl3 provides an attractive platform to explore the physics of electronic correlations and unconventional magnetism. Using time-dependent density functional theory, we explore the ultrafast laser-induced dynamics of the electronic and magnetic structures in α-RuCl3. Our study unveils that laser pulses can introduce ultrafast demagnetizations, accompanied by an out-of-equilibrium insulator-to-metal transition in a few tens of femtoseconds. The spin response significantly depends on the laser wavelength and polarization on account of the electron correlations, band renormalizations, and charge redistributions. These findings provide physical insights into the coupling between the electronic and magnetic degrees of freedom in α-RuCl3 and shed light on suppressing the long-range magnetic orders and reaching a proximate spin liquid phase for two-dimensional magnets on an ultrafast time scale.

5.
Nano Lett ; 23(17): 8000-8005, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37639696

RESUMO

We investigate the electronic properties of a graphene and α-ruthenium trichloride (α-RuCl3) heterostructure using a combination of experimental techniques. α-RuCl3 is a Mott insulator and a Kitaev material. Its combination with graphene has gained increasing attention due to its potential applicability in novel optoelectronic devices. By using a combination of spatially resolved photoemission spectroscopy and low-energy electron microscopy, we are able to provide a direct visualization of the massive charge transfer from graphene to α-RuCl3, which can modify the electronic properties of both materials, leading to novel electronic phenomena at their interface. A measurement of the spatially resolved work function allows for a direct estimate of the interface dipole between graphene and α-RuCl3. Their strong coupling could lead to new ways of manipulating electronic properties of a two-dimensional heterojunction. Understanding the electronic properties of this structure is pivotal for designing next generation low-power optoelectronics devices.

6.
Nano Lett ; 23(18): 8426-8435, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37494638

RESUMO

The use of work-function-mediated charge transfer has recently emerged as a reliable route toward nanoscale electrostatic control of individual atomic layers. Using α-RuCl3 as a 2D electron acceptor, we are able to induce emergent nano-optical behavior in hexagonal boron nitride (hBN) that arises due to interlayer charge polarization. Using scattering-type scanning near-field optical microscopy (s-SNOM), we find that a thin layer of α-RuCl3 adjacent to an hBN slab reduces the propagation length of hBN phonon polaritons (PhPs) in significant excess of what can be attributed to intrinsic optical losses. Concomitant nano-optical spectroscopy experiments reveal a novel resonance that aligns energetically with the region of excess PhP losses. These experimental observations are elucidated by first-principles density-functional theory and near-field model calculations, which show that the formation of a large interfacial dipole suppresses out-of-plane PhP propagation. Our results demonstrate the potential utility of charge-transfer heterostructures for tailoring optoelectronic properties of 2D insulators.

7.
Nano Lett ; 22(10): 4124-4130, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35533399

RESUMO

We demonstrate ultrasharp (≲10 nm) lateral p-n junctions in graphene using electronic transport, scanning tunneling microscopy, and first-principles calculations. The p-n junction lies at the boundary between differentially doped regions of a graphene sheet, where one side is intrinsic and the other is charge-doped by proximity to a flake of α-RuCl3 across a thin insulating barrier. We extract the p-n junction contribution to the device resistance to place bounds on the junction width. We achieve an ultrasharp junction when the boundary between the intrinsic and doped regions is defined by a cleaved crystalline edge of α-RuCl3 located 2 nm from the graphene. Scanning tunneling spectroscopy in heterostructures of graphene, hexagonal boron nitride, and α-RuCl3 shows potential variations on a sub 10 nm length scale. First-principles calculations reveal that the charge-doping of graphene decays sharply over just nanometers from the edge of the α-RuCl3 flake.

8.
Angew Chem Int Ed Engl ; 62(17): e202219344, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36861901

RESUMO

The core task for Mott insulators includes how rigid distributions of electrons evolve and how these induce exotic physical phenomena. However, it is highly challenging to chemically dope Mott insulators to tune properties. Herein, we report how to tailor electronic structures of the honeycomb Mott insulator RuCl3 employing a facile and reversible single-crystal to single-crystal intercalation process. The resulting product (NH4 )0.5 RuCl3 ⋅1.5 H2 O forms a new hybrid superlattice of alternating RuCl3 monolayers with NH4 + and H2 O molecules. Its manipulated electronic structure markedly shrinks the Mott-Hubbard gap from 1.2 to 0.7 eV. Its electrical conductivity increases by more than 103 folds. This arises from concurrently enhanced carrier concentration and mobility in contrary to the general physics rule of their inverse proportionality. We show topotactic and topochemical intercalation chemistry to control Mott insulators, escalating the prospect of discovering exotic physical phenomena.

9.
Nano Lett ; 20(12): 8446-8452, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33166150

RESUMO

Two-dimensional nanoelectronics, plasmonics, and emergent phases require clean and local charge control, calling for layered, crystalline acceptors or donors. Our Raman, photovoltage, and electrical conductance measurements combined with ab initio calculations establish the large work function and narrow bands of α-RuCl3 enable modulation doping of exfoliated single and bilayer graphene, chemical vapor deposition grown graphene and WSe2, and molecular beam epitaxy grown EuS. We further demonstrate proof of principle photovoltage devices, control via twist angle, and charge transfer through hexagonal boron nitride. Short-ranged lateral doping (≤65 nm) and high homogeneity are achieved in proximate materials with a single layer of α-RuCl3. This leads to the best-reported monolayer graphene mobilities (4900 cm2/(V s)) at these high hole densities (3 × 1013 cm-2) and yields larger charge transfer to bilayer graphene (6 × 1013 cm-2).

10.
Nano Lett ; 20(12): 8438-8445, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33166145

RESUMO

Nanoscale charge control is a key enabling technology in plasmonics, electronic band structure engineering, and the topology of two-dimensional materials. By exploiting the large electron affinity of α-RuCl3, we are able to visualize and quantify massive charge transfer at graphene/α-RuCl3 interfaces through generation of charge-transfer plasmon polaritons (CPPs). We performed nanoimaging experiments on graphene/α-RuCl3 at both ambient and cryogenic temperatures and discovered robust plasmonic features in otherwise ungated and undoped structures. The CPP wavelength evaluated through several distinct imaging modalities offers a high-fidelity measure of the Fermi energy of the graphene layer: EF = 0.6 eV (n = 2.7 × 1013 cm-2). Our first-principles calculations link the plasmonic response to the work function difference between graphene and α-RuCl3 giving rise to CPPs. Our results provide a novel general strategy for generating nanometer-scale plasmonic interfaces without resorting to external contacts or chemical doping.

11.
Nano Lett ; 19(11): 7673-7680, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31637915

RESUMO

Strong light-matter interactions within nanoscale structures offer the possibility of optically controlling material properties. Motivated by the recent discovery of intrinsic long-range magnetic order in two-dimensional materials, which allow for the creation of novel magnetic devices of unprecedented small size, we predict that light can couple with magnetism and efficiently tune magnetic orders of monolayer ruthenium trichloride (RuCl3). First-principles calculations show that both free carriers and optically excited electron-hole pairs can switch monolayer RuCl3 from a proximate spin-liquid phase to a stable ferromagnetic phase. Specifically, a moderate electron-hole pair density (on the order of 1 × 1013 cm-2) can significantly stabilize the ferromagnetic phase by 10 meV/f.u. in comparison to the competing zigzag phase, so that the predicted ferromagnetism can be driven by optical pumping experiments. Analysis shows that this magnetic phase transition is driven by a combined effect of doping-induced lattice strain and itinerant ferromagnetism. According to Ising-model calculations, we find that the Curie temperature of the ferromagnetic phase can be increased significantly by raising carrier or electron-hole pair density. This enhanced optomagnetic effect opens new opportunities to manipulate two-dimensional magnetism through noncontact, optical approaches.

12.
Nano Lett ; 18(5): 3203-3208, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29635914

RESUMO

The small gap semiconductor α-RuCl3 has emerged as a promising candidate for quantum spin liquid materials. Thus far, Raman spectroscopy, neutron scattering, and magnetization measurements have provided valuable hints for collective spin behavior in α-RuCl3 bulk crystals. However, the goal of implementing α-RuCl3 into spintronic devices would strongly benefit from the possibility of electrically probing these phenomena. To address this, we first investigated nanoflakes of α-RuCl3 by Raman spectroscopy and observed similar behavior as in the case of the bulk material, including the signatures of possible fractionalized excitations. In complementary experiments, we investigated the electrical charge transport properties of individual α-RuCl3 nanoflakes in the temperature range between 120 and 290 K. The observed temperature-dependent electrical resistivity is consistent with variable range hopping behavior and exhibits a transition at about 180 K, close to the onset temperature observed in our Raman measurements. In conjunction with the established relation between structure and magnetism in the bulk, we interpret this transition to coincide with the emergence of fractionalized excitations due to the Kitaev interactions in the nanoflakes. Compared to the bulk samples, the transition temperature of the underlying structural change is larger in the nanoflakes. This difference is tentatively attributed to the dimensionality of the nanoflakes as well as the formation of stacking faults during mechanical exfoliation. The demonstrated devices open up novel perspectives toward manipulating the Kitaev-phase in α-RuCl3 via electrical means.

13.
Nano Lett ; 16(6): 3578-84, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27176463

RESUMO

Spin 1/2 honeycomb materials have gained substantial interest due to their exotic magnetism and possible application in quantum computing. However, in all current materials out-of-plane interactions are interfering with the in-plane order, hence a true 2D magnetic honeycomb system is still in demand. Here, we report the exfoliation of the magnetic semiconductor α-RuCl3 into the first halide monolayers and the magnetic characterization of the spin 1/2 honeycomb arrangement of turbostratically stacked RuCl3 monolayers. The exfoliation is based on a reductive lithiation/hydration approach, which gives rise to a loss of cooperative magnetism due to the disruption of the spin 1/2 state by electron injection into the layers. The restacked, macroscopic pellets of RuCl3 layers lack symmetry along the stacking direction. After an oxidative treatment, cooperative magnetism similar to the bulk is restored. The oxidized pellets of restacked single layers feature a magnetic transition at TN = 7 K if the field is aligned parallel to the ab-plane, while the magnetic properties differ from bulk α-RuCl3 if the field is aligned perpendicular to the ab-plane. The deliberate introduction of turbostratic disorder to manipulate the magnetic properties of RuCl3 is of interest for research in frustrated magnetism and complex magnetic order as predicted by the Kitaev-Heisenberg model.

14.
ACS Nano ; 18(36): 25118-25127, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39207052

RESUMO

The spin-orbit-assisted Mott insulator α-RuCl3 is proximate to the coveted quantum spin liquid (QSL) predicted by the Kitaev model. In the search for the pure Kitaev QSL, reducing the dimensionality of this frustrated magnet by exfoliation has been proposed as a way to enhance magnetic fluctuations and Kitaev interactions. Here, we perform angle-dependent tunneling magnetoresistance (TMR) measurements on ultrathin α-RuCl3 crystals with various layer numbers to probe their magnetic, electronic, and crystal structures. We observe a giant change in resistance, as large as ∼2500%, when the magnetic field rotates either within or out of the α-RuCl3 plane, a manifestation of the strongly anisotropic spin interactions in this material. In combination with scanning transmission electron microscopy, this tunneling anisotropic magnetoresistance (TAMR) reveals that few-layer α-RuCl3 crystals remain in the high-temperature monoclinic phase at low temperatures. It also shows the presence of a zigzag antiferromagnetic order below the critical temperature TN ≃ 14 K, which is twice the one typically observed in bulk samples with rhombohedral stacking. Our work offers valuable insights into the relation between the stacking order and magnetic properties of this material, which helps lay the groundwork for creating and electrically probing exotic magnetic phases such as QSLs via van der Waals engineering.

15.
J Phys Condens Matter ; 35(12)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36549004

RESUMO

The micaceous black allotrope of ruthenium trichloride is the subject of many recent experimental and theoretical studies. Even so, its structural and magnetic properties remain undecided; monoclinic, trigonal and rhombohedral space groups for the crystal structure have been proposed on the basis of various types of experiments. The magnetic structure is often discussed in the context of the Kitaev state, but inevitably they are inconclusive discussions in the absence of structural and magnetic space groups. Johnsonet alinfer a candidate for the magnetic structure (Cc2/m) from results gathered in an extensive set of experiments on an untwined sample ofα-RuCl3(Johnsonet al2015Phys. Rev.B92235119). The proposed zigzag antiferromagnetic ground state of Ru ions does not respond to bulk magnetic probes, with optical rotation and all forms of dichroism prohibited by symmetry. Experimental techniques exploited by Johnsonet alincluded x-ray and magnetic neutron diffraction. Properties of the candidate magnetic structure not previously explored include polar magnetism that supports Ru Dirac multipoles, e.g. a ruthenium anapole that is also known as a toroidal dipole. In a general case, Dirac dipoles are capable of generating interactions between magnetic ions, as in an electrical Dzyaloshinskii-Moryia interaction (Kaplan and Mahanti 2011Phys. Rev.B83174432; Zhaoet al2021Nat. Mater.20341). Notably, the existence of Dirac quadrupoles in the pseudo-gap phases of cuprate superconductors YBCO and Hg1201 account for observed magnetic Bragg diffraction patterns. Dirac multipoles contribute to the diffraction of both x-rays and neutrons, and a stringent test of the magnetic structure Cc2/m awaits future experiments. From symmetry-informed calculations we show that, the magnetic candidate permits Bragg spots that arise solely from Dirac multipoles. Stringent tests of Cc2/m can also be accomplished by performing resonant x-ray diffraction with signal enhancement from the chlorineK-edge. X-ray absorption spectra published forα-RuCl3possess a significant low-energy feature (Plumbet al2014Phys. Rev.B90041112(R)). Many experimental studies of other Cl-metal compounds concluded that identical features hallmark the chemical bond. Using a monoclinic Cc2/m structure, we predict the contribution to Bragg diffraction at the ClK-edge absorption. Specifically, the variation of intensity of Bragg spots with rotation of the sample about the reflection vector. The two principal topics of our studies, polar magnetism and the chemical bond in the black allotrope of ruthenium trichloride, are brought together in a minimal model of magnetic Ru ions in Cc2/m.

16.
ACS Nano ; 16(7): 11315-11324, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35714054

RESUMO

α-RuCl3 is a layered transition metal halide that possesses a range of exotic magnetic, optical, and electronic properties including fractional excitations indicative of a proximate Kitaev quantum spin liquid (QSL). While previous reports have explored these properties on idealized single crystals or mechanically exfoliated samples, the scalable production of α-RuCl3 nanosheets has not yet been demonstrated. Here, we perform liquid-phase exfoliation (LPE) of α-RuCl3 through an electrochemically assisted approach, which yields ultrathin, electron-doped α-RuCl3 nanosheets that are then assembled into electrically conductive large-area thin films. The crystalline integrity of the α-RuCl3 nanosheets following LPE is confirmed through a wide range of structural and chemical analyses. Moreover, the physical properties of the LPE α-RuCl3 nanosheets are investigated through electrical, optical, and magnetic characterization methods, which reveal a structural phase transition at 230 K that is consistent with the onset of Kitaev paramagnetism in addition to an antiferromagnetic transition at 2.6 K. Intercalated ions from the electrochemical LPE protocol favorably alter the optical response of the α-RuCl3 nanosheets, enabling large-area Mott insulator photodetectors that operate at telecommunications-relevant infrared wavelengths near 1.55 µm. These photodetectors show a linear photocurrent response as a function of incident power, which suggests negligible trap-mediated recombination or photothermal effects, ultimately resulting in a photoresponsivity of ≈2 mA/W.

17.
Nanomaterials (Basel) ; 11(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34835730

RESUMO

The acceleration of parallel high-throughput first-principle calculations in the context of 3D (three dimensional) periodic boundary conditions for low-dimensional systems, and particularly 2D materials, is an important issue for new material design. Where the scalability rapidly deflated due to the use of large void unit cells along with a significant number of atoms, which should mimic layered structures in the vacuum space. In this report, we explored the scalability and performance of the Quantum ESPRESSO package in the hybrid central processing unit - graphics processing unit (CPU-GPU) environment. The study carried out in the comparison to CPU-based systems for simulations of 2D magnets where significant improvement of computational speed was achieved based on the IBM ESSL SMP CUDA library. As an example of physics-related results, we have computed and discussed the ionicity-covalency and related ferro- (FM) and antiferro-magnetic (AFM) exchange competitions computed for some CrX3 compounds. Further, it has been demonstrated how this exchange interplay leads to high-order effects for the magnetism of the 1L-RuCl3 compound.

18.
J Phys Condens Matter ; 33(44)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34371492

RESUMO

This topical review provides an overview over recent thermodynamic, infrared, and THz results on the proximate Kitaev spin-liquid. Quantum-spin liquids are exotic phases characterized by the absence of magnetic ordering even at the lowest temperatures and by the occurrence of fractionalized spin excitations. Among those, Kitaev spin liquids are most fascinating as they belong to the rare class of model systems, that can be solved analytically by decomposing localized spinsS= 1/2 into Majorana fermions. The main aim of this review is to summarize experimental evidence obtained by THz spectroscopy and utilizing heat-capacity experiments, which point to the existence of fractionalized excitations in the spin-liquid state, which in α-RuCl3exists at temperatures just above the onset of magnetic order or at in-plane magnetic fields just beyond the quantum-critical point where antiferromagnetic order becomes suppressed. Thermodynamic and spectroscopic results are compared to theoretical predictions and model calculations. In addition, we document recent progress in elucidating the sub-gap (<1 eV) electronic structure of the 4d5ruthenium electrons to characterize their local electronic configuration. The on-site excitation spectra of thedelectrons below the optical gap can be consistently explained using a spin-orbit coupling constant of ∼170 meV and the concept of multiple spin-orbital excitations. Furthermore, we discuss the phonon spectra of the title compound including rigid-plane shear and compression modes of the single molecular layers. In recent theoretical concepts it has been shown that phonons can couple to Majorana fermions and may play a substantial role in establishing the half-integer thermal quantum Hall effect observed in this material.

19.
Bioresour Technol ; 279: 84-91, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30711756

RESUMO

The production of 5-hydroxymethylfurfural (5-HMF) from cellulose catalyzed by a series of transition metal chlorides (i.e. FeCl3, RuCl3, VCl3, TiCl3, MoCl3 and CrCl3) was studied in biphasic system. RuCl3 was the most efficient catalyst among these transition metal chlorides for 5-HMF production, and resulted in both the highest yield of 83.3% and selectivity of 87.5% in NaCl-aqueous/butanol biphasic system. XRD analysis and FTIR spectroscopy were applied to further characterize the RuCl3 catalyzed cellulose slurries to reveal the catalytic reaction mechanism. Results demonstrated that RuCl3 enhanced the decrystallization and cleavage of COC bonds in cellulose, promoted the subsequent dehydration of glucose into 5-HMF, while suppressed the glucose retro-aldol reaction to byproduct lactic acid. In addition, with the assistance of NaCl-aqueous/butanol biphasic system, 5-HMF further degradation was limited and thusly maintained a desired 5-HMF yield. This proposed approach provides an efficient strategy for one-pot conversion of cellulose into 5-HMF.


Assuntos
Celulose/química , Furaldeído/análogos & derivados , Compostos de Rutênio/química , Catálise , Furaldeído/química , Glucose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA