Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Virus Genes ; 60(1): 44-52, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185717

RESUMO

Infectious bronchitis virus (IBV) causes considerable economic impacts on global poultry production. Since its emergence in early 1930, IBV continues to evolve and now exists in a wide range of antigenically and genetically distinct variants, that makes the prevention and the control of the disease both complex and challenging. Although IBV has been reported regularly from different corner of India, information about the molecular epidemiology of circulating strain in relation to clinical form of the disease is not available. We have studied the clinico-pathology and confirmed eight distinct field outbreaks of the disease from poultry population of Mizoram, India. The clinical disease in affected birds resulted sever pathological lesions involving respiratory, gastrointestinal, and urinary system together. The complete S1 nucleotide sequences and protein analyses have revealed a distinct variant of genotype I-IBV (GI), designated as GI-24 circulating in India. The S1 protein of the field strains displayed unique additional eighteen amino acids at C terminal end when compared with M41strain. Comparison of the S1 protein among all the 27 lineages of GI revealed five mutations that are exclusive to only the Indian strains. All the field strains have also possessed the amino acid mutations at highly variable region 2 (HVR2) of S1 receptor-binding domain (RBD) that are considered characteristic of nephropathogenic strains. The circulating GI-24 strains displayed potency for a wide range of tropism from respiratory epithelium to GIT and urinary system. This study provides insight on recently emerging IBV outbreaks in NER, India, which might be causing huge economic losses to the poultry farmers in the region.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Galinhas , Vírus da Bronquite Infecciosa/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/prevenção & controle , Aves Domésticas , Genótipo , Surtos de Doenças/veterinária , Filogenia
2.
BMC Vet Res ; 20(1): 336, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080763

RESUMO

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that causes severe diarrhea and death in neonatal piglets, which has brought huge economic losses to the pork industry worldwide since its first discovery in the early 1970s in Europe. Passive immunization with neutralizing antibodies against PEDV is an effective prevention measure. To date, there are no effective therapeutic drugs to treat the PEDV infection. RESULTS: We conducted a screening of specific nanobodies against the S1 protein from a phage display library obtained from immunized alpacas. Through competitive binding to antigenic epitopes, we selected instead of chose nanobodies with high affinity and constructed a multivalent tandem. These nanobodies were shown to inhibit PEDV infectivity by the neutralization assay. The antiviral capacity of nanobody was found to display a dose-dependent pattern, as demonstrated by IFA, TCID50, and qRT-PCR analyses. Notably, biparatopic nanobody SF-B exhibited superior antiviral activity. Nanobodies exhibited low cytotoxicity and high stability even under harsh temperature and pH conditions, demonstrating their potential practical applicability to animals. CONCLUSIONS: Nanobodies exhibit remarkable biological properties and antiviral effects, rendering them a promising candidate for the development of anti-PEDV drugs.


Assuntos
Anticorpos Neutralizantes , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Anticorpos de Domínio Único , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Camelídeos Americanos/imunologia , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/imunologia , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/farmacologia , Glicoproteína da Espícula de Coronavírus/imunologia , Suínos , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Células Vero
3.
BMC Vet Res ; 20(1): 239, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831363

RESUMO

The porcine epidemic diarrhea virus (PEDV) infection inflicted substantial economic losses upon the global pig-breeding industry. This pathogen can infect all pigs and poses a particularly high fatality risk for suckling piglets. The S1 subunit of spike protein is a crucial target protein for inducing the particularly neutralizing antibodies that can intercept the virus-host interaction and neutralize virus infectivity. In the present study, the HEK293F eukaryotic expression system was successfully utilized to express and produce recombinant S1 protein. Through quantitative analysis, five monoclonal antibodies (mAbs) specifically targeting the recombinant S1 protein of PEDV were developed and subsequently evaluated using enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and flow cytometry assay (FCA). The results indicate that all five mAbs belong to the IgG1 isotype, and their half-maximal effective concentration (EC50) values measured at 84.77, 7.42, 0.89, 14.64, and 7.86 pM. All these five mAbs can be utilized in ELISA, FCA, and IFA for the detection of PEDV infection. MAb 5-F9 exhibits the highest sensitivity to detect as low as 0.3125 ng/mL of recombinant PEDV-S1 protein in ELISA, while only 0.096 ng/mL of mAb 5-F9 is required to detect PEDV in FCA. The results from antigen epitope analysis indicated that mAb 8-G2 is the sole antibody capable of recognizing linear epitopes. In conclusion, this study has yielded a highly immunogenic S1 protein and five high-affinity mAbs specifically targeting the S1 protein. These findings have significant implications for early detection of PEDV infection and provide a solid foundation for further investigation into studying virus-host interactions.


Assuntos
Anticorpos Monoclonais , Infecções por Coronavirus , Ensaio de Imunoadsorção Enzimática , Vírus da Diarreia Epidêmica Suína , Glicoproteína da Espícula de Coronavírus , Vírus da Diarreia Epidêmica Suína/imunologia , Anticorpos Monoclonais/imunologia , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Suínos , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Ensaio de Imunoadsorção Enzimática/veterinária , Anticorpos Antivirais/imunologia , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Células HEK293 , Humanos , Proteínas Recombinantes/imunologia , Camundongos Endogâmicos BALB C , Camundongos , Técnica Indireta de Fluorescência para Anticorpo/veterinária
4.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892216

RESUMO

The escalating threat of multidrug-resistant pathogens necessitates innovative approaches to combat infectious diseases. In this study, we examined peptides R23FS*, V31KS*, and R44KS*, which were engineered to include an amyloidogenic fragment sourced from the S1 protein of S. aureus, along with one or two cell-penetrating peptide (CPP) components. We assessed the antimicrobial efficacy of these peptides in a liquid medium against various strains of both Gram-positive bacteria, including S. aureus (209P and 129B strains), MRSA (SA 180 and ATCC 43300 strains), and B. cereus (strain IP 5832), and Gram-negative bacteria such as P. aeruginosa (ATCC 28753 and 2943 strains) and E. coli (MG1655 and K12 strains). Peptides R23FS*, V31KS*, and R44KS* exhibited antimicrobial activity comparable to gentamicin and meropenem against all tested bacteria at concentrations ranging from 24 to 48 µM. The peptides showed a stronger antimicrobial effect against B. cereus. Notably, peptide R44KS* displayed high efficacy compared to peptides R23FS* and V31KS*, particularly evident at lower concentrations, resulting in significant inhibition of bacterial growth. Furthermore, modified peptides V31KS* and R44KS* demonstrated enhanced inhibitory effects on bacterial growth across different strains compared to their unmodified counterparts V31KS and R44KS. These results highlight the potential of integrating cell-penetrating peptides, amyloidogenic fragments, and amino acid residue modifications to advance the innovation in the field of antimicrobial peptides, thereby increasing their effectiveness against a broad spectrum of pathogens.


Assuntos
Peptídeos Antimicrobianos , Peptídeos Penetradores de Células , Testes de Sensibilidade Microbiana , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/química , Aminoácidos/química , Desenho de Fármacos , Proteínas Amiloidogênicas/química
5.
Oral Dis ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37466124

RESUMO

OBJECTIVES: ACE2, known as a host receptor involved with SARS-CoV-2 infection, binds to viral spike proteins for host cell entry. However, details regarding its induction and function in oral mucosal cells remain unknown. MATERIALS AND METHODS: We examined ACE2 expression and its induction by transfected mimic nucleotides and pro-inflammatory cytokines in oral keratinocytes (RT7) and fibroblasts (GT1). Subsequently, the effects of viral spike S1 protein via ACE2 on CXCL10 expression induced by pro-inflammatory cytokines in both cells were examined. RESULTS: ACE2 was constitutively expressed in RT7 and GT1. Transfected Poly(I:C) and Poly(dA:dT) increased ACE2 expression in those cells, while knockdown of RIG-I decreased ACE2 expression induced by those transfected ds nucleotides. IFN-γ and TNF-α enhanced transfected ds nucleotides-induced ACE2 expression in RT7 but not GT1. S1 protein alone did not affect CXCL10 expression in either cell type, whereas it enhanced IFN-ß-induced CXCL10 in both, while immune responses of IFN-γ- and TNF-α-induced CXCL10 enhanced by S1 protein were different between RT7 and GT1. Finally, knockdown of ACE2 decreased cytokines and S1 protein mediated-CXCL10 levels in both cells. CONCLUSIONS: ACE2 in oral mucosal cells may contribute to development of infection and inflammation in cooperation with pro-inflammatory cytokines following SARS-CoV-2 invasion.

6.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835408

RESUMO

Porcine epidemic diarrhea (PED) is an acute and severe atrophic enteritis caused by porcine epidemic diarrhea virus (PEDV) that infects pigs and makes huge economic losses to the global swine industry. Previously, researchers have believed that porcine aminopeptidase-N (pAPN) was the primary receptor for PEDV, but it has been found that PEDV can infect pAPN knockout pigs. Currently, the functional receptor for PEDV remains unspecified. In the present study, we performed virus overlay protein binding assay (VOPBA), found that ATP1A1 was the highest scoring protein in the mass spectrometry results, and confirmed that the CT structural domain of ATP1A1 interacts with PEDV S1. First, we investigated the effect of ATP1A1 on PEDV replication. Inhibition of hosts ATP1A1 protein expression using small interfering RNA (siRNAs) significantly reduced the cells susceptibility to PEDV. The ATP1A1-specific inhibitors Ouabain (a cardiac steroid) and PST2238 (a digitalis toxin derivative), which specifically bind ATP1A1, could block the ATP1A1 protein internalization and degradation, and consequently reduce the infection rate of host cells by PEDV significantly. Additionally, as expected, overexpression of ATP1A1 notably enhanced PEDV infection. Next, we observed that PEDV infection of target cells resulted in upregulation of ATP1A1 at the mRNA and protein levels. Furthermore, we found that the host protein ATP1A1 was involved in PEDV attachment and co-localized with PEDV S1 protein in the early stage of infection. In addition, pretreatment of IPEC-J2 and Vero-E6 cells with ATP1A1 mAb significantly reduced PEDV attachment. Our observations provided a perspective on identifying key factors in PEDV infection, and may provide valuable targets for PEDV infection, PEDV functional receptor, related pathogenesis, and the development of new antiviral drugs.


Assuntos
Infecções por Coronavirus , Interações Hospedeiro-Patógeno , Vírus da Diarreia Epidêmica Suína , ATPase Trocadora de Sódio-Potássio , Doenças dos Suínos , Animais , Antígenos CD13/metabolismo , Chlorocebus aethiops , Vírus da Diarreia Epidêmica Suína/fisiologia , Receptores Virais/metabolismo , RNA de Cadeia Dupla , RNA Interferente Pequeno , Suínos , Doenças dos Suínos/metabolismo , Células Vero , Ligação Viral , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , ATPase Trocadora de Sódio-Potássio/metabolismo
7.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069046

RESUMO

Combining antimicrobial peptides (AMPs) with cell-penetrating peptides (CPPs) has shown promise in boosting antimicrobial potency, especially against Gram-negative bacteria. We examined the CPP-AMP interaction with distinct bacterial types based on cell wall differences. Our investigation focused on AMPs incorporating penetratin CPP and dihybrid peptides containing both cell-penetrating TAT protein fragments from the human immunodeficiency virus and Antennapedia peptide (Antp). Assessment of the peptides TAT-AMP, AMP-Antp, and TAT-AMP-Antp revealed their potential against Gram-positive strains (Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), and Bacillus cereus). Peptides TAT-AMP and AMP-Antp using an amyloidogenic AMP from S1 ribosomal protein Thermus thermophilus, at concentrations ranging from 3 to 12 µM, exhibited enhanced antimicrobial activity against B. cereus. TAT-AMP and TAT-AMP-Antp, using an amyloidogenic AMP from the S1 ribosomal protein Pseudomonas aeruginosa, at a concentration of 12 µM, demonstrated potent antimicrobial activity against S. aureus and MRSA. Notably, the TAT-AMP, at a concentration of 12 µM, effectively inhibited Escherichia coli (E. coli) growth and displayed antimicrobial effects similar to gentamicin after 15 h of incubation. Peptide characteristics determined antimicrobial activity against diverse strains. The study highlights the intricate relationship between peptide properties and antimicrobial potential. Mechanisms of AMP action are closely tied to bacterial cell wall attributes. Peptides with the TAT fragment exhibited enhanced antimicrobial activity against S. aureus, MRSA, and P. aeruginosa. Peptides containing only the Antp fragment displayed lower activity. None of the investigated peptides demonstrated cytotoxic or cytostatic effects on either BT-474 cells or human skin fibroblasts. In conclusion, CPP-AMPs offer promise against various bacterial strains, offering insights for targeted antimicrobial development.


Assuntos
Anti-Infecciosos , Peptídeos Penetradores de Células , Staphylococcus aureus Resistente à Meticilina , Humanos , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química , Staphylococcus aureus , Escherichia coli , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas Ribossômicas/farmacologia , Testes de Sensibilidade Microbiana
8.
Sens Actuators B Chem ; 351: 130897, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34658530

RESUMO

The rapid and accurate diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the early stage of virus infection can effectively prevent the spread of the virus and control the epidemic. Here, a colorimetric and fluorescent dual-functional lateral flow immunoassay (LFIA) biosensor was developed for the rapid and sensitive detection of spike 1 (S1) protein of SARS-CoV-2. A novel dual-functional immune label was fabricated by coating a single-layer shell formed by mixing 20 nm Au nanoparticles (Au NPs) and quantum dots (QDs) on SiO2 core to produce strong colorimetric and fluorescence signals and ensure good monodispersity and high stability. The colorimetric signal was used for visual detection and rapid screening of suspected SARS-CoV-2 infection on sites. The fluorescence signal was utilized for sensitive and quantitative detection of virus infection at the early stage. The detection limits of detecting S1 protein via colorimetric and fluorescence functions of the biosensor were 1 and 0.033 ng/mL, respectively. Furthermore, we evaluated the performance of the biosensor for analyzing real samples. The novel biosensor developed herein had good repeatability, specificity and accuracy, which showed great potential as a tool for rapidly detecting SARS-CoV-2.

9.
Nano Lett ; 21(19): 7897-7904, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34581586

RESUMO

The fast spread of SARS-CoV-2 has severely threatened the public health. Establishing a sensitive method for SARS-CoV-2 detection is of great significance to contain the worldwide pandemic. Here, we develop a graphene field-effect transistor (g-FET) biosensor and realize ultrasensitive SARS-CoV-2 antibody detection with a limit of detection (LoD) down to 10-18 M (equivalent to 10-16 g mL-1) level. The g-FETs are modified with spike S1 proteins, and the SARS-CoV-2 antibody biorecognition events occur in the vicinity of the graphene surface, yielding an LoD of ∼150 antibodies in 100 µL full serum, which is the lowest LoD value of antibody detection. The diagnoses time is down to 2 min for detecting clinical serum samples. As such, the g-FETs leverage rapid and precise SARS-CoV-2 screening and also hold great promise in prevention and control of other epidemic outbreaks in the future.


Assuntos
Técnicas Biossensoriais , COVID-19 , Grafite , Humanos , Limite de Detecção , SARS-CoV-2
10.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008951

RESUMO

The need to develop new antimicrobial peptides is due to the high resistance of pathogenic bacteria to traditional antibiotics now and in the future. The creation of synthetic peptide constructs is a common and successful approach to the development of new antimicrobial peptides. In this work, we use a simple, flexible, and scalable technique to create hybrid antimicrobial peptides containing amyloidogenic regions of the ribosomal S1 protein from Staphylococcus aureus. While the cell-penetrating peptide allows the peptide to enter the bacterial cell, the amyloidogenic site provides an antimicrobial effect by coaggregating with functional bacterial proteins. We have demonstrated the antimicrobial effects of the R23F, R23DI, and R23EI hybrid peptides against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa, Escherichia coli, and Bacillus cereus. R23F, R23DI, and R23EI can be used as antimicrobial peptides against Gram-positive and Gram-negative bacteria resistant to traditional antibiotics.


Assuntos
Peptídeos Antimicrobianos/farmacologia , Proteínas de Bactérias/química , Proteínas Ribossômicas/química , Staphylococcus aureus , Sequência de Aminoácidos , Proteínas Amiloidogênicas/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/síntese química , Peptídeos Antimicrobianos/química , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Relação Dose-Resposta a Droga , Fibroblastos , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Staphylococcus aureus/efeitos dos fármacos
11.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575940

RESUMO

The development and testing of new antimicrobial peptides (AMPs) represent an important milestone toward the development of new antimicrobial drugs that can inhibit the growth of pathogens and multidrug-resistant microorganisms such as Pseudomonas aeruginosa, Gram-negative bacteria. Most AMPs achieve these goals through mechanisms that disrupt the normal permeability of the cell membrane, which ultimately leads to the death of the pathogenic cell. Here, we developed a unique combination of a membrane penetrating peptide and peptides prone to amyloidogenesis to create hybrid peptide: "cell penetrating peptide + linker + amyloidogenic peptide". We evaluated the antimicrobial effects of two peptides that were developed from sequences with different propensities for amyloid formation. Among the two hybrid peptides, one was found with antibacterial activity comparable to antibiotic gentamicin sulfate. Our peptides showed no toxicity to eukaryotic cells. In addition, we evaluated the effect on the antimicrobial properties of amino acid substitutions in the non-amyloidogenic region of peptides. We compared the results with data on the predicted secondary structure, hydrophobicity, and antimicrobial properties of the original and modified peptides. In conclusion, our study demonstrates the promise of hybrid peptides based on amyloidogenic regions of the ribosomal S1 protein for the development of new antimicrobial drugs against P. aeruginosa.


Assuntos
Proteínas Amiloidogênicas/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas Ribossômicas/genética , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/farmacologia , Proteínas Amiloidogênicas/ultraestrutura , Antibacterianos/efeitos adversos , Humanos , Testes de Sensibilidade Microbiana , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/patogenicidade , Proteínas Ribossômicas/farmacologia , Proteínas Ribossômicas/ultraestrutura
13.
Virol J ; 15(1): 170, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404647

RESUMO

BACKGROUND: Porcine Epidemic Diarrhea (PED) is an acute and highly contagious enteric disease caused by PED virus (PEDV), characterized by vomitting, watery diarrhea and fatal dehydration with high mortality in sucking piglets of one week of age. Although PEDV induced cell apoptosis has been established in vitro and in vivo, the functional protein that contributes to this event remains unclear. METHODS: The activation or cleavage of main apoptosis-associated molecular such as AIFM1, caspase-3, caspase-8, caspase-9 and PARP in PEDV infected host cells were analyzed by western blotting. The nuclear change of infected cell was monitored by confocal immunofluorescence assay. The overexpressing plasmids of 16 non-structural proteins (Nsp1-16) and 6 structural proteins (M, N, E, ORF3, S1 and S2) were constructed by cloning. Cell apoptosis induced by PEDV or overexpression non-structural or structural proteins was measured by the flow cytometry assay. RESULTS: PEDV could infect various host cells including Vero, Vero-E6 and Marc-145 and cause obvious cytopathic effects, including roundup, cell fusion, cell membrane vacuolation, syncytium formation and cause apparent apoptosis. In infected cells, PEDV-induced apoptosis is accompanied by nuclear concentration and fragmentation as a result of caspase-3 and caspase-8 activation and AIFM1 and PARP cleavage. Overexpression of S1 Spike protein of PEDV SM98 strain effectively induced host cell apoptosis, while the expression of the other non-structure proteins (Nsp1-16) and structural proteins (M, N, E, S2 and ORF3) has no or less effect on cell apoptosis. Similarly, expression of S1 protein from wild-type strain BJ2011 or cell-adapted strain CV777, also induce apoptosis in transfected cells. Finally, we demonstrated that the S1 proteins from various coronavirus family members such as TGEV, IBV, CCoV, SARS and MERS could also induce Vero-E6 cells apoptosis. CONCLUSION: S1 Spike protein is one of the most critical functional proteins that contribute to cell apoptosis. Expression of S1 proteins of the coronavirus tested in this study could all induce cell apoptosis suggesting S1 maybe is an effective inducer in Coronavirus-induced cell apoptosis and targeting S1 protein expression probably is a promising strategy to inhibit coronavirus infection and thus mediated apoptosis on host cells.


Assuntos
Apoptose , Vírus da Diarreia Epidêmica Suína/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Fator de Indução de Apoptose/metabolismo , Caspases/metabolismo , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Efeito Citopatogênico Viral , Poli(ADP-Ribose) Polimerases/metabolismo , Vírus da Diarreia Epidêmica Suína/genética , Glicoproteína da Espícula de Coronavírus/genética , Suínos , Doenças dos Suínos/virologia , Células Vero
14.
Virus Genes ; 51(2): 217-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26292945

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a pathogen of swine that causes severe diarrhea and dehydration resulting in substantial morbidity and mortality in newborn piglets. Phage display is a technique with wide application, in particular, the identification of key antigen epitopes for the development of therapeutic and diagnostic reagents and vaccines. To identify antigen epitopes with specificity for PEDV, a monoclonal antibody (MAb-5E12) against the immunodominant region of the PEDV Spike protein (S1) was used as the target for biopanning a 12-mer phage display, random peptide library. After multiple rounds of biopanning and stringent washing, three phage-displayed peptides, designated L, W and H, were identified that recognize MAb-5E12. Sequence analysis showed that the one or more of the peptides exhibited partial sequence similarity to the native S1 sequence 'MQYVYTPTYYML' (designated peptide M) at position 201-212. In combination with software analysis for the prediction of B cell epitopes, aa 201-212 exhibited characteristics of a linear epitope on the PEDV S1 protein. In contrast to peptide M, a consensus motif 'PxxY' was identified on both peptides L and W, and on the S1 protein, but not on peptide H. Peptide M and the MAb-5E12-recognizing peptides L and W significantly inhibited the adsorption of PEDV on the cell surface as monitored through plaque-reduction assays. Furthermore, data from real-time PCR and indirect immunofluorescence assays were consistent with the ability of peptides M, L and W to block viral protein expression and thereby function as antiviral agents for PEDV.


Assuntos
Epitopos/imunologia , Vírus da Diarreia Epidêmica Suína/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Técnica Indireta de Fluorescência para Anticorpo , Testes de Neutralização , Biblioteca de Peptídeos , Vírus da Diarreia Epidêmica Suína/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Células Vero , Ensaio de Placa Viral , Ligação Viral/efeitos dos fármacos
15.
Circulation ; 128(19): 2132-44, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24008870

RESUMO

BACKGROUND: The mechanistic target of rapamycin (mTOR) comprises 2 structurally distinct multiprotein complexes, mTOR complexes 1 and 2 (mTORC1 and mTORC2). Deregulation of mTOR signaling occurs during and contributes to the severity of myocardial damage from ischemic heart disease. However, the relative roles of mTORC1 versus mTORC2 in the pathogenesis of ischemic damage are unknown. METHODS AND RESULTS: Combined pharmacological and molecular approaches were used to alter the balance of mTORC1 and mTORC2 signaling in cultured cardiac myocytes and in mouse hearts subjected to conditions that mimic ischemic heart disease. The importance of mTOR signaling in cardiac protection was demonstrated by pharmacological inhibition of both mTORC1 and mTORC2 with Torin1, which led to increased cardiomyocyte apoptosis and tissue damage after myocardial infarction. Predominant mTORC1 signaling mediated by suppression of mTORC2 with Rictor similarly increased cardiomyocyte apoptosis and tissue damage after myocardial infarction. In comparison, preferentially shifting toward mTORC2 signaling by inhibition of mTORC1 with PRAS40 led to decreased cardiomyocyte apoptosis and tissue damage after myocardial infarction. CONCLUSIONS: These results suggest that selectively increasing mTORC2 while concurrently inhibiting mTORC1 signaling is a novel therapeutic approach for the treatment of ischemic heart disease.


Assuntos
Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Infarto do Miocárdio/metabolismo , Isquemia Miocárdica/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose/fisiologia , Proteínas de Transporte/metabolismo , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos/genética , Infarto do Miocárdio/patologia , Isquemia Miocárdica/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Naftiridinas/farmacologia , Cultura Primária de Células , Proteína Companheira de mTOR Insensível à Rapamicina , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
16.
Vet Microbiol ; 290: 110003, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262114

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a highly infectious pathogen with a high mortality rate, which poses a serious threat to newborn piglets. A rapid, safe and effective vaccine is necessary for protecting pigs from PED infection. Nanoparticles have become molecular scaffolds for displaying soluble antigens due to their unique physical and chemical properties. Here, a vaccine candidate was based on the display of PEDV S1 protein on a mi3 nanoparticle platform using SpyTag/SpyCatcher technology. The size, zeta potential and microstructure of the S1-mi3 NPs were investigated, and their effects on the uptake of antigen-presenting cells (APCs) and maturation of dendritic cells (DCs) were analyzed. Mice were immunized via muscular and intranasal administrations, and the levels of humoral, cellular and mucosal immune responses were analyzed. As a result, S1 proteins were surface-displayed on NPs successfully, which self-assembled into nanoparticles composed of 60 subunits and showed superior safety and stability. In addition, mi3 NPs promoted antigen internalization and dendritic cell (DCs) maturation. In the mouse model, S1-mi3 NPs significantly increased the PEDV-specific antibody including serum IgG, secretory IgA (SIgA) and neutralizing antibodies (NAb). Furthermore, S1-mi3 NPs elicited more CD3+CD4+ and CD3+CD8+ T cell and cellular immune-related cytokines (IFN-γ and IL-4) compared to monomeric S1. In particular, it can induce an effective germinal center-specific (GC) B cell response, which is closely related to the production of neutralizing antibodies. Overall, S1-mi3 NPs are a promising subunit vaccine candidate against PEDV, and this self-assembly NPs also provide an attractive platform for improving vaccine efficacy against emerging pathogens.


Assuntos
Infecções por Coronavirus , Nanopartículas , Vírus da Diarreia Epidêmica Suína , Doenças dos Roedores , Doenças dos Suínos , Vacinas Virais , Animais , Suínos , Camundongos , Imunidade nas Mucosas , Anticorpos Antivirais , Anticorpos Neutralizantes , Infecções por Coronavirus/veterinária
17.
Front Cell Infect Microbiol ; 14: 1367975, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736750

RESUMO

The endemic outbreak of SADS-CoV has resulted in economic losses and potentially threatened the safety of China's pig industry. The molecular epidemiology of SADS-CoV in pig herds has been investigated in many provinces in China. However, there are no data over a long-time span, and there is a lack of extensive serological surveys to assess the prevalence of SADS-CoV in Chinese swine herds since the discovery of SADS-CoV. In this study, an indirect anti-SADS-CoV IgG enzyme-linked immunosorbent assay (ELISA) based on the SADS-CoV S1 protein was established to investigate the seroprevalence of SADS-CoV in Chinese swine herds. Cross-reactivity assays, indirect immunofluorescence, and western blotting assays showed that the developed ELISA had excellent SADS-CoV specificity. In total, 12,978 pig serum samples from 29 provinces/municipalities/autonomous regions in China were tested from 2022 to 2023. The results showed that the general seroprevalence of SADS-CoV in China was 59.97%, with seroprevalence ranging from 16.7% to 77.12% in different provinces and from 42.61% to 68.45% in different months. SADS-CoV is widely prevalent in China, and its seroprevalence was higher in Northeast China, North China, and Central China than in other regions. Among the four seasons, the prevalence of SADS-CoV was the highest in spring and the lowest in autumn. The results of this study provide the general seroprevalence profile of SADS-CoV in China, facilitating the understanding of the prevalence of SADS-CoV in pigs. More importantly, this study is beneficial in formulating preventive and control measures for SADS-CoV and may provide directions for vaccine development.


Assuntos
Anticorpos Antivirais , Infecções por Coronavirus , Ensaio de Imunoadsorção Enzimática , Doenças dos Suínos , Animais , China/epidemiologia , Estudos Soroepidemiológicos , Suínos , Ensaio de Imunoadsorção Enzimática/métodos , Anticorpos Antivirais/sangue , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/diagnóstico , Imunoglobulina G/sangue , Alphacoronavirus/imunologia , Alphacoronavirus/genética , Reações Cruzadas , Sensibilidade e Especificidade
18.
Artigo em Inglês | MEDLINE | ID: mdl-39146978

RESUMO

Vaccines targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been pivotal in curtailing the spread of infection. Health care workers, as frontline responders, were among the first to receive vaccination to mitigate coronavirus disease in 2019 (COVID-19) transmission. This study aimed to assess the humoral response elicited by mRNA vaccines, specifically measuring antibodies against the spike S1 protein, a marker of immune response. A cohort of 649 health care workers received three doses of mRNA vaccine, with antibody levels evaluated before and after each dose within a 2- to 3-week interval. Participants were stratified into groups based on prior exposure to the virus: those without prior contact (440 individuals) and those with a history of infection (209 individuals). Among the latter, cases of SARS-CoV-2 infection ranged from asymptomatic (92 individuals) to mild symptomatic (117 individuals). Participants with a history of infection exhibited elevated levels of IgG antibodies against the S1 protein prior to vaccination. Notably, both immunoglobulin IgA class (IgA) and immunoglobulin IgG class (IgG) antibody responses increased significantly post-vaccination, peaking after the second dose for IgG and after the third dose for IgA. Interestingly, the immune response to the vaccine did not vary significantly based on the symptomatic or asymptomatic nature of prior infection. Furthermore, the study findings indicate that completion of the vaccination regimen led to sustained antibody production lasting between 6 months and 9 months. This study underscores the robust and enduring humoral response elicited by mRNA vaccines, particularly among health care workers, irrespective of prior SARS-CoV-2 exposure.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Pessoal de Saúde , Imunidade Humoral , Imunoglobulina G , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação , Humanos , COVID-19/imunologia , COVID-19/prevenção & controle , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , Masculino , Glicoproteína da Espícula de Coronavírus/imunologia , Feminino , Pessoa de Meia-Idade , Adulto , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Vacinas de mRNA , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Formação de Anticorpos/imunologia
19.
Biomolecules ; 14(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275762

RESUMO

Infectious bronchitis (IB) is a highly infectious viral disease of chickens which causes significant economic losses in the poultry industry worldwide. An effective vaccine against IB is urgently needed to provide both biosafety and high-efficiency immune protection. In this study, the S1 protein of the infectious bronchitis virus was delivered by a recombinant attenuated Salmonella typhimurium vector to form the vaccine candidate χ11246(pYA4545-S1). S. typhimurium χ11246 carried a sifA- mutation with regulated delayed systems, striking a balance between host safety and immunogenicity. Here, we demonstrated that S1 protein is highly expressed in HD11 cells. Immunization with χ11246(pYA4545-S1) induced the production of antibody and cytokine, leading to an effective immune response against IB. Oral immunization with χ11246(pYA4545-S1) provided 72%, 56%, and 56% protection in the lacrimal gland, trachea, and cloaca against infectious bronchitis virus infection, respectively. Furthermore, it significantly reduced histopathological lesions in chickens. Together, this study provides a new idea for the prevention of IB.


Assuntos
Vírus da Bronquite Infecciosa , Vacinas Virais , Animais , Galinhas , Vírus da Bronquite Infecciosa/genética , Salmonella typhimurium/genética , Imunização
20.
Int Immunopharmacol ; 129: 111569, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340419

RESUMO

The COVID-19 pandemic has underscored the pressing need for safe and effective booster vaccines, particularly in considering the emergence of new SARS-CoV-2 variants and addressing vaccine distribution inequalities. Dissolving microneedle array patches (MAP) offer a promising delivery method, enhancing immunogenicity and improving accessibility through the skin's immune potential. In this study, we evaluated a microneedle array patch-based S1 subunit protein COVID-19 vaccine candidate, which comprised a bivalent formulation targeting the Wuhan and Beta variant alongside a monovalent Delta variant spike proteins in a murine model. Notably, the second boost of homologous bivalent MAP-S1(WU + Beta) induced a 15.7-fold increase in IgG endpoint titer, while the third boost of heterologous MAP-S1RS09Delta yielded a more modest 1.6-fold increase. Importantly, this study demonstrated that the administration of four doses of the MAP vaccine induced robust and long-lasting immune responses, persisting for at least 80 weeks. These immune responses encompassed various IgG isotypes and remained statistically significant for one year. Furthermore, neutralizing antibodies against multiple SARS-CoV-2 variants were generated, with comparable responses observed against the Omicron variant. Overall, these findings emphasize the potential of MAP-based vaccines as a promising strategy to combat the evolving landscape of COVID-19 and to deliver a safe and effective booster vaccine worldwide.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , Subunidades Proteicas , SARS-CoV-2 , Vacinas de Subunidades Proteicas , Pandemias , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Imunoglobulina G , Anticorpos Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA