Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Chem Eng Sci ; 251: 117430, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35043022

RESUMO

Loop-mediated isothermal amplification (LAMP) is widely used in detection of pathogenic microorganisms including SARS-CoV-2. However, the performance of LAMP assay needs further exploration in the emerging SARS-CoV-2 variants test. Here, we design serials of primers and select an optimal set for LAMP-based on SARS-CoV-2 N gene for a robust and visual assay in SARS-CoV-2 diagnosis. The limit of detectable template reaches 10 copies of N gene per 25 µL reaction at isothermal 58℃ within 40 min. Importantly, the primers for LAMP assay locate at 12 to 213 nt of N gene, a highly conservative region, which serves as a compatible test in emerging SARS-CoV-2 variants. Comparison to a commercial qPCR assay, this LAMP assay exerts the high viability in diagnosis of 41 clinical samples. Our study optimizes an advantageous LAMP assay for colorimetric detection of SARS-CoV-2 and emerging variants, which is hopeful to be a promising test in COVID-19 surveillance.

2.
Bioprocess Biosyst Eng ; 45(3): 503-514, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35031864

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had severe consequences for health and the global economy. To control the transmission, there is an urgent demand for early diagnosis and treatment in the general population. In the present study, an automatic system for SARS-CoV-2 diagnosis is designed and built to deliver high specification, high sensitivity, and high throughput with minimal workforce involvement. The system, set up with cross-priming amplification (CPA) rather than conventional reverse transcription-polymerase chain reaction (RT-PCR), was evaluated using more than 1000 real-world samples for direct comparison. This fully automated robotic system performed SARS-CoV-2 nucleic acid-based diagnosis with 192 samples in under 180 min at 100 copies per reaction in a "specimen in data out" manner. This throughput translates to a daily screening capacity of 800-1000 in an assembly-line manner with limited workforce involvement. The sensitivity of this device could be further improved using a CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-based assay, which opens the door to mixed samples, potentially include SARS-CoV-2 variants screening in extensively scaled testing for fighting COVID-19.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2 , Algoritmos , Engenharia Biomédica/instrumentação , Engenharia Biomédica/métodos , Engenharia Biomédica/estatística & dados numéricos , COVID-19/epidemiologia , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/instrumentação , Teste de Ácido Nucleico para COVID-19/estatística & dados numéricos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Desenho de Equipamento , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/estatística & dados numéricos , Humanos , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/estatística & dados numéricos , Pandemias , Robótica/instrumentação , Robótica/métodos , Robótica/estatística & dados numéricos , SARS-CoV-2/genética , Sensibilidade e Especificidade , Análise de Sistemas
3.
BMC Infect Dis ; 21(1): 860, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34425781

RESUMO

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has quickly spread worldwide since its outbreak in December 2019. One of the primary measures for controlling the spread of SARS-CoV-2 infection is an accurate assay for its diagnosis. SARS-CoV-2 real-time PCR kits suffer from some limitations, including false-negative results in the clinic. Therefore, there is an urgent need for the development of a rapid antibody test kit for COVID-19 diagnosis. METHODS: The nuclear capsid protein (N) and spike protein 1 (S1) fragments of SARS-CoV-2 were expressed in Escherichia coli, and rapid antibody-based tests for the diagnosis of SARS-CoV-2 infection were developed. To evaluate their clinical applications, the serum from COVID-19 patients, suspected COVID-19 patients, recovering COVID-19 patients, patients with general fever or pulmonary infection, doctors and nurses who worked at the fever clinic, and health professionals was analyzed by the rapid antibody test kits. The serum from patients infected with Mycoplasma pneumoniae and patients with respiratory tract infection was further analyzed to test its cross-reactivity with other respiratory pathogens. RESULTS: A 47 kDa N protein and 67 kDa S1 fragment of SARS-CoV-2 were successfully expressed, purified, and renatured. The rapid antibody test with recombinant N protein showed higher positive rate than the rapid IgM antibody test with recombinant S1 protein. Clinical evaluation showed that the rapid antibody test kit with recombinant N protein had 88.56 % analytical sensitivity and 97.42 % specificity for COVID-19 patients, 53.48 % positive rate for suspected COVID-19 patients, 57.14 % positive rate for recovering COVID-19 patients, and 0.5-0.8 % cross-reactivity with other respiratory pathogens. The analytical sensitivity of the kit did not significantly differ in COVID-19 patients with different disease courses (p < 0.01). CONCLUSIONS: The rapid antibody test kit with recombinant N protein has high specificity and analytical sensitivity, and can be used for the diagnosis of SARS-CoV-2 infection combined with RT-PCR.


Assuntos
Anticorpos Antivirais , Teste Sorológico para COVID-19 , COVID-19/diagnóstico , SARS-CoV-2 , Teste para COVID-19 , Humanos , Proteínas Recombinantes , SARS-CoV-2/imunologia
5.
Infect Dis Ther ; 12(1): 111-129, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36333475

RESUMO

INTRODUCTION: In the current COVID-19 pandemic, clinicians require a manageable set of decisive parameters that can be used to (i) rapidly identify SARS-CoV-2 positive patients, (ii) identify patients with a high risk of a fatal outcome on hospital admission, and (iii) recognize longitudinal warning signs of a possible fatal outcome. METHODS: This comparative study was performed in 515 patients in the Maria Sklodowska-Curie Specialty Voivodeship Hospital in Zgierz, Poland. The study groups comprised 314 patients with COVID-like symptoms who tested negative and 201 patients who tested positive for SARS-CoV-2 infection; of the latter, 72 patients with COVID-19 died and 129 were released from hospital. Data on which we trained several machine learning (ML) models included clinical findings on admission and during hospitalization, symptoms, epidemiological risk, and reported comorbidities and medications. RESULTS: We identified a set of eight on-admission parameters: white blood cells, antibody-synthesizing lymphocytes, ratios of basophils/lymphocytes, platelets/neutrophils, and monocytes/lymphocytes, procalcitonin, creatinine, and C-reactive protein. The medical decision tree built using these parameters differentiated between SARS-CoV-2 positive and negative patients with up to 90-100% accuracy. Patients with COVID-19 who on hospital admission were older, had higher procalcitonin, C-reactive protein, and troponin I levels together with lower hemoglobin and platelets/neutrophils ratio were found to be at highest risk of death from COVID-19. Furthermore, we identified longitudinal patterns in C-reactive protein, white blood cells, and D dimer that predicted the disease outcome. CONCLUSIONS: Our study provides sets of easily obtainable parameters that allow one to assess the status of a patient with SARS-CoV-2 infection, and the risk of a fatal disease outcome on hospital admission and during the course of the disease.

6.
Cureus ; 15(2): e35228, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36968904

RESUMO

Background Rapid identification of COVID-19 is crucial during the pandemic for the treatment and management of patients. Thus, early diagnosis of the disease using laboratory parameters can help in the rapid management of infected patients. This study aimed to investigate the correlation of viral load with hematological and biochemical parameters. This will ultimately help physicians to better understand the dynamics of this novel virus and aid in the management of patients. Methodology Laboratory confirmation of SARS-CoV-2 was performed by reverse transcription-polymerase chain reaction (RT-PCR) at the Al-Buraimi Hospital Laboratory Department using oropharyngeal and nasopharyngeal swabs. Positive cases were collected from July 2020 to January 2021 to be enrolled in this study. Results In this study, 264 confirmed positive patients were included initially and divided into three groups according to their cycle threshold (Ct) values obtained by PCR. Out of the total 264 patients, 174 (65.9%) were male, while 90 (34.1%) were female. However, the final sample was only 253 patients who met the inclusion criteria. With regard to Ct values, the study population was divided into the following three groups: Group 1 with Ct values of 9-20 (n = 87; 34.4%), group 2 with Ct values of 21-30 (n = 122; 47.8%), and group 3 with Ct values of 31-42 (n = 44; 17.4%). Conclusions We found that the proportion of male patients infected with COVID-19 was higher compared to females. In addition, the highest incidence was among patients in the age group of 51-70 years. The ferritin and alanine transaminase levels were highest in the initial stage of the infection (group 1) and decreased at the recovery stage. However, neutrophil, lymphocyte, alkaline phosphatase, and C-reactive protein showed an increasing trend from high viral load groups to low viral load groups. The values of the rest of the parameters, such as albumin, total bilirubin, lactate dehydrogenase, and D-dimer, were slightly higher in the initial stage of the infection but the decreasing trend was low; therefore, they were not considered helpful in predicting the disease severity reflected by their Ct value in the three different groups.

7.
Environ Sci Pollut Res Int ; 30(22): 61430-61454, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35175517

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is regarded as a threat because it spreads quickly across the world without requiring a passport or establishing an identity. This tiny virus has wreaked havoc on people's lives, killed people, and created psychological problems all over the world. The viral spike protein (S) significantly contributes to host cell entry, and mutations associated with it, particularly in the receptor-binding protein (RBD), either facilitate the escape of virus from neutralizing antibodies or enhance its transmission by increasing the affinity for cell entry receptor, angiotensin-converting enzyme 2 (ACE2). The initial variants identified in Brazil, South Africa, and the UK have spread to various countries. On the other hand, new variants are being detected in India and the USA. The viral genome and proteome were applied for molecular detection techniques, and nanotechnology particles and materials were utilized in protection and prevention strategies. Consequently, the SARS-CoV-2 pandemic has resulted in extraordinary scientific community efforts to develop detection methods, diagnosis tools, and effective antiviral drugs and vaccines, where prevailing academic, governmental, and industrial institutions and organizations continue to engage themselves in large-scale screening of existing drugs, both in vitro and in vivo. In addition, COVID-19 pointed on the possible solutions for the environmental pollution globe problem. Therefore, this review aims to address SARS-CoV-2, its transmission, where it can be found, why it is severe in some people, how it can be stopped, its diagnosis and detection techniques, and its relationship with the environment.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Receptores Virais/genética , Receptores Virais/metabolismo , Ligação Proteica , Antivirais
8.
Pathology ; 54(5): 623-628, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35778288

RESUMO

During the COVID-19 pandemic, the reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) assay has been the primary method of diagnosis of SARS-CoV-2 infection. However, RT-qPCR assay interpretation can be ambiguous with no universal absolute cut-off value to determine sample positivity, which particularly complicates the analysis of samples with high Ct values, or weak positives. Therefore, we sought to analyse factors associated with weak positive SARS-CoV-2 diagnosis. We analysed sample data associated with all positive SARS-CoV-2 RT-qPCR diagnostic tests performed by the Victorian Infectious Diseases Reference Laboratory (VIDRL) in Melbourne, Australia, during the Victorian first wave (22 January 2020-30 May 2020). A subset of samples was screened for the presence of host DNA and RNA using qPCR assays for CCR5 and 18S, respectively. Assays targeting the viral RNA-dependent RNA polymerase (RdRp) had higher Ct values than assays targeting the viral N and E genes. Weak positives were not associated with the age or sex of individuals' samples nor with reduced levels of host DNA and RNA. We observed a relationship between Ct value and time post-SARS-CoV-2 diagnosis. High Ct value or weak positive SARS-CoV-2 was not associated with any particular bias including poor biological sampling.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Humanos , Pandemias , RNA Viral/análise , RNA Viral/genética , DNA Polimerase Dirigida por RNA/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , Sensibilidade e Especificidade
9.
Viruses ; 14(8)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-36016360

RESUMO

This study described a SARS-CoV-2 infection in minks on an Italian farm. Surveillance was performed based on clinical examination and a collection of 1879 swabs and 74 sera from dead and live animals. The farm was placed under surveillance for 4.5 months, from the end of July 2020, when a man working on the farm tested positive by RT-PCR, till mid-December 2020 when all the animals were sacrificed. Clinical examination revealed no clinical signs or increased mortality rates attributable to SARS-CoV-2, while diagnostic tests detected only four weak PCR-positive samples, but 100% of sera were positive for SARS-CoV-2 anti-S antibodies. The phylogenetic analysis of two SARS-CoV-2 sequences from two minks and the sequence of the worker showed that they belonged to different clades. It could be therefore assumed that two distinct introductions of the virus occurred on the farm, and that the first introduction probably occurred before the start of the surveillance period. From the data collected, and especially from the detection of specific antibodies through the combination of different tests, it can be postulated that syndromic surveillance combined with genome detection by PCR may not be sufficient to achieve a diagnosis in asymptomatic animals. In particular, the serological approach, especially when using tests directed towards the S protein, may be useful for improving the traceability of virus circulation in similar environments.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Antivirais , COVID-19/diagnóstico , COVID-19/veterinária , Teste para COVID-19 , Fazendas , Humanos , Vison , Filogenia , SARS-CoV-2/genética
10.
Viruses ; 14(5)2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35632772

RESUMO

A new antibody diagnostic assay with more rapid and robust properties is demanded to quantitatively evaluate anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity in a large population. Here, we developed a nanometer-scale fluorescent biosensor system consisting of CdSe-ZnS quantum dots (QDs) coupled with the highly sensitive B-cell epitopes of SARS-CoV-2 that could remarkably identify the corresponding antibody with a detection limit of 100 pM. Intriguingly, we found that fluorescence quenching of QDs was stimulated more obviously when coupled with peptides than the corresponding proteins, indicating that the energy transfer between QDs and peptides was more effective. Compared to the traditional enzyme-linked immunosorbent assay (ELISA), the B-cell-epitope-based QD-biosensor could robustly distinguish coronavirus disease 2019 (COVID-19) antibody-positive patients from uninfected individuals with a higher sensitivity (92.3-98.1% positive rates by QD-biosensor vs. 78.3-83.1% positive rates by ELISAs in 207 COVID-19 patients' sera) in a more rapid (5 min) and labor-saving manner. Taken together, the 'QD-peptides' biosensor provided a novel real-time, quantitative, and high-throughput method for clinical diagnosis and home-use tests.


Assuntos
Técnicas Biossensoriais , COVID-19 , Pontos Quânticos , Anticorpos , COVID-19/diagnóstico , Epitopos de Linfócito B , Humanos , Peptídeos , SARS-CoV-2
11.
Microbiol Spectr ; 10(6): e0392322, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36346225

RESUMO

In November 2021, the World Health Organization declared the Omicron variant (B.1.1.519) a variant of concern. Since then, worries have been expressed regarding the ability of usual diagnostic tests to detect the Omicron variant. In addition, some recently published data suggested that the salivary reverse transcription (RT)-PCR might perform better than the current gold standard, nasopharyngeal (NP) RT-PCR. In this study, we aimed to compare the sensitivities of nasopharyngeal and saliva RT-PCR and assess the diagnostic performances of rapid antigen testing (RAT) in nasopharyngeal and saliva samples. We conducted a prospective clinical study among symptomatic health care professionals consulting the occupational health service of our hospital for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) screening and hospitalized patients in internal medicine/intensive care wards screened for SARS-CoV-2 with COVID-19-compatible symptoms. A composite outcome considering NP PCR and/or saliva PCR was used as a reference standard to define COVID-19 cases. A total of 475 paired NP/saliva specimens have been collected with a positivity rate of 40% (n = 192). NP and salivary RT-PCR exhibited sensitivities of 98% (95% CI, 94 to 99%) and 87% (95% CI, 81 to 91%), respectively, for outpatients (n = 453) and 94% (95% CI, 72 to 99%) and 69% (95% CI, 44 to 86%), respectively, for hospitalized patients (n = 22). Nasopharyngeal rapid antigen testing exhibited much lower diagnostic performances (sensitivity of 66% and 31% for outpatients and inpatients, respectively), while saliva RAT showed a sensitivity of less than 5% in both groups. Nasopharyngeal RT-PCR testing remains the gold standard for SARS-CoV-2 Omicron variant screening. Salivary RT-PCR can be used as an alternative in case of contraindication to perform NP sampling. The use of RAT should be limited to settings where access to molecular diagnostic methods is lacking. IMPORTANCE The Omicron variant of concern spread rapidly since it was first reported in November 2021 and currently accounts for the vast majority of new infections worldwide. Recent reports suggest that saliva sampling might outweigh nasopharyngeal sampling for the diagnosis of the Omicron variant. Nevertheless, data investigating the best diagnostic strategy specifically for the Omicron variant of concern remain scarce. This study fills this gap in current knowledge and elucidates the question of which strategy to use in which patient. It provides a new basis for further improving COVID-19 screening programs and managing patients suspected to have COVID-19.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2/genética , Estudos Prospectivos , Saliva , COVID-19/diagnóstico , Manejo de Espécimes
12.
Microbiol Spectr ; 10(6): e0147722, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314981

RESUMO

Coronavirus disease 2019 (COVID-19) was first detected in Mexico in February 2020. Even though health authorities did not perceive then the value of viral detection tests, we anticipated the demand for them. We set up to develop an expeditious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) molecular diagnostic service through the implementation of standardized protocols for biospecimen sampling, transportation, biobanking, preanalytical validation, and nucleic acids (NA) testing (NAT). Nasopharyngeal and oropharyngeal swabs collected in a special transportation medium were the biospecimens from which NAs were purified either manually or automatically. Viral RNA genome presence was determined using commercial SARS-CoV-2 detection kits (based on reverse transcription coupled with real-time PCR [RT-PCR]). Improvements in laboratory processing speed and reliability resulted from semi-automatizing laboratory processes and adopting a quality control/quality assurance system (QC/QA), respectively. NAs that were purified, either manually or automatically, were validated by preanalytical spectrophotometric characterization. Automated purification was less prone to contamination and reduced the processing time. The following six RT-PCR kits were evaluated for their convenience, specificity, sensitivity, time consumption, and required materials (in order, starting with the kit with the best results): RIDA gene and Viasure (tied), Vircell, LightMix, 1copy, and Logix Smart. Redesigning the laboratories' working areas, equipment, fluxes of personnel and material, and personnel skills, and overemphasizing biosafety safeguards were major challenges encountered in the middle of the sanitary crisis. Adopting a QC/QA system, utilizing automatization processes, and working closely with health authorities were key factors in our success. IMPORTANCE Rearranging our diagnostic laboratories to improve the fight against a new unexpected, unpredictable, and sudden public health threat demanded that we move quickly to redesign not only the laboratory processes but also the distribution of space, personnel activities, and fluxes of material coming in and out. We also had to work closely with governmental health authorities to gain their trust in our technical competence. Gaining the confidence of the clients, i.e., mainly individuals, the human resource departments of factories and corporations sending employees for testing, and medical institutions, and implementing as much automatization as possible of processes, in which only officially approved reagents (for extraction and analysis of NA) were used to generate opportune trustable testing results, were key factors. Our laboratories have gathered a considerable amount of experience and significant number of solutions, considering our geographic contexts alongside this continuously morphing pandemic, validating many techniques that might help other laboratories find a better and more precise workflow.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Laboratórios , Pandemias , Reprodutibilidade dos Testes , Bancos de Espécimes Biológicos
13.
Mol Ther Methods Clin Dev ; 26: 266-278, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35818571

RESUMO

Although several therapeutics are used to treat coronavirus disease 2019 (COVID-19) patients, there is still no definitive metabolic marker to evaluate disease severity and recovery or a quantitative test to end quarantine. Because severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infects human cells via the angiotensin-converting-enzyme 2 (ACE2) receptor and COVID-19 is associated with renin-angiotensin system dysregulation, we evaluated soluble ACE2 (sACE2) activity in the plasma/saliva of 80 hospitalized COVID-19 patients and 27 non-COVID-19 volunteers, and levels of ACE2/Ang (1-7) in plasma or membrane (mACE2) in lung autopsy samples. sACE2 activity was markedly reduced (p < 0.0001) in COVID-19 plasma (n = 59) compared with controls (n = 27). Nadir sACE2 activity in early hospitalization was restored during disease recovery, irrespective of patient age, demographic variations, or comorbidity; in convalescent plasma-administered patients (n = 45), restoration was statistically higher than matched controls (n = 22, p = 0.0021). ACE2 activity was also substantially reduced in the saliva of COVID-19 patients compared with controls (p = 0.0065). There is a strong inverse correlation between sACE2 concentration and sACE2 activity and Ang (1-7) levels in participant plasmas. However, there were no difference in membrane ACE2 levels in lungs of autopsy tissues of COVID-19 (n = 800) versus other conditions (n = 300). These clinical observations suggest sACE2 activity as a potential biomarker and therapeutic target for COVID-19.

14.
Diagnostics (Basel) ; 11(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34441239

RESUMO

SARS-CoV-2 outbreak led to unprecedented innovative scientific research to preclude the virus dissemination and limit its impact on life expectancy. Waiting for the collective immunity by vaccination, mass-testing, and isolation of positive cases remain essential. The development of a diagnosis method requiring a simple and non-invasive sampling with a quick and low-cost approach is on demand. We hypothesized that the combination of saliva specimens with MALDI-TOF MS profiling analyses could be the winning duo. Before characterizing MS saliva signatures associated with SARS-CoV-2 infection, optimization and standardization of sample collection, preparation and storage up to MS analyses appeared compulsory. In this view, successive experiments were performed on saliva from healthy healthcare workers. Specimen sampling with a roll cotton of Salivette® devices appeared the most appropriate collection mode. Saliva protein precipitation with organic buffers did not improved MS spectra profiles compared to a direct loading of samples mixed with acetonitrile/formic acid buffer onto MS plate. The assessment of sample storage conditions and duration revealed that saliva should be stored on ice until MS analysis, which should occur on the day of sampling. Kinetic collection of saliva highlighted reproducibility of saliva MS profiles over four successive days and also at two-week intervals. The intra-individual stability of saliva MS profiles should be a key factor in the future investigation for biomarkers associated with SARS-CoV-2 infection. However, the singularity of MS profiles between individuals will require the development of sophisticated bio-statistical analyses such as machine learning approaches. MALDI-TOF MS profiling of saliva could be a promising PCR-free tool for SARS-CoV-2 screening.

15.
Int J Lab Hematol ; 43(1): 116-122, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32812365

RESUMO

INTRODUCTION: Coronavirus disease 2019 (COVID-19) is characterized by a high contagiousness requiring isolation measures. At this time, diagnosis is based on the positivity of specific RT-PCR and/or chest computed tomography scan, which are time-consuming and may delay diagnosis. Complete blood count (CBC) can potentially contribute to the diagnosis of COVID-19. We studied whether the analysis of cellular population data (CPD), provided as part of CBC-Diff analysis by the DxH 800 analyzers (Beckman Coulter), can help to identify SARS-CoV-2 infection. METHODS: Cellular population data of the different leukocyte subpopulations were analyzed in 137 controls, 322 patients with proven COVID-19 (COVID+), and 285 patients for whom investigations were negative for SARS-CoV-2 infection (COVID-). When CPD of COVID+ were different from controls and COVID- patients, we used receiver operating characteristic analysis to test the discriminating capacity of the individual parameters. Using a random forest classifier, we developed the algorithm based on the combination of 4 monocyte CPD to discriminate COVID+ from COVID- patients. This algorithm was tested prospectively in a series of 222 patients referred to the emergency unit. RESULTS: Among the 222 patients, 86 were diagnosed as COVID-19 and 60.5% were correctly identified using the discriminating protocol. Among the 136 COVID- patients, 10.3% were misclassified (specificity 89.7%, sensitivity 60.5%). False negatives were observed mainly in patients with a low inflammatory state whereas false positives were mainly seen in patients with sepsis. CONCLUSION: Consideration of CPD could constitute a first step and potentially aid in the early diagnosis of COVID-19.


Assuntos
Teste para COVID-19 , COVID-19/diagnóstico , Diagnóstico Precoce , Contagem de Leucócitos , Pandemias , SARS-CoV-2 , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/sangue , COVID-19/diagnóstico por imagem , COVID-19/epidemiologia , Teste de Ácido Nucleico para COVID-19 , Árvores de Decisões , Reações Falso-Negativas , Reações Falso-Positivas , Feminino , Humanos , Leucócitos/classificação , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Curva ROC , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Aprendizado de Máquina Supervisionado , Tomografia Computadorizada por Raios X , Adulto Jovem
16.
Microorganisms ; 9(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34576805

RESUMO

Saliva sampling could serve as an alternative non-invasive sample for SARS-CoV-2 diagnosis while rapid antigen tests (RATs) might help to mitigate the shortage of reagents sporadically encountered with RT-PCR. Thus, in the RESTART study we compared antigen and RT-PCR testing methods on nasopharyngeal (NP) swabs and salivary samples. We conducted a prospective observational study among COVID-19 hospitalized patients between 10 December 2020 and 1 February 2021. Paired saliva and NP samples were investigated by RT-PCR (Cobas 6800, Roche-Switzerland, Basel, Switzerland) and by two rapid antigen tests: One Step Immunoassay Exdia® COVID-19 Ag (Precision Biosensor, Daejeon, Korea) and Standard Q® COVID-19 Rapid Antigen Test (Roche-Switzerland). A total of 58 paired NP-saliva specimens were collected. A total of 32 of 58 (55%) patients were hospitalized in the intensive care unit, and the median duration of symptoms was 11 days (IQR 5-19). NP and salivary RT-PCR exhibited sensitivity of 98% and 69% respectively, whereas the specificity of these RT-PCRs assays was 100%. The NP RATs exhibited much lower diagnostic performance, with sensitivities of 35% and 41% for the Standard Q® and Exdia® assays, respectively, when a wet-swab approach was used (i.e., when the swab was diluted in the viral transport medium (VTM) before testing). The sensitivity of the dry-swab approach was slightly better (47%). These antigen tests exhibited very low sensitivity (4% and 8%) when applied to salivary swabs. Nasopharyngeal RT-PCR is the most accurate test for COVID-19 diagnosis in hospitalized patients. RT-PCR on salivary samples may be used when nasopharyngeal swabs are contraindicated. RATs are not appropriate for hospitalized patients.

17.
Biosens Bioelectron ; 172: 112752, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33126180

RESUMO

A fast and accurate self-testing tool for COVID-19 diagnosis has become a prerequisite to comprehend the exact number of cases worldwide and to take medical and governmental actions accordingly. SARS-CoV-2 (formerly, 2019-nCoV) infection was first reported in Wuhan (China) in December 2019, and then it has rapidly spread around the world, causing ~14 million active cases with ~582,000 deaths as of July 2020. The diagnosis tools available so far have been based on a) viral gene detection, b) human antibody detection, and c) viral antigen detection, among which the viral gene detection by RT-PCR has been found as the most reliable technique. In this report, the current SARS-CoV-2 detection kits, exclusively the ones that were issued an "Emergency Use Authorization" from the U.S. Food and Drug Administration, were discussed. The key structural components of the virus were presented to provide the audience with an understanding of the scientific principles behind the testing tools. The methods that are still in the early research state were also reviewed in a subsection based on the reports available so far.


Assuntos
Técnicas Biossensoriais/métodos , Teste para COVID-19/métodos , COVID-19/diagnóstico , Anticorpos Antivirais/análise , Antígenos Virais/análise , Técnicas Biossensoriais/instrumentação , COVID-19/imunologia , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/instrumentação , Teste de Ácido Nucleico para COVID-19/métodos , Teste Sorológico para COVID-19/instrumentação , Teste Sorológico para COVID-19/métodos , Teste para COVID-19/instrumentação , Genoma Viral , Humanos , Pandemias , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/imunologia
18.
Biol Methods Protoc ; 5(1): bpaa017, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072873

RESUMO

Rigorous testing is the way forward to fight the coronavirus disease 2019 pandemic. Here we show that the currently used and most reliable reverse transcription-polymerase chain reaction-based severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) procedure can be further simplified to make it faster, safer, and economical by eliminating the RNA isolation step. The modified method is not only fast and convenient but also at par with the traditional method in terms of accuracy, and therefore can be used for mass screening. Our method takes about half the time and is cheaper by ∼40% compared to the currently used method. We also provide a variant of the new method that increases the efficiency of detection by ∼30% compared to the existing procedure. Taken together, we demonstrate a more effective and reliable method of SARS-CoV-2 detection.

19.
Orphanet J Rare Dis ; 15(1): 350, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339521

RESUMO

On March 11, 2020, WHO has defined the novel coronavirus disease SARS-CoV-2 (COVID-19) outbreak as a pandemic that still today continues to affect much of the world. Among the reasons for the rapid spread of SARS-CoV-2 infection, there is the role of asymptomatic or minimally symptomatic carriers. Therefore diagnostic testing is central to contain the global pandemic. Up to now real-time reverse transcriptase polymerase chain reaction-based molecular assays for detecting SARS-CoV-2 in respiratory specimens is the current reference standard for COVID-19 diagnosis. Based on current knowledge regarding the sensitivity of the molecular test, the highest positive detection rate is from lower respiratory tract specimens; alternatively it is possible to perform a nasopharyngeal or oropharyngeal swab. Nasopharyngeal swab is the preferred choice for SARS-CoV-2 testing since it seems to have a greater sensitivity; however the procedure is not always free of complications and an epistaxis can occur. Among patients with greatest risk of massive nosebleed there are HHT patients. Hereditary hemorrhagic telangiectasia is an autosomal dominant disease that leads to multiregional mucocutanous telangiectases and visceral arteriovenous malformations. Clinically, the presence of telangiectases in nasal mucosa is the cause of recurrent epistaxis. In HHT patients the execution of the nasopharyngeal swab can determine from little or no consequences to a massive epistaxis leading to the necessity of nasal packing generally followed by hospital admission. In HHT patients undergoing a diagnostic test to evaluate the SARS-CoV-2 infection status, especially in those patients with frequent epistaxis with a history of anemia and repeated hospitalizations, it is therefore advisable to perform an oropharyngeal swab. This, compared to the nasopharyngeal swab, exposes to a lower risk of severe nosebleeds related treatments, such as blood transfusions or invasive procedures. According to the risk-benefit assessment and based on our experience, we consider that, despite a lower diagnostic sensitivity, oropharyngeal swab is preferable to nasopharyngeal swab for the diagnosis of SARS CoV-2 infection in patients with HHT.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Nasofaringe/virologia , Orofaringe/virologia , SARS-CoV-2 , Telangiectasia Hemorrágica Hereditária/complicações , COVID-19/complicações , Epistaxe/etiologia , Epistaxe/prevenção & controle , Humanos
20.
Mem. Inst. Oswaldo Cruz ; 118: e220202, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1422150

RESUMO

BACKGROUND The prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) has changed unevenly over time around the world. Although whole genome sequencing is the gold standard for virus characterisation, the discovery of alpha VOC causing spike gene target failure (SGTF) result, when tested using an reverse transcription real-time polymerase chain reaction (RT-qPCR) assay, has provided a simple tool for tracking the frequencies of variants. OBJECTIVES The aim of this study was to investigate if a multiplex RT-qPCR assay (BioM 4Plex VOC) could be used to detect SARS-CoV-2 and to perform a VOC screening test in a single reaction tube. Here, we present the multicentre study evaluating this assay. METHODS Twelve laboratories have participated in the multicentre study. The BioM 4Plex VOC was distributed to them with detailed instructions of how to perform the test. They were asked to test the BioM 4Plex VOC in parallel with their routine Commercial SARS-CoV-2 diagnostic assay. Additionally, they were requested to select SARS-CoV-2-positive samples with genome sequenced and lineage definition according to PANGO lineage classification. FINDINGS The BioM 4Plex VOC and commercial RT-PCR assay are equally effective in detecting SARS-CoV-2. Results revealed a specificity of 96.5-100% [95% confidence interval (CI)], a sensitivity of 99.8-100% (95% CI), and an accuracy of 99.8-100% (95% CI). A 99% concordance rate was found between results from the BioM 4Plex VOC and that from available genome sequencing data. MAIN CONCLUSIONS The BioM 4Plex VOC provides an effective solution to detect SARS-CoV-2 infections and screening for VOCs in a single reaction. It is a straightforward method to help us monitor the frequency and distribution of VOCs and develop strategies to better cope with the pandemics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA