Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Cell Sci ; 137(2)2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277157

RESUMO

S100A11 is a small Ca2+-activatable protein known to localize along stress fibers (SFs). Analyzing S100A11 localization in HeLa and U2OS cells further revealed S100A11 enrichment at focal adhesions (FAs). Strikingly, S100A11 levels at FAs increased sharply, yet transiently, just before FA disassembly. Elevating intracellular Ca2+ levels with ionomycin stimulated both S100A11 recruitment and subsequent FA disassembly. However, pre-incubation with the non-muscle myosin II (NMII) inhibitor blebbistatin or with an inhibitor of the stretch-activatable Ca2+ channel Piezo1 suppressed S100A11 recruitment, implicating S100A11 in an actomyosin-driven FA recruitment mechanism involving Piezo1-dependent Ca2+ influx. Applying external forces on peripheral FAs likewise recruited S100A11 to FAs even if NMII activity was inhibited, corroborating the mechanosensitive recruitment mechanism of S100A11. However, extracellular Ca2+ and Piezo1 function were indispensable, indicating that NMII contraction forces act upstream of Piezo1-mediated Ca2+ influx, in turn leading to S100A11 activation and FA recruitment. S100A11-knockout cells display enlarged FAs and had delayed FA disassembly during cell membrane retraction, consistent with impaired FA turnover in these cells. Our results thus demonstrate a novel function for S100A11 in promoting actomyosin contractility-driven FA disassembly.


Assuntos
Actomiosina , Adesões Focais , Humanos , Adesões Focais/metabolismo , Actomiosina/metabolismo , Cálcio/metabolismo , Proteínas do Citoesqueleto/metabolismo , Miosina Tipo II/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo
2.
Allergy ; 78(6): 1459-1472, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36104951

RESUMO

BACKGROUND: Dysregulation of circRNAs is associated with a variety of human diseases; however, its role in childhood asthma is undefined. METHODS: The differential expression profiles of circRNAs were analyzed by microarray. The effects and mechanisms by which circRNAs influence macrophage activation were detected by quantitative real-time PCR, RNA immunoprecipitation assay, and chromatin immunoprecipitation assay, among others. The roles of circRNA and its host gene in asthma were tested in a cockroach allergen extract (CRE)-induced murine asthma model. RESULTS: We identified 372 circRNAs that were differentially expressed in PBMCs of children with asthma as compared with healthy controls. A circRNA with unknown function, circS100A11, was dominantly expressed in monocytes and significantly upregulated in children with asthma. circS100A11 facilitated M2a macrophage activation by enhancing translation of its host gene, S100A11, and exacerbated lung inflammation in a CRE-induced murine asthma model with macrophage-specific overexpression of circS100A11. Mechanistically, circS100A11 promoted S100A11 translation by competitively binding to CAPRIN1 to decrease the suppression of CAPRIN1 upon S100A11 translation. Then, S100A11 liberated SP3 from nucleolin and promoted SP3 binding to the STAT6 promoter to enhance STAT6 expression and M2a macrophage activation. Macrophage-specific knockdown of S100A11 could alleviate lung inflammation in a CRE-induced murine asthma model in vivo. CONCLUSIONS: circS100A11 and S100A11 promote M2a macrophage activation and lung inflammation in asthma model and may serve as potential therapeutic and diagnostic targets in children with asthma.


Assuntos
Asma , Pneumonia , Humanos , Criança , Camundongos , Animais , RNA Circular , Ativação de Macrófagos , RNA/genética , Asma/genética , Proteínas de Ciclo Celular
3.
BMC Cancer ; 23(1): 1015, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864150

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most aggressive malignant primary brain tumor. The transfer RNA-derived fragments (tRFs) are a new group of small noncoding RNAs, which are dysregulated in many cancers. Until now, the expression and function of tRFs in glioma remain unknown. METHODS: The expression profiles of tRF subtypes were analyzed using the Cancer Genome Atlas (TCGA)-low-grade gliomas (LGG)/GBM dataset. The target genes of tRFs were subjected to Gene Ontology, Kyoto Encyclopedia and Gene set enrichment analysis of Genes and Genomes pathway enrichment analysis. The protein-protein interaction enrichment analysis was performed by STRING. QRT-PCR was performed to detect the expressions of tRFs in human glioma cell lines U87, U373, U251, and human astrocyte cell line SVG p12. Western blot assay was used to detect to the expression of S100A11. The interaction between tRF-19-R118LOJX and S100A11 mRNA 3'UTR was detected by dual-luciferase reporter assay. The effects of tRF-19-R118LOJX, tRF-19-6SM83OJX and S100A11 on the glioma cell proliferation, migration and in vitro vasculogenic mimicry formation ability were examined by CCK-8 proliferation assay, EdU assay, HoloMonitor cell migration assay and tube formation assay, respectively. RESULTS: tRF-19-R118LOJX and tRF-19-6SM83OJX are the most differentially expressed tRFs between LGG and GBM groups. The functional enrichment analysis showed that the target genes of tRF-19-R118LOJX and tRF-19-6SM83OJX are enriched in regulating blood vessel development. The upregulated target genes are linked to adverse survival outcomes in glioma patients. tRF-19-R118LOJX and tRF-19-6SM83OJX were identified to suppress glioma cell proliferation, migration, and in vitro vasculogenic mimicry formation. The mechanism of tRF-19-R118LOJX might be related to its function as an RNA silencer by targeting the S100A11 mRNA 3'UTR. CONCLUSION: tRFs would become novel diagnostic biomarkers and therapeutic targets of glioma, and the mechanism might be related to its post-transcriptionally regulation of gene expression by targeting mRNA 3'UTR.


Assuntos
Glioma , RNA de Transferência , Humanos , Regiões 3' não Traduzidas , RNA de Transferência/genética , RNA de Transferência/metabolismo , Linhagem Celular , Diferenciação Celular , Glioma/genética
4.
Int J Med Sci ; 20(3): 318-328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860671

RESUMO

Hepatocellular carcinoma (HCC) is the most common and malignant liver tumor worldwide, although the treatment approaches for HCC continue to evolve, metastasis is the main reason for high mortality rates. S100 calcium-binding protein A11 (S100A11), an important member of the S100 family of small calcium-binding proteins, is overexpressed in various cells and regulates tumor development and metastasis. However, few studies report the role and underlying regulatory mechanisms of S100A11 in HCC development and metastasis. Herein, we discovered that S100A11 is overexpressed and associated with poor clinical outcomes in HCC cohorts, and we provided the first demonstration that S100A11 could serve as a novel diagnostic biomarker used in conjunction with AFP for HCC. Further analysis implied that S100A11 outperforms AFP in determining whether HCC patients have hematogenous metastasis or not. Using in vitro cell culture model, we demonstrated that S100A11 is overexpressed in metastatic hepatoma cells, knockdown of S100A11 decreases hepatoma cells proliferation, migration, invasion, and epithelial-mesenchymal transition process by inhibiting AKT and ERK signaling pathways. Altogether, our study provides new sights into the biological function and mechanisms underlying S100A11 in promoting metastasis of HCC and explores a novel target for HCC diagnosis and treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Proteínas Proto-Oncogênicas c-akt , alfa-Fetoproteínas/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Transdução de Sinais/genética , Proteínas S100/genética
5.
Cancer Cell Int ; 21(1): 243, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931048

RESUMO

BACKGROUND: S100A11 is a member of the S100 family of proteins containing two EF-hand calcium-binding motifs. The dysregulated expression of the S100A11 gene has been implicated in tumour metastasis. However, the role of S100A11 protein in tumour cell response to chemotherapeutic drugs has not been characterised. METHODS: Transcript levels of S100A11 in gastric cancer were evaluated using an in-house patient cohort. Protein expression of S100A11 in gastric cancer was estimated by immunohistochemistry of a tissue microarray. The stable gastric cancer cell lines were established using lentiviral shRNA vectors. The knockdown of S100A11 was validated by qRT-PCR, PCR, and Western blot. The cellular function of S100A11 was estimated by assays of cell adhesion, migration, and invasion. The cell cytotoxic assay was performed to investigate the response to chemotherapeutic drugs. An unsupervised hierarchical clustering and principal component analysis (HCPC) was applied to unveil the dimensional role of S100A11 among all S100 family members in gastric cancer. RESULTS: High expression of S100A11 is associated with poor survival of gastric cancer patients (p < 0.001, HR = 1.85) and is an independent prognostic factor of gastric cancer. We demonstrate that S100A11 plays its role as a tumour promoter through regulating the MMP activity and the epithelial-mesenchymal transition (EMT) process. The stable knockdown of S100A11 suppresses the metastatic properties of gastric cancer cells, which include enhancing cell adhesion, but decelerating cell migration and invasion. Furthermore, the knockdown of S100A11 gene expression dramatically induces the cellular response of gastric cancer cells to the first-line chemotherapeutic drugs fluoropyrimidine 5-fluorouracil (5-FU) and cisplatin. CONCLUSION: The present study identifies S100A11 as a tumour promoter in gastric cancer. More importantly, the S100A11-specific targeting potentially presents dual therapeutic benefits by not only controlling tumour progression but also sensitising chemotherapeutic cytotoxic response.

6.
Ceska Gynekol ; 86(1): 11-15, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33752403

RESUMO

OBJECTIVE: The aim of this study was to compare TFF3, AIF-1, S100-A11 and DKK1 serum levels in patients with cervical dysplasia, and in healthy female controls. METHODS: The first group included 59 patients with a histological dia-gnosis of precancerous disease CIN 1. The second group included 198 patients with a histological dia-gnosis of precancerous disease CIN 2 or CIN 3. The control group was comprised of 90 patients who underwent elective total hysterectomy for nonmalignant disorders. In all patients, preoperative serum samples were taken and separated; the sera were all stored at -80°C until the analysis for TFF3, AIF-1, S100-A11 and DKK1. RESULTS: The serum levels of S100­A11 (P < 0.0001) and AIF-1 (P < 0.0001) were statistically significantly higher in patients with mild precancerous lesions (CIN 1) than in controls. The levels of TFF3 and DKK1 were not statistically significantly different in patients with CIN 1 and in the control group. The serum levels of S100­A11 (P < 0.0001) and AIF-1 (P < 0.0001) were statistically significantly higher in patients with severe precancerous lesions (CIN 2/3) than in controls. TFF3 and DKK1 levels were not statistically significantly different in patients with CIN 2/3 compared to controls. CONCLUSION: S100-A11 and AIF-1 represent potential bio-markers in patients with cervical dysplasia.


Assuntos
Lesões Pré-Cancerosas , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Biomarcadores , Feminino , Humanos
7.
Ceska Gynekol ; 86(1): 17-21, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33752404

RESUMO

OBJECTIVE: The aim of this study was to compare the serum levels of TFF3, AIF-1, S100-A11 and DKK1 in surgically staged patients with cervical cancer, and in healthy female controls. METHODS: In total 85 consecutive patients dia-gnosed at the Department of Obstetrics and Gynecology, University Hospital in Olomouc with cervical cancer undergoing radical hysterectomy or fertility sparing surgery with pelvic lymphadenectomy were included. Ninety patients who underwent elective total hysterectomy for nonmalignant disorder represented a control group. In all patients, preoperative serum samples were taken and separated; the sera were all stored at -80 °C until analysis for TFF3, AIF-1, S100-A11 and DKK1. RESULTS: According to the final histopathological examination, 32 (40.5%) out of 79 cervical cancer patients with microscopically examined lymph nodes were lymph node-positive. S100­A11 (P < 0.0001) and AIF-1 levels (P < 0.0001) were higher in cervical cancer patients than in controls. Furthermore, the serum levels of S100­A11 (P > 0.04) and AIF-1 (P > 0.01) were significantly higher in lymph node-positive patients as compared to lymph node-negative patients. The levels of TFF3 and DKK1 were higher (P < 0.0001) in controls than in cervical cancer patients and were not different in groups with or without nodal involvement.. CONCLUSION: S100-A11 and AIF-1 represent potential bio-markers in patients with cervical cancer. Moreover, the levels of S100-A11 and AIF-1 increase in patients with lymph node  involvement.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Histerectomia , Excisão de Linfonodo , Linfonodos/patologia , Metástase Linfática , Estadiamento de Neoplasias , Estudos Retrospectivos , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/cirurgia
8.
J Cell Mol Med ; 23(10): 6907-6918, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31430050

RESUMO

Glioblastoma (GBM) is the most universal type of primary brain malignant tumour, and the prognosis of patients with GBM is poor. S100A11 plays an essential role in tumour. However, the role and molecular mechanism of S100A11 in GBM are not clear. Here, we found that S100A11 was up-regulated in GBM tissues and higher S100A11 expression indicated poor prognosis of GBM patients. Overexpression of S100A11 promoted GBM cell growth, epithelial-mesenchymal transition (EMT), migration, invasion and generation of glioma stem cells (GSCs), whereas its knockdown inhibited these activities. More importantly, S100A11 interacted with ANXA2 and regulated NF-κB signalling pathway through decreasing ubiquitination and degradation of ANXA2. Additionally, NF-κB regulated S100A11 at transcriptional level as a positive feedback. We also demonstrated the S100A11 on tumour growth in GBM using an orthotopic tumour xenografting. These data demonstrate that S100A11/ANXA2/NF-κB positive feedback loop in GBM cells that promote the progression of GBM.


Assuntos
Anexina A2/metabolismo , Neoplasias Encefálicas/genética , Retroalimentação Fisiológica , Glioblastoma/genética , NF-kappa B/metabolismo , Oncogenes , Proteínas S100/metabolismo , Animais , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise , Transdução de Sinais , Esferoides Celulares/patologia , Transcrição Gênica , Ubiquitinação , Regulação para Cima/genética
9.
J Cell Physiol ; 234(11): 20174-20192, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30963564

RESUMO

Wound healing is a dynamic process comprising multiple events, such as inflammation, re-epithelialization, and tissue remodeling. Re-epithelialization phase is characterized by the engagement of several cell populations, mainly of keratinocytes that sequentially go through cycles of migration, proliferation, and differentiation to restore skin functions. Troubles can arise during the re-epithelialization phase of skin wound healing particularly in keratinocyte migration, resulting in chronic non-healing lesions, which represent a serious clinical problem. Over the last decades, the efforts aimed to find new pharmacological approaches for wound care were made, yet almost all current therapeutic strategies used remain inadequate or even ineffective. As such, it is crucial to identify new drugs that can enable a proper regeneration of the epithelium in wounded skin. Here, we have investigated the effects of the fibrinolytic drug mesoglycan, a glycosaminoglycans mixture derived from porcine intestinal mucosa on HaCaT human keratinocytes that were used as in vitro experimental model of skin re-epithelialization. We found that mesoglycan induces keratinocyte migration and early differentiation by triggering the syndecan-4/PKCα pathway and that these effects were at least in part, because of the formation of the annexin A1/S100A11 complex. Our data suggest that mesoglycan may be useful as a new pro-healing drug for skin wound care.


Assuntos
Anexina A1/metabolismo , Glicosaminoglicanos/metabolismo , Queratinócitos/metabolismo , Proteínas S100/metabolismo , Sindecana-4/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Humanos , Reepitelização/fisiologia , Pele/metabolismo , Cicatrização/fisiologia
10.
Am J Physiol Gastrointest Liver Physiol ; 317(5): G625-G639, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31545917

RESUMO

Dissemination of primary tumors to distant anatomical sites has a substantial negative impact on patient prognosis. The liver is a common site for metastases from colorectal cancer, and patients with hepatic metastases have generally much shorter survival, raising a need to develop and implement novel strategies for targeting metastatic disease. The extracellular matrix (ECM) is a meshwork of highly crosslinked, insoluble high-molecular-mass proteins maintaining tissue integrity and establishing cell-cell interactions. Emerging evidence identifies the importance of the ECM in cancer cell migration, invasion, intravasation, and metastasis. Here, we isolated the ECM from MC38 mouse liver metastases using our optimized method of mild detergent solubilization followed by biochemical enrichment. The matrices were subjected to label-free quantitative mass spectrometry analysis, revealing proteins highly abundant in the metastatic matrisome. The resulting list of proteins upregulated in the ECM significantly predicted survival in patients with colorectal cancer but not other cancers with strong involvement of the ECM component. One of the proteins upregulated in liver metastatic ECM, annexin A1, was not previously studied in the context of cancer-associated matrisome. Here, we show that annexin A1 was markedly upregulated in colon cancer cell lines compared with cancer cells of other origin and also over-represented in human primary colorectal lesions, as well as hepatic metastases, compared with their adjacent healthy tissue counterparts. In conclusion, our study provides a comprehensive ECM characterization of MC38 experimental liver metastases and proposes annexin A1 as a putative target for this disease.NEW & NOTEWORTHY Here, the authors provide an extensive proteomics characterization of murine colorectal cancer liver metastasis matrisome (the ensemble of all extracellular matrix molecules). The findings presented in this study may enable identification of therapeutic targets or biomarkers of hepatic metastases.


Assuntos
Neoplasias Colorretais/genética , Proteínas da Matriz Extracelular/metabolismo , Neoplasias Hepáticas/genética , Proteoma/metabolismo , Animais , Anexina A1/genética , Anexina A1/metabolismo , Colo/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas da Matriz Extracelular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Camundongos , Camundongos Endogâmicos C57BL , Proteoma/genética , Regulação para Cima
11.
Mol Carcinog ; 58(1): 19-30, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30182496

RESUMO

S100A11 is reported to associate with progression and poor prognosis in several tumors. We previously reported that S100A11 was highly expressed in intrahepatic cholangiocarcinoma (ICC) cells and promoted TGF-ß1-induced EMT through SMAD2/3 signaling pathway. Here, we explored the prognostic role of S100A11 on ICC patients and preliminary molecular mechanisms how S100A11 regulated ICC cell proliferation. Our results showed that S100A11 was obviously increased in ICC tumor tissues. High expression of S100A11 was closely correlated with lymph node metastasis (LNM) and TNM stage and was an independent risk factor for patients' overall survival (OS) and recurrence-free survival (RFS). The nomograms comprising LNM and S100A11 achieved better predictive accuracy compared with TNM staging system for OS and RFS prediction. Silencing S100A11 significantly suppressed RBE cells and HCCC9810 cells proliferation, colony formation, and activation of P38/mitogen-activated protein kinase (MAPK) signaling pathway in vitro and inhibited tumor growth in vivo. In contrast, the overexpression of S100A11 in RBE cells and HCCC9810 cells achieved the opposite results. S100A11-induced proliferation was abolished after treatment with P38 inhibitor. Our findings suggest S100A11/P38/MAPK signaling pathway may be a potential therapeutic target for ICC patients.


Assuntos
Neoplasias dos Ductos Biliares/secundário , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Colangiocarcinoma/patologia , Recidiva Local de Neoplasia/patologia , Proteínas S100/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apoptose , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Biomarcadores Tumorais/genética , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Prognóstico , Proteínas S100/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases p38 Ativadas por Mitógeno/genética
12.
Mol Cell Biochem ; 450(1-2): 53-64, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29922945

RESUMO

S100A11 as a S100 protein family member has been documented to play dual-direction regulation over cancer cell proliferation. We explored the role of S100A11 in the proliferation and apoptosis of pancreatic cancer cell line PANC-1 and the potential mechanisms involving the TGF-ß1/SMAD4/p21 pathway. S100A11 and TGF-ß1 protein expressions in 30 paraffin-embedded specimens were evaluated by immunohistochemistry. S100A11 and TGF-ß1 expression in PANC-1 cell line was suppressed using small interfering RNA (siRNA), respectively. Subsequently, pancreatic cancer cell apoptosis was measured by Cell Counting Kit-8 and flow cytometry, and S100A11 and TGF-ß1/SMAD4/p21 pathway proteins and genes were detected with Western blotting and quantitative polymerase chain reaction (qPCR). S100A11 cytoplasmic/nuclear protein translocation was examined using NE-PER® cytoplasm/nuclear protein extraction in cells interfered with TGF-ß1 siRNA. Our results showed that S100A11 expression was positively correlated with TGF-ß1 expression in pancreatic cancerous tissue. Silencing TGF-ß1 down-regulated intracellular P21WAF1 expression by 90%, blocked S100A11 from cytoplasm entering nucleus, and enhanced cell proliferation. Silencing S100A11 down-regulated intracellular P21 expression and promoted cell apoptosis without significantly changing TGF-ß1 and SMAD4 expression. Our findings revealed that S100A11 and TGF-ß1/SMAD4 signaling pathway were related but mutually independent in regulating PANC-1 cells proliferation and apoptosis. Other independent mechanisms might be involved in S100A11's regulation of pancreatic cell growth. S100A11 could be a potential gene therapy target for pancreatic cancer.


Assuntos
Apoptose , Proliferação de Células , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas S100/metabolismo , Transdução de Sinais , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21 , Feminino , Humanos , Masculino , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas S100/genética , Proteína Smad4/genética , Fator de Crescimento Transformador beta1/genética
13.
Semin Cell Dev Biol ; 45: 32-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26498035

RESUMO

Plasma membrane stress can cause damage to the plasma membrane, both when imposed by the extracellular environment and by enhanced oxidative stress. Cells cope with these injuries by rapidly activating their plasma membrane repair system, which is triggered by Ca(2+) influx at the wound site. The repair system is highly dynamic, depends on both lipid and protein components, and include cytoskeletal reorganization, membrane replacements, and membrane fusion events. Cancer cells experience enhanced membrane stress when navigating through dense extracellular matrix, which increases the frequency of membrane injuries. In addition, increased motility and oxidative stress further increase the risk of plasma membrane lesions. Cancer cells compensate by overexpressing Annexin proteins including Annexin A2 (ANXA2). Annexin family members can facilitate membrane fusion events and wound healing by binding to negatively charged phospholipids in the plasma membrane. Plasma membrane repair in cancer cells depends on ANXA2 protein, which is recruited to the wound site and forms a complex with the Ca(2+)-binding EF-hand protein S100A11. Here they regulate actin accumulation around the wound perimeter, which is required for wound closure. In this review, we will discuss the requirement for Annexins, S100 proteins and actin cytoskeleton in the plasma membrane repair response of cancer cells, which reveals a novel avenue for targeting metastatic cancers.


Assuntos
Anexinas/fisiologia , Neoplasias da Mama/patologia , Membrana Celular/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Neoplasias da Mama/metabolismo , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Proteínas S100/metabolismo , Cicatrização
14.
Tumour Biol ; 39(5): 1010428317705337, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28513300

RESUMO

S100A11 is a S100 protein family member that contributes to cancer progression. Upregulated in human renal cancer tissues, S100A11 may be a prognostic marker for clear cell renal cell carcinoma, but how it functions in cancer is uncertain. Thus, we studied S100A11 and noted knockdown of S100A11 using short hairpin RNA, which inhibited proliferation, invasion, and migration of renal carcinoma cells as well as increased expression of E-cadherin and decreased expression of epidermal growth factor receptor/Akt in renal carcinoma cells. Therefore, S100A11 may be a key molecular target for treating renal carcinoma.


Assuntos
Carcinoma/genética , Receptores ErbB/genética , Neoplasias Renais/genética , Proteína Oncogênica v-akt/genética , Proteínas S100/genética , Animais , Caderinas/genética , Carcinoma/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Humanos , Neoplasias Renais/patologia , Camundongos , Invasividade Neoplásica/genética , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
RNA Biol ; 14(10): 1418-1430, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28277927

RESUMO

Although BC200 RNA is best known as a neuron-specific non-coding RNA, it is overexpressed in various cancer cells. BC200 RNA was recently shown to contribute to metastasis in several cancer cell lines, but the underlying mechanism was not understood in detail. To examine this mechanism, we knocked down BC200 RNA in cancer cells, which overexpress the RNA, and examined cell motility, profiling of ribosome footprints, and the correlation between cell motility changes and genes exhibiting altered ribosome profiles. We found that BC200 RNA knockdown reduced cell migration and invasion, suggesting that BC200 RNA promotes cell motility. Our ribosome profiling analysis identified 29 genes whose ribosomal occupations were altered more than 2-fold by BC200 RNA knockdown. Many (> 30%) of them were directly or indirectly related to cancer progression. Among them, we focused on S100A11 (which showed a reduced ribosome footprint) because its expression was previously shown to increase cellular motility. S100A11 was decreased at both the mRNA and protein levels following knockdown of BC200 RNA. An actinomycin-chase experiment showed that BC200 RNA knockdown significantly decreased the stability of the S100A11 mRNA without changing its transcription rate, suggesting that the downregulation of S100A11 was mainly caused by destabilization of its mRNA. Finally, we showed that the BC200 RNA-knockdown-induced decrease in cell motility was mainly mediated by S100A11. Together, our results show that BC200 RNA promotes cell motility by stabilizing S100A11 transcripts.


Assuntos
Neoplasias/genética , RNA Longo não Codificante/genética , Proteínas S100/química , Proteínas S100/genética , Linhagem Celular Tumoral , Movimento Celular , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Células MCF-7 , Invasividade Neoplásica , Estabilidade de RNA , RNA Mensageiro/química , Proteínas S100/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-38842658

RESUMO

Compiling evidence has indicated that S100A11 expression at high levels is closely associated with various cancer species. Consistent with the results reported elsewhere, we have also revealed that S100A11 is highly expressed in squamous cell carcinoma, mesothelioma, and pancreatic cancers and plays a crucial role in cancer progression when secreted into extracellular fluid. Those studies are all focused on the extracellular role of S100A11. However, most of S100A11 is still present within cancer cells, although the intracellular role of S100A11 in cancer cells has not been fully elucidated. Thus, we aimed to investigate S100A11 functions within cancer cells, primarily focusing on colorectal cancer cells, whose S100A11 is abundantly present in cells and still poorly studied cancer for the protein. Our efforts revealed that overexpression of S100A11 promotes proliferation and migration, and downregulation inversely dampens those cancer behaviors. To clarify how intracellular S100A11 aids cancer cell activation, we tried to identify S100A11 binding proteins, resulting in novel binding partners in the inner membrane, many of which are desmosome proteins. Our molecular approach defined that S100A11 regulates the expression level of DSG1, a component protein of desmosome, by which S100A11 activates the TCF pathway via promoting nuclear translocation of γ-catenin from the desmosome. The identified new pathway greatly helps to comprehend S100A11's nature in colorectal cancers and others.

17.
Int Immunopharmacol ; 128: 111323, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38286714

RESUMO

OBJECTIVE: This study aims at revealing the relationship between S100A11 and cancer-associated fibroblasts (CAFs) in prostate cancer and improving T cell infiltration into solid tumors. METHODS: H&E, IHC and Sirius red staining were used to detect the stroma content in prostate cancer tissues. Stable S100A11 knockdown cell lines DU 145, 22Rv1, RM-1 and NOR-10 were established by lentivirus transfection. Co-culture system of RM-1 and CAFs was established. CCK-8, wound healing and transwell were proceeded to determine proliferation, migration and invasion of prostate cancer cells. Stably knocked-down RM-1 and CAFs were co-injected into C57BL/6 mice to detect the role of S100A11 in vivo. CAFs, CD4+ T cell and CD8+ T cell in these tumors were assessed by IF. T cell profile was analyzed by flow cytometry. RESULTS: A significant amount of stroma exists in prostate cancer tissues. Downregulation of S100A11 inhibits proliferation, migration and invasion of human prostate cancer cells in vitro, and suppresses the expression of cancer-associated fibroblasts (CAFs) in vivo. Knockdown of S100A11 enhances the inhibitory effect of Erdafitinib on CAFs in both the co-culture system and in vivo. The combined knockdown of S100A11 in tumor cells and CAFs shows a superior therapeutic effect compared to the individual knockdown in tumor cells alone. Knockdown of S100A11, both in RM-1 and CAFs, combined with Erdafitinib treatment reduces tumorigenicity by suppressing the content of CAFs and increasing the infiltration of CD4+ T cell and effective CD8+ T cell in tumor. CONCLUSION: Downregulation of S100A11 plays a crucial role in enhancing the therapeutic response to Erdafitinib and reversing immunosuppressive tumor microenvironment.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias da Próstata , Masculino , Camundongos , Animais , Humanos , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Camundongos Endogâmicos C57BL , Neoplasias da Próstata/patologia , Linfócitos T CD8-Positivos/metabolismo , Microambiente Tumoral , Fibroblastos/metabolismo , Proliferação de Células , Proteínas S100/genética , Proteínas S100/metabolismo
18.
Front Oncol ; 14: 1371342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595825

RESUMO

Background: Our earlier research revealed that the secreted lysyl oxidase-like 4 (LOXL4) that is highly elevated in triple-negative breast cancer (TNBC) acts as a catalyst to lock annexin A2 on the cell membrane surface, which accelerates invasive outgrowth of the cancer through the binding of integrin-ß1 on the cell surface. However, whether this machinery is subject to the LOXL4-mediated intrusive regulation remains uncertain. Methods: Cell invasion was assessed using a transwell-based assay, protein-protein interactions by an immunoprecipitation-Western blotting technique and immunocytochemistry, and plasmin activity in the cell membrane by gelatin zymography. Results: We revealed that cell surface annexin A2 acts as a receptor of plasminogen via interaction with S100A10, a key cell surface annexin A2-binding factor, and S100A11. We found that the cell surface annexin A2/S100A11 complex leads to mature active plasmin from bound plasminogen, which actively stimulates gelatin digestion, followed by increased invasion. Conclusion: We have refined our understanding of the role of LOXL4 in TNBC cell invasion: namely, LOXL4 mediates the upregulation of annexin A2 at the cell surface, the upregulated annexin 2 binds S100A11 and S100A10, and the resulting annexin A2/S100A11 complex acts as a receptor of plasminogen, readily converting it into active-form plasmin and thereby enhancing invasion.

19.
FEBS Open Bio ; 14(4): 626-642, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408765

RESUMO

Proteins achieve their biological functions in cells by cooperation in protein complexes. In this study, we employed fluorescence lifetime imaging microscopy (FLIM)-based Förster resonance energy transfer (FRET) measurements to investigate protein complexes comprising S100A11 and different members of the annexin (ANX) family, such as ANXA1, ANXA2, ANXA4, ANXA5, and AnxA6, in living cells. Using an S100A11 mutant without the capacity for Ca2+ binding, we found that Ca2+ binding of S100A11 is important for distinct S100A11/ANXA2 complex formation; however, ANXA1-containing complexes were unaffected by this mutant. An increase in the intracellular calcium concentration induced calcium ionophores, which strengthened the ANXA2/S100A11 interaction. Furthermore, we were able to show that S100A11 also interacts with ANXA4 in living cells. The FLIM-FRET approach used here can serve as a tool to analyze interactions between S100A11 and distinct annexins under physiological conditions in living cells.


Assuntos
Anexinas , Transferência Ressonante de Energia de Fluorescência , Anexinas/genética , Anexinas/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo
20.
Int J Med Sci ; 10(11): 1552-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24046531

RESUMO

OBJECTIVE: As a member of the S100 proteins family, the involvement of S100A11 has been suggested in a wide range of biological processes such as cell growth and motility, cell-cycle progression, transcription, differentiation and smooth muscle cell migration. However, the expression of S100A11 and its exact function in laryngeal squamous cell carcinoma (LSCC) have not been elucidated. METHODS: The protein and mRNA expression levels of S100A11 were analyzed in primary tumors and matched tumor-adjacent tissues of LSCC by western blotting and semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) or quantitative real time PCR (Q-RT-PCR), respectively. Cell proliferation, colony formation, migration and wound-healing assays were performed to assess whether the knockdown of S100A11 by small interfering RNA (siRNA) could influence the biological behavior of human laryngeal carcinoma Hep-2 cells in vitro. RESULTS: We found that both protein and mRNA levels of S100A11 were overexpressed in laryngeal tumor tissues when compared to the corresponding noncancerous tissues. Further, it was demonstrated that the expression of S100A11 could induce migration but not proliferation of Hep-2 cells. Additionally, S100A11 altered a series of intracellular events, including the down-regulation of epidermal growth factor receptor (EGFR), CD44 and MMP2. CONCLUSIONS: These results highlight the significance of S100A11 in LSCC progression and suggest that the dysregulation of S100A11 might contribute to the metastatic progression of LSCC.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias Laríngeas/metabolismo , Proteínas S100/metabolismo , Western Blotting , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células , Neoplasias de Cabeça e Pescoço/genética , Humanos , Neoplasias Laríngeas/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas S100/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA