Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 517
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(5): 860-871.e13, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120603

RESUMO

The SARS-CoV-2 Omicron variant with increased fitness is spreading rapidly worldwide. Analysis of cryo-EM structures of the spike (S) from Omicron reveals amino acid substitutions forging interactions that stably maintain an active conformation for receptor recognition. The relatively more compact domain organization confers improved stability and enhances attachment but compromises the efficiency of the viral fusion step. Alterations in local conformation, charge, and hydrophobic microenvironments underpin the modulation of the epitopes such that they are not recognized by most NTD- and RBD-antibodies, facilitating viral immune escape. Structure of the Omicron S bound with human ACE2, together with the analysis of sequence conservation in ACE2 binding region of 25 sarbecovirus members, as well as heatmaps of the immunogenic sites and their corresponding mutational frequencies, sheds light on conserved and structurally restrained regions that can be used for the development of broad-spectrum vaccines and therapeutics.


Assuntos
Evasão da Resposta Imune/fisiologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Antivirais/imunologia , Sítios de Ligação , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Microscopia Crioeletrônica , Humanos , Mutagênese Sítio-Dirigida , Testes de Neutralização , Ligação Proteica , Domínios Proteicos/imunologia , Estrutura Quaternária de Proteína , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Ressonância de Plasmônio de Superfície , Ligação Viral
2.
Cell ; 185(6): 1025-1040.e14, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35148837

RESUMO

During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination.


Assuntos
Anticorpos Antivirais , Vacina BNT162 , COVID-19 , Centro Germinativo , Antígenos Virais , COVID-19/prevenção & controle , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Vacinação
3.
Immunity ; 57(3): 587-599.e4, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38395697

RESUMO

It is thought that mRNA-based vaccine-induced immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wanes quickly, based mostly on short-term studies. Here, we analyzed the kinetics and durability of the humoral responses to SARS-CoV-2 infection and vaccination using >8,000 longitudinal samples collected over a 3-year period in New York City. Upon primary immunization, participants with pre-existing immunity mounted higher antibody responses faster and achieved higher steady-state antibody titers than naive individuals. Antibody kinetics were characterized by two phases: an initial rapid decay, followed by a stabilization phase with very slow decay. Booster vaccination equalized the differences in antibody concentration between participants with and without hybrid immunity, but the peak antibody titers decreased with each successive antigen exposure. Breakthrough infections increased antibodies to similar titers as an additional vaccine dose in naive individuals. Our study provides strong evidence that SARS-CoV-2 antibody responses are long lasting, with initial waning followed by stabilization.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , Formação de Anticorpos , Vacinação , Imunização Secundária , Vacinas de mRNA , Anticorpos Antivirais
4.
Immunity ; 57(4): 904-911.e4, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38490197

RESUMO

Immune imprinting describes how the first exposure to a virus shapes immunological outcomes of subsequent exposures to antigenically related strains. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Omicron breakthrough infections and bivalent COVID-19 vaccination primarily recall cross-reactive memory B cells induced by prior Wuhan-Hu-1 spike mRNA vaccination rather than priming Omicron-specific naive B cells. These findings indicate that immune imprinting occurs after repeated Wuhan-Hu-1 spike exposures, but whether it can be overcome remains unclear. To understand the persistence of immune imprinting, we investigated memory and plasma antibody responses after administration of the updated XBB.1.5 COVID-19 mRNA vaccine booster. We showed that the XBB.1.5 booster elicited neutralizing antibody responses against current variants that were dominated by recall of pre-existing memory B cells previously induced by the Wuhan-Hu-1 spike. Therefore, immune imprinting persists after multiple exposures to Omicron spikes through vaccination and infection, including post XBB.1.5 booster vaccination, which will need to be considered to guide future vaccination.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Neutralizantes , RNA Mensageiro/genética , Vacinação , Anticorpos Antivirais
5.
Immunity ; 56(3): 669-686.e7, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36889306

RESUMO

Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against novel pandemic coronaviruses and to more effectively respond to SARS-CoV-2 variants. The emergence of Omicron and subvariants of SARS-CoV-2 illustrates the limitations of solely targeting the receptor-binding domain (RBD) of the spike (S) protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors, which targets a conserved S2 region in the betacoronavirus spike fusion machinery. Select bnAbs showed broad in vivo protection against all three deadly betacoronaviruses, SARS-CoV-1, SARS-CoV-2, and MERS-CoV, which have spilled over into humans in the past two decades. Structural studies of these bnAbs delineated the molecular basis for their broad reactivity and revealed common antibody features targetable by broad vaccination strategies. These bnAbs provide new insights and opportunities for antibody-based interventions and for developing pan-betacoronavirus vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , Anticorpos Antivirais
6.
Immunity ; 56(4): 864-878.e4, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36996809

RESUMO

T cells are a critical component of the response to SARS-CoV-2, but their kinetics after infection and vaccination are insufficiently understood. Using "spheromer" peptide-MHC multimer reagents, we analyzed healthy subjects receiving two doses of the Pfizer/BioNTech BNT162b2 vaccine. Vaccination resulted in robust spike-specific T cell responses for the dominant CD4+ (HLA-DRB1∗15:01/S191) and CD8+ (HLA-A∗02/S691) T cell epitopes. Antigen-specific CD4+ and CD8+ T cell responses were asynchronous, with the peak CD4+ T cell responses occurring 1 week post the second vaccination (boost), whereas CD8+ T cells peaked 2 weeks later. These peripheral T cell responses were elevated compared with COVID-19 patients. We also found that previous SARS-CoV-2 infection resulted in decreased CD8+ T cell activation and expansion, suggesting that previous infection can influence the T cell response to vaccination.


Assuntos
COVID-19 , Vacinas , Humanos , Linfócitos T CD8-Positivos , Vacina BNT162 , SARS-CoV-2 , Vacinação , Anticorpos Antivirais
7.
Immunity ; 54(8): 1841-1852.e4, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34246326

RESUMO

Antibody titers against SARS-CoV-2 slowly wane over time. Here, we examined how time affects antibody potency. To assess the impact of antibody maturation on durable neutralizing activity against original SARS-CoV-2 and emerging variants of concern (VOCs), we analyzed receptor binding domain (RBD)-specific IgG antibodies in convalescent plasma taken 1-10 months after SARS-CoV-2 infection. Longitudinal evaluation of total RBD IgG and neutralizing antibody revealed declining total antibody titers but improved neutralization potency per antibody to original SARS-CoV-2, indicative of antibody response maturation. Neutralization assays with authentic viruses revealed that early antibodies capable of neutralizing original SARS-CoV-2 had limited reactivity toward B.1.351 (501Y.V2) and P.1 (501Y.V3) variants. Antibodies from late convalescents exhibited increased neutralization potency to VOCs, suggesting persistence of cross-neutralizing antibodies in plasma. Thus, maturation of the antibody response to SARS-CoV-2 potentiates cross-neutralizing ability to circulating variants, suggesting that declining antibody titers may not be indicative of declining protection.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , COVID-19/epidemiologia , Humanos , Imunoglobulina G , Testes de Neutralização , SARS-CoV-2/genética , Carga Viral
8.
Proc Natl Acad Sci U S A ; 121(10): e2313681121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408238

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron strain has evolved into highly divergent variants with several sub-lineages. These newly emerging variants threaten the efficacy of available COVID-19 vaccines. To mitigate the occurrence of breakthrough infections and re-infections, and more importantly, to reduce the disease burden, it is essential to develop a strategy for producing updated multivalent vaccines that can provide broad neutralization against both currently circulating and emerging variants. We developed bivalent vaccine AdCLD-CoV19-1 BA.5/BA.2.75 and trivalent vaccines AdCLD-CoV19-1 XBB/BN.1/BQ.1.1 and AdCLD-CoV19-1 XBB.1.5/BN.1/BQ.1.1 using an Ad5/35 platform-based non-replicating recombinant adenoviral vector. We compared immune responses elicited by the monovalent and multivalent vaccines in mice and macaques. We found that the BA.5/BA.2.75 bivalent and the XBB/BN.1/BQ.1.1 and XBB.1.5/BN.1/BQ.1.1 trivalent vaccines exhibited improved cross-neutralization ability compared to their respective monovalent vaccines. These data suggest that the developed multivalent vaccines enhance immunity against circulating Omicron subvariants and effectively elicit neutralizing antibodies across a broad spectrum of SARS-CoV-2 variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , Vacinas contra COVID-19/genética , COVID-19/prevenção & controle , SARS-CoV-2/genética , Anticorpos Neutralizantes , Macaca , Vacinas Combinadas , Anticorpos Antivirais
9.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38653491

RESUMO

Coronaviruses have threatened humans repeatedly, especially COVID-19 caused by SARS-CoV-2, which has posed a substantial threat to global public health. SARS-CoV-2 continuously evolves through random mutation, resulting in a significant decrease in the efficacy of existing vaccines and neutralizing antibody drugs. It is critical to assess immune escape caused by viral mutations and develop broad-spectrum vaccines and neutralizing antibodies targeting conserved epitopes. Thus, we constructed CovEpiAb, a comprehensive database and analysis resource of human coronavirus (HCoVs) immune epitopes and antibodies. CovEpiAb contains information on over 60 000 experimentally validated epitopes and over 12 000 antibodies for HCoVs and SARS-CoV-2 variants. The database is unique in (1) classifying and annotating cross-reactive epitopes from different viruses and variants; (2) providing molecular and experimental interaction profiles of antibodies, including structure-based binding sites and around 70 000 data on binding affinity and neutralizing activity; (3) providing virological characteristics of current and past circulating SARS-CoV-2 variants and in vitro activity of various therapeutics; and (4) offering site-level annotations of key functional features, including antibody binding, immunological epitopes, SARS-CoV-2 mutations and conservation across HCoVs. In addition, we developed an integrated pipeline for epitope prediction named COVEP, which is available from the webpage of CovEpiAb. CovEpiAb is freely accessible at https://pgx.zju.edu.cn/covepiab/.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Epitopos , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Epitopos/química , Epitopos/genética , Coronavirus/imunologia , Coronavirus/genética , Bases de Dados Factuais , Reações Cruzadas/imunologia
10.
Proc Natl Acad Sci U S A ; 120(17): e2218623120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068248

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads efficiently by spike-mediated, direct cell-to-cell transmission. However, the underlying mechanism is poorly understood. Herein, we demonstrate that the tight junction protein occludin (OCLN) is critical to this process. SARS-CoV-2 infection alters OCLN distribution and expression and causes syncytium formation that leads to viral spread. OCLN knockdown fails to alter SARS-CoV-2 binding but significantly lowers internalization, syncytium formation, and transmission. OCLN overexpression also has no effect on virus binding but enhances virus internalization, cell-to-cell transmission, and replication. OCLN directly interacts with the SARS-CoV-2 spike, and the endosomal entry pathway is involved in OCLN-mediated cell-to-cell fusion rather than in the cell surface entry pathway. All SARS-CoV-2 strains tested (prototypic, alpha, beta, gamma, delta, kappa, and omicron) are dependent on OCLN for cell-to-cell transmission, although the extent of syncytium formation differs between strains. We conclude that SARS-CoV-2 utilizes OCLN as an internalization factor for cell-to-cell transmission.


Assuntos
COVID-19 , Ocludina , Proteínas de Junções Íntimas , Internalização do Vírus , Humanos , Ocludina/genética , Ocludina/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética
11.
J Virol ; : e0052824, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230305

RESUMO

The continued emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants necessitates updating coronavirus disease 2019 (COVID-19) vaccines to match circulating strains. The immunogenicity and efficacy of these vaccines must be tested in pre-clinical animal models. In Syrian hamsters, we measured the humoral and cellular immune response after immunization with the nanoparticle recombinant Spike (S) protein-based COVID-19 vaccine (Novavax, Inc.). We also compared the efficacy of the updated monovalent XBB.1.5 variant vaccine with previous COVID-19 vaccines for the induction of XBB.1.5 and EG.5.1 neutralizing antibodies and protection against a challenge with the EG.5.1 variant of SARS-CoV-2. Immunization induced high levels of S-specific IgG and IgA antibody-secreting cells and antigen-specific CD4+ T cells. The XBB.1.5 and XBB.1.16 vaccines, but not the Prototype vaccine, induced high levels of neutralizing antibodies against the XBB.1.5, EG.5.1, and JN.1 variants of SARS-CoV-2. Upon challenge with the Omicron EG.5.1 variant, the XBB.1.5 and XBB.1.16 vaccines reduced the virus load in the lungs, nasal turbinates, trachea, and nasal washes. The bivalent vaccine (Prototype rS + BA.5 rS) continued to offer protection in the trachea and lungs, but protection was reduced in the upper airways. By contrast, the monovalent Prototype vaccine no longer offered good protection, and breakthrough infections were observed in all animals and tissues. Thus, based on these study results, the protein-based XBB.1.5 vaccine is immunogenic and increased the breadth of protection against the Omicron EG.5.1 variant in the Syrian hamster model. IMPORTANCE: As SARS-CoV-2 continues to evolve, there is a need to assess the immunogenicity and efficacy of updated vaccines against newly emerging variants in pre-clinical models such as mice and hamsters. Here, we compared the immunogenicity and efficacy between the updated XBB.1.5, the original Prototype Wuhan-1, and the bivalent Prototype + BA.5 vaccine against a challenge with the EG.5.1 Omicron variant of SARS-CoV-2 in hamsters. The XBB.1.5 and bivalent vaccine, but not the Prototype, induced serum-neutralizing antibodies against EG.5.1, albeit the titers were higher in the XBB.1.5 immunized hamsters. The presence of neutralizing antibodies was associated with complete protection against EG.5.1 infection in the lower airways and reduced virus titers in the upper airways. Compared with the bivalent vaccine, immunization with XBB.1.5 improved viral control in the nasal turbinates. Together, our data show that the updated vaccine is immunogenic and that it offers better protection against recent variants of SARS-CoV-2.

12.
Mol Cell Proteomics ; 22(4): 100507, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36787877

RESUMO

In November 2022, 68% of the population received at least one dose of COVID-19 vaccines. Owing to the ongoing mutations, especially for the variants of concern (VOCs), it is important to monitor the humoral immune responses after different vaccination strategies. In this study, we developed a SARS-CoV-2 variant protein microarray that contained the spike proteins from the VOCs, e.g., alpha, beta, gamma, delta, and omicron, to quantify the binding antibody and surrogate neutralizing antibody. Plasmas were collected after two doses of matching AZD1222 (AZx2), two doses of matching mRNA-1273 (Mx2), or mixing AZD1222 and mRNA-1273 (AZ+M). The results showed a significant decrease of surrogate neutralizing antibodies against the receptor-binding domain in all VOCs in AZx2 and Mx2 but not AZ+M. A similar but minor reduction pattern of surrogate neutralizing antibodies against the extracellular domain was observed. While Mx2 exhibited a higher surrogate neutralizing level against all VOCs compared with AZx2, AZ+M showed an even higher surrogate neutralizing level in gamma and omicron compared with Mx2. It is worth noting that the binding antibody displayed a low correlation to the surrogate neutralizing antibody (R-square 0.130-0.382). This study delivers insights into humoral immunities, SARS-CoV-2 mutations, and mixing and matching vaccine strategies, which may provide a more effective vaccine strategy especially in preventing omicron.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , ChAdOx1 nCoV-19 , Imunidade Humoral , Vacina de mRNA-1273 contra 2019-nCoV , Análise Serial de Proteínas , COVID-19/prevenção & controle , Anticorpos Neutralizantes
13.
Proc Natl Acad Sci U S A ; 119(11): e2122954119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35238654

RESUMO

SignificanceSARS-CoV-2 continues to evolve through emerging variants, more frequently observed with higher transmissibility. Despite the wide application of vaccines and antibodies, the selection pressure on the Spike protein may lead to further evolution of variants that include mutations that can evade immune response. To catch up with the virus's evolution, we introduced a deep learning approach to redesign the complementarity-determining regions (CDRs) to target multiple virus variants and obtained an antibody that broadly neutralizes SARS-CoV-2 variants.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Amplamente Neutralizantes/farmacologia , Vacinas contra COVID-19/imunologia , Regiões Determinantes de Complementaridade , Aprendizado Profundo , Epitopos/imunologia , Humanos , Imunoterapia/métodos , Testes de Neutralização/métodos , Domínios Proteicos , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
14.
J Infect Dis ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028664

RESUMO

Within a multi-state viral genomic surveillance program, we evaluated whether proportions of SARS-CoV-2 infections attributed to the JN.1 variant and to XBB-lineage variants (including HV.1 and EG.5) differed between inpatient and outpatient care settings during periods of cocirculation. Both JN.1 and HV.1 were less likely than EG.5 to account for infections among inpatients versus outpatients (aOR=0.60 [95% CI: 0.43-0.84; p=0.003] and aOR=0.35 [95% CI: 0.21-0.58; p<0.001], respectively). JN.1 and HV.1 variants may be associated with a lower risk of severe illness. The severity of COVID-19 may have attenuated as predominant circulating SARS-CoV-2 lineages shifted from EG.5 to HV.1 to JN.1.

15.
J Infect Dis ; 230(2): e279-e286, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38349280

RESUMO

BACKGROUND: Monovalent Omicron XBB.1.5-containing vaccines were approved for coronavirus disease 2019 (COVID-19) 2023-2024 immunizations. METHODS: This ongoing, open-label, phase 2/3 study evaluated messenger RNA (mRNA)-1273.815 monovalent (50-µg Omicron XBB.1.5 spike mRNA) and mRNA-1273.231 bivalent (25-µg each Omicron XBB.1.5 and BA.4/BA.5 spike mRNAs) vaccines, administered as fifth doses to adults who previously received primary series, third doses of an original mRNA COVID-19 vaccine, and fourth doses of an Omicron BA.4/BA.5 bivalent vaccine. Interim safety and immunogenicity 29 days after vaccination are reported. RESULTS: Participants (randomized 1:1) received 50-µg of mRNA-1273.815 (n = 50) or mRNA-1273.231 (n = 51); median intervals (interquartile range) from prior BA.4/BA.5 bivalent doses were 8.2 (8.1-8.3) and 8.3 (8.1-8.4) months, respectively. Fold increases in neutralizing antibody (nAb) against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants from prebooster nAb levels were numerically higher against XBB.1.5, XBB.1.16, EG.5.1, BA.2.86, and JN.1 than BA.4/BA.5, BQ.1.1, or D614G on day 29. Monovalent vaccine also cross-neutralized FL.1.5.1, EG.5.1, BA.2.86, HK.3.1, HV.1, and JN.1 variants in a participant subset (n = 20) 15 days after vaccination. Reactogenicity was similar to that of mRNA-1273 vaccines. CONCLUSIONS: XBB.1.5-containing mRNA-1273 vaccines elicit robust, diverse nAb responses against more recent SARS-CoV-2 variants, including JN.1, supporting the XBB.1.5-spike update for COVID-19 vaccines.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunogenicidade da Vacina , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , COVID-19/imunologia , Adulto , Feminino , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Anticorpos Antivirais/sangue , Masculino , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Pessoa de Meia-Idade , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/administração & dosagem , Vacinação , Adulto Jovem , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Idoso
16.
J Infect Dis ; 229(5): 1382-1386, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38214559

RESUMO

The complexity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its variants in lung cells can truly be characterized only at the tissue and protein levels among unique cell subtypes. However, in vivo data are limited due to lack of accessible human tissues. Using a transgenic mouse model of SARS-CoV-2 infection and flow cytometry, we provide in vivo novel insight at the protein level that the differential impact of SARS-CoV-2 (Wuhan strain) and its B.1.617.2 (Delta) and BA.1 (Omicron) variants on lung may be attributed to differential patterns of viral protein levels among ciliated airway cells, alveolar types 1 and 2 cells, immune cells, and endothelial lung cells.


Assuntos
COVID-19 , Pulmão , Camundongos Transgênicos , SARS-CoV-2 , Análise de Célula Única , Animais , COVID-19/virologia , COVID-19/imunologia , Pulmão/virologia , Camundongos , Análise de Célula Única/métodos , Modelos Animais de Doenças , Humanos , Proteínas Virais/genética , Proteínas Virais/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-39311876

RESUMO

The COVID-19 pandemic has underscored the impact of viral infections on individuals with cystic fibrosis (CF). Initial observations suggested lower COVID-19 rates among CF populations; however, subsequent clinical data have presented a more complex scenario. This study aimed to investigate how bronchial epithelial cells from CF and non-CF individuals, including various CF transmembrane conductance regulator (CFTR) mutations, respond to in vitro infection with SARS-CoV-2 variants and SARS-CoV. Comparisons with the Influenza A virus (IAV) were included based on evidence that CF patients experience heightened morbidity from IAV infection. Our findings showed that CF epithelial cells exhibited reduced replication of SARS-CoV-2, regardless of the type of CFTR mutation or SARS-CoV-2 variant, as well as the original 2003 SARS-Cove. In contrast, these cells displayed more efficient IAV replication compared to non-CF cells. Interestingly, the reduced susceptibility to SARS-CoV-2 in CF was not linked to the expression of angiotensin converting enzyme 2 (ACE2) receptor nor to CFTR dysfunction, as pharmacological treatments to restore CFTR function did not normalize the viral response. Both SARS-CoV-2 infection and CFTR function influenced the levels of certain cytokines and chemokines, although these effects were not correlated. Overall, this study reveals a unique viral response in CF epithelial cells, characterized by reduced replication for some viruses like SARS-CoV-2, while showing increased susceptibility to others such as IAV. This research offers a new perspective on CF and viral interactions, emphasizing the need for further investigation into the mechanisms underlying these differences. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

18.
Clin Infect Dis ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107255

RESUMO

BACKGROUND: Assessing variant-specific COVID-19 vaccine effectiveness (VE) and severity can inform public health risk assessments and decisions about vaccine composition. BA.2.86 and its descendants, including JN.1 (referred to collectively as "JN lineages"), emerged in late 2023 and exhibited substantial divergence from co-circulating XBB lineages. METHODS: We analyzed patients hospitalized with COVID-19-like illness at 26 hospitals in 20 U.S. states admitted October 18, 2023-March 9, 2024. Using a test-negative, case-control design, we estimated effectiveness of an updated 2023-2024 (Monovalent XBB.1.5) COVID-19 vaccine dose against sequence-confirmed XBB and JN lineage hospitalization using logistic regression. Odds of severe outcomes, including intensive care unit (ICU) admission and invasive mechanical ventilation (IMV) or death, were compared for JN versus XBB lineage hospitalizations using logistic regression. RESULTS: 585 case-patients with XBB lineages, 397 case-patients with JN lineages, and 4,580 control-patients were included. VE in the first 7-89 days after receipt of an updated dose was 54.2% (95% CI = 36.1%-67.1%) against XBB lineage hospitalization and 32.7% (95% CI = 1.9%-53.8%) against JN lineage hospitalization. Odds of ICU admission (adjusted odds ratio [aOR] 0.80; 95% CI = 0.46-1.38) and IMV or death (aOR 0.69; 95% CI = 0.34-1.40) were not significantly different among JN compared to XBB lineage hospitalizations. CONCLUSIONS: Updated 2023-2024 COVID-19 vaccination provided protection against both XBB and JN lineage hospitalization, but protection against the latter may be attenuated by immune escape. Clinical severity of JN lineage hospitalizations was not higher relative to XBB.

19.
Emerg Infect Dis ; 30(7): 1430-1433, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38916601

RESUMO

We calculated attack rates for household contacts of COVID-19 patients during the SARS-CoV-2 Omicron BA.2-dominant period in Japan. Attack rates among household contacts without recent (<3 months) vaccination was lower for contacts of index patients with complete vaccination than for contacts of index patients without complete vaccination, demonstrating indirect vaccine effectiveness.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Características da Família , SARS-CoV-2 , Eficácia de Vacinas , Humanos , COVID-19/prevenção & controle , COVID-19/epidemiologia , Japão/epidemiologia , SARS-CoV-2/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinação , Busca de Comunicante , Masculino , Feminino
20.
J Transl Med ; 22(1): 755, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135151

RESUMO

BACKGROUND: A definition of the immunological features of COVID-19 pneumonia is needed to support clinical management of aged patients. In this study, we characterized the humoral and cellular immune responses in presence or absence of SARS-CoV-2 vaccination, in aged patients admitted to the IRCCS San Raffaele Hospital (Italy) for COVID-19 pneumonia between November 2021 and March 2022. METHODS: The study was approved by local authorities. Disease severity was evaluated according to WHO guidelines. We tested: (A) anti-SARS-CoV-2 humoral response (anti-RBD-S IgG, anti-S IgM, anti-N IgG, neutralizing activity against Delta, BA1, BA4/5 variants); (B) Lymphocyte B, CD4 and CD8 T-cell phenotype; (C) plasma cytokines. The impact of vaccine administration and different variants on the immunological responses was evaluated using standard linear regression models and Tobit models for censored outcomes adjusted for age, vaccine doses and gender. RESULT: We studied 47 aged patients (median age 78.41), 22 (47%) female, 33 (70%) older than 70 years (elderly). At hospital admission, 36% were unvaccinated (VACno), whilst 63% had received 2 (VAC2) or 3 doses (VAC3) of vaccine. During hospitalization, WHO score > 5 was higher in unvaccinated (14% in VAC3 vs. 43% in VAC2 and 44% VACno). Independently from vaccination doses and gender, elderly had overall reduced anti-SARS-CoV-2 humoral response (IgG-RBD-S, p = 0.0075). By linear regression, the anti-RBD-S (p = 0.0060), B (p = 0.0079), CD8 (p = 0.0043) and Th2 cell counts (p = 0.0131) were higher in VAC2 + 3 compared to VACno. Delta variant was the most representative in VAC2 (n = 13/18, 72%), detected in 41% of VACno, whereas undetected in VAC3, and anti-RBD-S production was higher in VAC2 vs. VACno (p = 0.0001), alongside neutralization against Delta (p = 0141), BA1 (p = 0.0255), BA4/5 (p = 0.0162). Infections with Delta also drove an increase of pro-inflammatory cytokines (IFN-α, p = 0.0463; IL-6, p = 0.0010). CONCLUSIONS: Administration of 3 vaccination doses reduces the severe symptomatology in aged and elderly. Vaccination showed a strong association with anti-SARS-CoV-2 humoral response and an expansion of Th2 T-cells populations, independently of age. Delta variants and number of vaccine doses affected the magnitude of the humoral response against the original SARS-CoV-2 and emerging variants. A systematic surveillance of the emerging variants is paramount to define future vaccination strategies.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Vacinação , Humanos , Feminino , Masculino , COVID-19/imunologia , Idoso , SARS-CoV-2/imunologia , Idoso de 80 Anos ou mais , Vacinas contra COVID-19/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Imunidade Humoral , Citocinas/sangue , Itália , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA