Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 444(Pt A): 130327, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36434919

RESUMO

The electrochemical chlorination of urea to CO2 and N2 end-products, via active-chlorine-mediated oxidation under nearly neutral conditions, is an effective treatment for medium-concentrated urea-containing wastewater. Herein, we design a novel flow reactor integrated with three-dimensional hierarchically porous Ru/RuO2 architectures anchored on a Ti mesh. The hierarchically macroporous electrode can create sufficient exposure of catalytically active sites and facilitate the microscopic mass transport and diffusion inside the active layer, thereby contributing to the increased removal efficiency of urea-N and ammonia-N. The combined results of electrochemical measurements, UV-visible spectrometry and in situ Raman spectrometry, show that the OCl- species produced by chlorine evolution reaction (CER) are the main active constituents for removing urea-N. Theoretical calculations reveal thLTWAat the Ru/RuO2 possesses a moderate Cl binding strength, lower theoretical overpotentials of CER and a higher conductivity, compared with pure RuO2. On this basis, we assemble a circular flow reactor with the hierarchically porous electrodes in a two-electrode system to obtain an enhanced microfluidic process, which during 9 days of uninterrupted operation, at a high electrolysis current of 500 mA, achieve a total nitrogen removal of 92.6% and an energy consumption of 7.94 kWh kg-1 N, demonstrating the promising application of the novel process.


Assuntos
Amônia , Cloro , Ureia , Porosidade , Halogênios , Cloretos
2.
Chemosphere ; 301: 134728, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35487356

RESUMO

A hierarchically ordered macroporous RuO2 electrode (HOM-RuO2) was fabricated to enhance in situ active chlorine production in an electrochemical system intended for treatment of pharmaceutical active compounds (PhACs). The unique structure of HOM-RuO2 resulted in a decrease of the chlorine evolution potential, a large electro-active area available for in situ conversion of Cl- to active chlorine, and hence improved the active chlorine production by 40%. 5-Fluorouracil (5-FU) was used as a target pollutant to explore the performance of the HOM-RuO2 for PhACs degradation based on the in situ generated active chlorine. The results showed that the reaction rate of active-chlorine-mediated oxidation of 5-FU produced using the HOM-RuO2 was 18.4 times higher than that in the case of hydroxyl radicals (OH)-initiated oxidation using a PbO2 electrode at 30 mA cm-2. The effects of current density and initial solution pH on the 5-FU removal were investigated. The mechanism of 5-FU degradation was proposed taking into accounts both active chlorine production, and change of the speciation of 5-FU caused by pH variations. The dominant degradation products observed for the degradation of 5-FU using the HOM-RuO2 were lactic acid, propanol, acetic acid, urea and other small molecules, but no chlorinated products were detected. These study demonstrates the promise of the HOM-RuO2-based electrochemical systems for the active-chlorine-mediated treatment of recalcitrant pharmaceuticals found in wastewater.


Assuntos
Cloro , Poluentes Químicos da Água , Cloretos , Cloro/química , Eletrodos , Fluoruracila , Oxirredução , Águas Residuárias/química , Poluentes Químicos da Água/análise
3.
Water Environ Res ; 94(1): e1683, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35044018

RESUMO

The presence of reactive dyes in textile wastewater is a serious environmental concern due to their associated mutagenic and carcinogenic effects. The present study aims to analyze the effect of different anodic materials on the decolorization of a real textile wastewater effluent. For this purpose, four different anodic materials-TiO2 -coated platine, TiO2 -coated ruthenium dioxide (RuO2 ) (viz., RuO2 ), titanium dioxide (TiO2 ), and graphite-were connected, respectively, to titanium dioxide (TiO2 ) used as a cathode electrode. Color and cost optimization studies were performed using the response surface methodology and the Box-Behnken experimental design (BBD). According to ANOVA results, the R2 values for Pt/TiO2 , RuO2 /TiO2 , TiO2 /TiO2 , and graphite/TiO2 electrode pairs were found to be 97.4%, 93.8%, 92.44%, and 92.2%, respectively, indicating a good compatibility as it is close to one. The results show that color removal efficiencies at the optimal conditions were 86.3%, 90.8%, 91.5%, and 93.6% for Pt/TiO2 , graphite/TiO2 , TiO2 /TiO2 , and RuO2 /TiO2 , respectively. Furthermore, energy consumption cost at the optimum conditions was also evaluated, and the results were as follows: Pt/TiO2 (0.95 €/m3 ), graphite/TiO2 (0.74 €/m3 ), TiO2 /TiO2 (0.31 €/m3 ), and RuO2 /TiO2 (0.26 €/m3 ). Consequently, this research paper shows that all of the tested anodic materials give satisfactory color removal efficiencies higher than 86%. When energy consumption and color removal are considered together, the use of TiO2 /TiO2 and RuO2 /TiO2 pairs would be preferred. PRACTITIONER POINTS: Anodic contribution was investigated for decolorization of textile wastewater by electrooxidation process. Graphite, TiO2 -coated Pt, TiO2 -coated RuO2 , and TiO2 were used as anode materials. Highest color removal with lowest energy consumption was achieved with TiO2 -coated RuO2 anode material (93.6%).

4.
Chemosphere ; 261: 128201, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33113663

RESUMO

In this work, Ti/SnO2-RuO2 dimensionally stable anode has been successfully fabricated via thermal decomposition method and further used for highly efficient electrocatalytic degradation of alizarin cyanin green (ACG) dye wastewater. The morphology, crystal structure and composition of Ti/SnO2-RuO2 electrode are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence spectroscopy (XRF), respectively. The result of accelerated life test suggests that as-prepared Ti/SnO2-RuO2 anode exhibits excellent electrochemical stability. Some parameters, such as reaction temperature, initial pH, electrode spacing and current density, have been investigated in detail to optimize the degradation condition of ACG. The results show that the decolorization efficiency and chemical oxygen demand removal efficiency of ACG reach up to 80.4% and 51.3% after only 40 min, respectively, under the optimal condition (reaction temperature 25 °C, pH 5, electrode spacing 1.0 cm and current density 3 mA cm-2). Furthermore, the kinetics analysis reveals that the process of electrocatalytic degradation of ACG follows the law of quasi-first-order kinetics. The excellent electrochemical activity demonstrates that the Ti/SnO2-RuO2 electrode presents a favorable application prospect in the electrochemical treatment of anthraquinone dye wastewater.


Assuntos
Antraquinonas/química , Carbocianinas/química , Eletrodos , Eliminação de Resíduos Líquidos/instrumentação , Análise da Demanda Biológica de Oxigênio , Corantes/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Oxirredução , Compostos de Rutênio/química , Espectrometria por Raios X , Temperatura , Compostos de Estanho/química , Titânio/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Difração de Raios X
5.
ACS Appl Mater Interfaces ; 11(50): 47063-47072, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31741373

RESUMO

The thin-film growth conditions in a plasma-enhanced atomic layer deposition for the (3.0-4.5) nm thick HfO2 film were optimized to use the film as the resistive switching element in a neuromorphic circuit. The film was intended to be used as a feasible synapse with analog-type conductance-tuning capability. The 4.5 nm thick HfO2 films on both conventional TiN and a new RuO2 bottom electrode required the electroforming process for them to operate as a feasible resistive switching memory, which was the primary source of the undesirable characteristics as the synapse. Therefore, electroforming-free performance was necessary, which could be accomplished by thinning the HfO2 film down to 3.0 nm. However, the device with only the RuO2 bottom electrode offered the desired functionality without involving too high leakage or shorting problems, which are due to the recovery of the stoichiometric composition of the HfO2 near the RuO2 layer. In conjunction with the Ta top electrode, which provided the necessary oxygen vacancies to the HfO2 layer, and the high functionality of the RuO2 as the scavenger of excessive incorporated oxygen vacancies, which appeared to be inevitable during the repeated switching operation, the Ta/3.0 nm HfO2/RuO2 provided a highly useful synaptic device component in the neuromorphic hardware system.

6.
Chemosphere ; 224: 707-715, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30851522

RESUMO

In this work, dimensionally stable Ti/SnO2-RuO2 electrode is successfully prepared using thermal decomposition method for the electrocatalytic degradation of high-concentration industrial gallic acid (GA) effluent in detail. The surface morphology, crystal structure and element analysis of as-prepared Ti/SnO2-RuO2 electrode are characterized by scanning electron microscopy, X-ray diffraction and X-ray fluorescence spectrometer, respectively. In addition, cyclic voltammetry, polarization curve and accelerated life tests are exploited to investigate the electrocatalytic activity and stability of Ti/SnO2-RuO2 electrode. Orthogonal experiment shows that, among the factors (current density, temperature and initial pH), current density is pivotal parameter influencing the degradation efficiency of industrial GA effluent. COD removal and degradation efficiencies of GA effluent reach up to 76.9% and 80.1% after 6 h, respectively, at the optimal conditions (current density of 10 mA cm-2, pH 6 and 35 °C). The degradation of GA effluent follows pseudo-first-order reaction kinetics. This work provides an in-depth theoretical support and application of electrocatalytic technology to the treatment of high-concentration industrial GA effluent.


Assuntos
Análise da Demanda Biológica de Oxigênio/métodos , Ácido Gálico/química , Compostos de Rutênio/química , Compostos de Estanho/química , Titânio/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Eletrodos , Difração de Raios X
7.
Chemosphere ; 193: 685-694, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29172159

RESUMO

Present study investigates the potential of Ti/RuO2 electrode for degradation and mineralization of Ofloxacin (OFLX) antibiotic from synthetic wastewater by electro-oxidation (EO) method, not reported earlier. Effects of various EO parameters such as applied current (I), initial pH, initial OFLX concentration (C0) and supporting electrolyte concentration on %OFLX removal efficiency and %TOC removal efficiency were systematically studied and reported. Decay kinetics of OFLX by varying C0 and applied I were also studied. Additionally, mineralization current efficiency and specific energy consumption of OFLX mineralization were evaluated. Moreover, mode of oxidation method involved (direct and/or indirect oxidation) was also explored. Major OFLX transformation products during EO were identified using UPLC-Q-TOF-MS, and possible degradation reaction mechanism was proposed. Furthermore, operating cost analysis was performed to check the economic feasibility of the EO process. The optimum pH and current (I) were found to be ≈6.8 (natural pH of OFLX wastewater) and 1 A, respectively. Mineralization current efficiency decreased from 7.8% to 4.9% with increase in I value from 0.25 to 1 A. ≈80% of OFLX removal in 30 min of electrolysis and 46.3% TOC removal in 240 min of electrolysis at I = 1 A were observed. Pseudo-first-order kinetic model best fitted the experimental data showing R2 value ≈ 0.99 for all the Co and applied I studied.


Assuntos
Antibacterianos/análise , Ofloxacino/análise , Poluentes Químicos da Água/análise , Antibacterianos/química , Eletrodos , Eletrólise , Cinética , Modelos Químicos , Ofloxacino/química , Oxirredução , Titânio/análise , Águas Residuárias/análise , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA