Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
1.
Nano Lett ; 24(29): 9065-9073, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38985516

RESUMO

The metal oxide electron transport layers (ETLs) of n-i-p perovskite solar cells (PSCs) are dominated by TiO2 and SnO2, while the efficacy of the other metal oxide ETLs still lags far behind. Herein, an emerging, economical, and environmentally friendly metal oxide, antimony oxide (Sb2Ox, x = 2.17), prepared by chemical bath deposition is reported as an alternative ETL for PSCs. The deposited Sb2Ox film is amorphous and very thin (∼10 nm) but conformal on rough fluorine-doped tin oxide substrates, showing matched energy levels, efficient electron extraction, and then reduced nonradiative recombination in PSCs. The champion PSC based on the Sb2Ox ETL delivers an impressive power conversion efficiency of 24.7% under one sun illumination, which represents the state-of-the-art performance of all metal oxide ETL-based PSCs. Additionally, the Sb2Ox-based devices show improved operational and thermal stability compared to their SnO2-based counterparts. Armed with these findings, we believe this work offers an optional ETL for perovskites-based optoelectronic devices.

2.
Small ; 20(10): e2308895, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875777

RESUMO

Antimony-based chalcogenides have emerged as promising candidates for next-generation thin film photovoltaics. Particularly, binary Sb2 S3 thin films have exhibited great potential for optoelectronic applications, due to the facile and low-cost fabrication, simple composition, decent charge transport and superior stability. However, most of the reported efficient Sb2 S3 solar cells are realized based on chemical bath deposition and hydrothermal methods, which require large amount of solution and are normally very time-consuming. In this work, Ag ions are introduced within the Sb2 S3 sol-gel precursors, and effectively modulated the crystallization and charge transport properties of Sb2 S3 . The crystallinity of the Sb2 S3 crystal grains are enhanced and the charge carrier mobility is increased, which resulted improved charge collection efficiency and reduced charge recombination losses, reflected by the greatly improved fill factor and open-circuit voltage of the Ag incorporated Sb2 S3 solar cells. The champion devices reached a record high power conversion efficiency of 7.73% (with antireflection coating), which is comparable with the best photovoltaic performance of Sb2 S3 solar cells achieved based on chemical bath deposition and hydrothermal techniques, and pave the great avenue for next-generation solution-processed photovoltaics.

3.
Small ; 20(10): e2306350, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37880880

RESUMO

Nanoscale superlattice (SL) structures have proven to be effective in enhancing the thermoelectric (TE) properties of thin films. Herein, the main phase of antimony telluride (Sb2 Te3 ) thin film with sub-nanometer layers of antimony oxide (SbOx ) is synthesized via atomic layer deposition (ALD) at a low temperature of 80 °C. The SL structure is tailored by varying the cycle numbers of Sb2 Te3 and SbOx . A remarkable power factor of 520.8 µW m-1 K-2 is attained at room temperature when the cycle ratio of SbOx and Sb2 Te3 is set at 1:1000 (i.e., SO:ST = 1:1000), corresponding to the highest electrical conductivity of 339.8 S cm-1 . The results indicate that at the largest thickness, corresponding to ten ALD cycles, the SbOx layers act as a potential barrier that filters out the low-energy charge carriers from contributing to the overall electrical conductivity. In addition to enhancing the scattering of the mid-to-long-wavelength at the SbOx /Sb2 Te3 interface, the presence of the SbOx sub-layer induces the confinement effect and strain forces in the Sb2 Te3 thin film, thereby effectively enhancing the Seebeck coefficient and reducing the thermal conductivity. These findings provide a new perspective on the design of SL-structured TE materials and devices.

4.
Small ; : e2406035, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39449205

RESUMO

Sb2Se3 emerges as a promising material for solar energy conversion devices. Unfortunately, the common deep-level defect VSe (selenium vacancy) in Sb2Se3 results in a low solar conversion efficiency. The post selenization process has been widely adopted for suppressing VSe. However, the effect of selenization on suppressing VSe is often compromised and even more VSe are induced due to defect-correlation. Herein, high-quality Sb2Se3 films are prepared using an unconventional selenization process, with precisely regulating in situ annealing Se vapor pressure. It is found that moderate Se vapor pressure annealing can efficiently suppress VSe by overcoming defect-correlation, as well as promotes grain growth and forms a better heterojunction band alignment. Consequently, the Sb2Se3 photocathode shows a high-level photocurrent of 19.5 mA cm-2 at 0 VRHE, an onset potential of 0.40 VRHE and a half-cell solar-to-hydrogen conversion efficiency of 1.9%, owing to the inhibited charge recombination, excellent charge transport and interface charge extraction. This work provides a significant insight to suppress deep-level defect VSe by adjusting Se vapor pressure for efficient Sb2Se3 photocathode.

5.
Small ; : e2403051, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39460420

RESUMO

Antimony selenide (Sb2Se3) has demonstrated considerable potential and advancement as a light-absorbing material for thin-film solar cells owing to its exceptional optoelectronic characteristics. However, challenges persist in the crystal growth, particularly regarding the nucleation mechanism during pre-selenization process for Sb2Se3. The defects originating from this process significantly impact the quality of the absorber layer, leading to the degradation in the power conversion efficiency (PCE) of the device. Herein, the evolution of pre-selenization using rapid thermal processing (RTP) on the crystallization quality of Sb2Se3 film is systematically investigated. By optimizing the initial nucleation process during pre-selenization, resulting in a reduction of grain boundaries and nucleation centers, the Sb2Se3 thin films demonstrate enhanced crystallinity and pinholes-free morphology. It is found that the improved quality of the grain interior and interfaces of the Sb2Se3 absorber can mitigate intrinsic defects within the bulk layer, and passivate interfacial defect recombination. As a result, the short circuit current density (JSC) is elevated to 28.97 mA cm-2, and a competitive efficiency of 9.03% is achieved in Sb2Se3 device. This study provides comprehensive insight into the process of crystal growth and the mechanism for defect suppression, which holds guiding significance for advancing photovoltaic performance.

6.
Small ; : e2403292, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958094

RESUMO

Antimony selenide (Sb2Se3) has sparked significant interest in high-efficiency photovoltaic applications due to its advantageous material and optoelectronic properties. In recent years, there has been considerable development in this area. Nonetheless, defects and suboptimal [hk0] crystal orientation expressively limit further device efficiency enhancement. This study used Zinc (Zn) to adjust the interfacial energy band and strengthen carrier transport. For the first time, it is discovered that the diffusion of Zn in the cadmium sulfide (CdS) buffer layer can affect the crystalline orientation of the Sb2Se3 thin films in the superstrate structure. The effect of Zn diffusion on the morphology of Sb2Se3 thin films with CdxZn1-xS buffer layer has been investigated in detail. Additionally, Zn doping promotes forming Sb2Se3 thin films with the desired [hk1] orientation, resulting in denser and larger grain sizes which will eventually regulate the defect density. Finally, based on the energy band structure and high-quality Sb2Se3 thin films, this study achieves a champion power conversion efficiency (PCE) of 8.76%, with a VOC of 458 mV, a JSC of 28.13 mA cm-2, and an FF of 67.85%. Overall, this study explores the growth mechanism of Sb2Se3 thin films, which can lead to further improvements in the efficiency of Sb2Se3 solar cells.

7.
Small ; 20(27): e2310418, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38267816

RESUMO

Antimony selenosulfide (Sb2(S,Se)3) is an emerging quasi-1D photovoltaic semiconductor with exceptional photoelectric properties. The low-symmetry chain structure contains complex defects and makes it difficult to improve electrical properties via doping method. This article reports a doping strategy to enhance the efficiency of Sb2(S,Se)3 solar cells by using alkali halide (CsI) as the hydrothermal reaction precursor. It is found that the Cs and I ions are effectively doped and atomically coordinate with Sb ions and S/Se ions. The CsI-doping Sb2(S,Se)3 absorbers exhibit enhanced grain morphologies and reduced trap densities. The consequential CsI-doping Sb2(S,Se)3 based solar cells demonstrate favorable band alignment, suppressed carrier recombination, and improved device performance. An efficiency as high as 10.05% under standard AM1.5 illumination irradiance is achieved. This precursor-based alkali halide doping strategy provides a useful guidance for high-efficiency antimony selenosulfide solar cells.

8.
Small ; 20(37): e2402537, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38711307

RESUMO

Cu-based catalysts are the most intensively studied in the field of electrocatalytic CO2 reduction reaction (CO2RR), demonstrating the capacity to yield diverse C1 and C2+ products albeit with unsatisfactory selectivity. Manipulation of the oxidation state of Cu sites during CO2RR process proves advantageous in modulating the selectivity of productions, but poses a formidable challenge. Here, an oxygen spillover strategy is proposed to enhance the oxidation state of Cu during CO2RR by incorporating the oxygen donor Sb2O4. The Cu-Sb bimetallic oxide catalyst attains a remarkable CO2-to-CO selectivity approaching unity, in stark contrast to the diverse product distribution observed with bare CuO. The exceptional Faradaic efficiency of CO can be maintained across a wide range of potential windows of ≈700 mV in 1 m KOH, and remains independent of the Cu/Sb ratio (ranging from 0.1:1 to 10:1). Correlative calculations and experimental results reveal that oxygen spillover from Sb2O4 to Cu sites maintains the relatively high valence state of Cu during CO2RR, which diminishes the binding strength of *CO, thereby achieving heightened selectivity in CO production. These findings propose the role of oxygen spillover in CO2RR over Cu-based catalysts, and shed light on the rational design of highly selective CO2 reduction catalysts.

9.
Small ; 20(9): e2308070, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37849040

RESUMO

Short-wavelength infrared photodetectors play a significant role in various fields such as autonomous driving, military security, and biological medicine. However, state-of-the-art short-wavelength infrared photodetectors, such as InGaAs, require high-temperature fabrication and heterogenous integration with complementary metal-oxide-semiconductor (CMOS) readout circuits (ROIC), resulting in a high cost and low imaging resolution. Herein, for the first time, a low-cost, high-performance, high-stable, and thin-film transistor (TFT) ROIC monolithic-integrated (Bi,Sb)2 Se3 alloy thin-film short-wavelength infrared photodetector is reported. The (Bi,Sb)2 Se3 alloy thin-film short-wavelength infrared photodetectors demonstrate a high external quantum efficiency (EQE) of 21.1% (light intensity of 0.76 µW cm-2 ) and a fast response time (3.24 µs). The highest EQE is about two magnitudes than that of the extrinsic photoconduction of Sb2 Se3 (0.051%). In addition, the unpackaged devices demonstrate high electric and thermal stability (almost no attenuation at 120 °C for 312 h), showing potential for in-vehicle applications that may experient such a high temperature. Finally, both the (Bi,Sb)2 Se3 alloy thin film and n-type CdSe buffer layer are directly deposited on the TFT ROIC (with a 64 × 64-pixel array) with a low-temperature process and the material identification and imaging applications are presented. This work is a significant breakthrough in ROIC monolithic-integrated short-wavelength infrared imaging chips.

10.
Small ; 20(12): e2307798, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946398

RESUMO

P-type Sb2Te3 has been recognized as a potential thermoelectric material for applications in low-medium temperature ranges. However, its inherent high carrier concentration and lattice thermal conductivity led to a relatively low ZT value, particularly around room temperature. This study addresses these limitations by leveraging high-energy ball milling and rapid hot-pressing techniques to substantially enhance the Seebeck coefficient and power factor of Sb2Te3, yielding a remarkable ZT value of 0.55 at 323 K due to the donor-like effect. Furthermore, the incorporation of Nb─Ag co-doping increases hole concentration, effectively suppressing intrinsic excitations ≈548 K while maintaining the favorable power factor. Simultaneously, the lattice thermal conductivity can be significantly reduced upon doping. As a result, the ZT values of Sb2Te3-based materials attain an impressive range of 0.5-0.6 at 323 K, representing an almost 100% improvement compared to previous research endeavors. Finally, the ZT value of Sb1.97Nb0.03Ag0.005Te3 escalates to 0.92 at 548 K with a record average ZT value (ZTavg) of 0.75 within the temperature range of 323-573 K. These achievements hold promising implications for advancing the viability of V-VI commercialized materials for low-medium temperature application.

11.
Small ; 20(4): e2306516, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37715101

RESUMO

Antimony selenide (Sb2 Se3 ) is a highly promising photovoltaic material thanks to its outstanding optoelectronic properties, as well as its cost-effective and eco-friendly merits. However, toxic CdS is widely used as an electron transport layer (ETL) in efficient Sb2 Se3 solar cells, which largely limit their development toward market commercialization. Herein, an effective green Cd-free ETL of SnOx is introduced and deposited by atomic layer deposition method. Additionally, an important post-annealing treatment is designed to further optimize the functional layers and the heterojunction interface properties. Such engineering strategy can optimize SnOx ETL with higher nano-crystallinity, higher carrier density, and less defect groups, modify Sb2 Se3 /SnOx heterojunction with better interface performance and much desirable "spike-like" band alignment, and also improve the Sb2 Se3 light absorber layer quality with passivated bulk defects and prolonged carrier lifetime, and therefore to enhance carrier separation and transport while suppressing non-radiative recombination. Finally, the as-fabricated Cd-free Mo/Sb2 Se3 /SnOx /ITO/Ag thin-film solar cell exhibits a stimulating efficiency of 7.39%, contributing a record value for Cd-free substrate structured Sb2 Se3 solar cells reported to date. This work provides a viable strategy for developing and broadening practical applications of environmental-friendly Sb2 Se3 photovoltaic devices.

12.
Small ; 20(22): e2308229, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38126649

RESUMO

Antimony selenide (Sb2Se3) is a promising semiconductor for photodetector applications due to its unique photovoltaic properties. Achieving optimal carrier transport in (001)-Sb2Se3 by the material of contacting substrate requires in-depth study. In this paper, the induced growth of Sb2Se3 films from (hk0) to (hk1) planes is achieved on digenite (Cu9S5) films by post-annealing treatment. The flake-like and flower-like morphologies on the surface of Sb2Se3 films are caused by different thicknesses of the Cu9S5 films, which are related to the (hk0) and (hk1) planes of Sb2Se3 surface. The epitaxial growth of Sb2Se3 films on (105)-Cu9S5 surfaces exhibits thickness dependence. The results inform research into the controlled induced growth of low-dimensional materials. The device of Sb2Se3/Cu9S5/Si has good broadband response (visible to near-infrared), self-powered characteristics, and stability. As the crystalline quality of the Sb2Se3 film increases along the (hk1) plane, the carrier transport is enhanced correspondingly. Under the 980 nm light irradiation, the device has an excellent switching ratio of 2 × 104 at 0 bias, with responsivity, detectivity, and response time up to 17 µA W-1, 1.48 × 107 Jones, and 355/490 µs, respectively. This suggests that Sb2Se3 is suitable for self-powered photodetectors and related optical and optoelectronic devices.

13.
Small ; 20(23): e2310107, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38111369

RESUMO

Solar-blind ultraviolet (SBUV) to near-infrared (NIR) broadband photodetectors (BB-PD) have important applications in environmental monitoring and other applications. However, it is challenging to prepare SBUV-IR photosensitive materials via simple steps and to construct SBUV-IR broadband devices for multiplex detection with high sensitivity at different wavelengths. Here, self-powered and broadband photodetectors using a high-performance mixed dimensional Sb2O3 nanorod 1-dimension (1D)/monodisperse microdiamond-like PdTe2 3-dimension (3D)/Si (3D) heterojunction for multiplex detection of environmental pollutants with high sensitivity at broadband wavelength are developed. The 1D/3D mixed dimensional Sb2O3/PdTe2/Si structure combines the advantages of strong light absorption, high carrier transport efficiency of 1D Sb2O3 nanorods, and expansion of interface barrier caused by 3D microdiamond-like PdTe2 interlayer to improve the photocurrent density and self-powered ability. The efficient photogenerated charge separation enables anon/off ratio of more than 5 × 106. The device exhibits excellent photoelectric properties from 255 to 980 nm with the responsivity from 4.56 × 10-2 to 6.55 × 10-1 AW-1, the detectivity from 2.36 × 1012 to 3.39 × 1013 Jones, and the sensitivity from 3.90 × 107 to 1.10 × 1010 cm2 W-1 without external bias. Finally, the proposed device is applied for the multiplex monitoring of environmental pollution gases NO2 with the detection limit of 200 ppb and PM2.5 particles at mild pollution at broadband wavelength. The proposed BB-PD has great potential for multiplex detection of environmental pollutants and other analytes at broadband wavelength.

14.
Small ; 20(31): e2311644, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38456373

RESUMO

In the emerging Sb2S3-based solar energy conversion devices, a CdS buffer layer prepared by chemical bath deposition is commonly used to improve the separation of photogenerated electron-hole pairs. However, the cation diffusion at the Sb2S3/CdS interface induces detrimental defects but is often overlooked. Designing a stable interface in the Sb2S3/CdS heterojunction is essential to achieve high solar energy conversion efficiency. As a proof of concept, this study reports that the modification of the Sb2S3/CdS heterojunction with an ultrathin Al2O3 interlayer effectively suppresses the interfacial defects by preventing the diffusion of Cd2+ cations into the Sb2S3 layer. As a result, a water-splitting photocathode based on Ag:Sb2S3/Al2O3/CdS heterojunction achieves a significantly improved half-cell solar-to-hydrogen efficiency of 2.78% in a neutral electrolyte, as compared to 1.66% for the control Ag:Sb2S3/CdS device. This work demonstrates the importance of designing atomic interfaces and may provide a guideline for the fabrication of high-performance stibnite-type semiconductor-based solar energy conversion devices.

15.
Small ; 20(28): e2311478, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38396159

RESUMO

Mg3Sb2-based alloys are attracting increasing attention due to the excellent room temperature thermoelectric properties. However, due to the presence and easy segregation of charged Mg vacancies, the carrier mobility in Mg3Sb2-based alloys is always severely compromised that significantly restricts the room temperature performance. General vacancy compensation strategies cannot synergistically optimize the complicated Mg3Sb2 structures involving both interior and boundary scattering. Herein, due to the multi-functional doping effect of Nb, the electron scattering inside and across grains is significantly suppressed by inhibiting the accumulation of Mg vacancies, and leading to a smooth transmission channel of electrons. The increased Mg vacancies migration barrier and optimized interface potential are also confirmed theoretically and experimentally, respectively. As a result, a leading room temperature zT of 1.02 is achieved. This work reveals the multi-functional doping effect as an efficient approach in improving room temperature thermoelectric performance in complicated defect/interface associated Mg3Sb2-based alloys.

16.
Small ; 20(33): e2400468, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38516967

RESUMO

Alloy-type antimony (Sb) and conversion-type molybdenum (Mo) anodes have attracted extensive attention in the application of lithium-ion batteries (LIBs) owing to their high theoretical capacity. In this study, Sb2MoO6 nanowires are prepared via a hydrothermal method and assessed their thermal behavior upon heat treatment, observing an intriguing transformation from nanowire to Sb2O3/MoOx nanosheets. To enhance structure stability, the Sb2MoO6 nanowires are successfully coated with a polyphosphazene layer (referred to as PZS@Sb2MoO6), which not only preserved the nanowires form but also yielded N/S co-doped carbon-coated SbPO4/MoOx (NS-C@SbPO4/MoOx) nanowires following annealing in an inert environment. This composite benefits from the stable PO4 3- anion that serve as a buffer against volume expansion and form a Li3PO4 matrix during cycling, both of which substantially bolster ion transport and cycle endurance. Doping with heteroatoms introduces numerous oxygen vacancies, augmenting the number of electrochemically active sites, and carbon integration considerably enhances the electronic conductivity of the electrode and alleviates the volume-change-induced electrode pulverization. Employed as anode materials in LIBs, the NS-C@SbPO4/MoOx electrode exhibits remarkable cycling performance (449.8 mA h g-1 at 1000 mA g-1 over 700 cycles) along with superior rate capability (394.2 mA h g-1 at 2000 mA g-1).

17.
Small ; 20(38): e2402935, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38809078

RESUMO

Antimony selenosulfide (Sb2(S,Se)3) has recently emerged as a promising light-absorbing material, attributed to its tunable photovoltaic properties, low toxicity, and robust environmental stability. However, despite these advantages, the current record efficiency for Sb2(S,Se)3 solar cells significantly lags behind their Shockley-Queisser limit, especially when compared to other well-established chalcogenide-based thin-film solar cells, such as CdTe and Cu(In,Ga)Se2. This underperformance primarily arises from the formation of unfavorable defects, predominately located at deep energy levels, which act as recombination centers, thereby limiting the potential for performance enhancement in Sb2(S,Se)3 solar cells. Specifically, deep-level defects, such as sulfur vacancy (VS), have a lower formation energy, leading to severe non-radiative recombination and compromising device performance. To address this challenge, thioacetamide (TA), a sulfur-containing additive is introduced, into the precursor solution for the hydrothermal deposition of Sb2(S,Se)3. This results indicate that the incorporation of TA helps in passivating deep-level defects such as sulfur vacancies and in suppressing the formation of large voids within the Sb2(S,Se)3 absorber. Consequently, Sb2(S,Se)3 solar cells, with reduced carrier recombination and improved film quality, achieved a power conversion efficiency of 9.04%, with notable improvements in open-circuit voltage and fill factor. This work provides deeper insights into the passivation of deep-level donor-like VS defects through the incorporation of a sulfur-containing additive, highlighting pathways to enhance the photovoltaic performance of Sb2(S,Se)3 solar cells.

18.
Nanotechnology ; 35(45)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39137792

RESUMO

Low-cost, highly efficient thermoelectric thin-film materials are becoming increasingly popular as miniaturization progresses. Mg3Sb2has great potential due to its low cost and high performance. However, the fabrication of Mg3Sb2thin films with high power factors (PFs) poses a certain challenge. In this work, we propose a general approach to prepare Mg3Sb2thin films with excellent thermoelectric properties. Using a two-step thermal evaporation and rapid annealing process, (001)-oriented Mg3Sb2thin films are fabricated onc-plane-oriented Al2O3substrates. The structure of the film orientation is optimized by controlling the film thickness, which modulates the thermoelectric performance. The PF of the Mg3Sb2at 500 nm (14µW·m-1·K-2) would increase to 169µW·m-1·K-2with Ag doping (Mg3Ag0.02Sb2) at room temperature. This work provides a new strategy for the development of high-performance thermoelectric thin films at room temperature.

19.
Luminescence ; 39(1): e4603, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37746737

RESUMO

In this study, a glass system based on heavy metal oxides, namely Pb3 O4 -Sb2 O3 -SiO2 , was prepared with Ho2 O3 , Er2 O3 , and Tm2 O3 as dopants. The prepared glass were characterized using X-ray diffraction (XRD) and infrared (IR) studies. The luminescence efficiencies of the three rare earth ions viz., Ho3+ , Er3+ , and Tm3+ in the glass system were investigated, specifically focusing on green (Ho3+ , Er3+ ), blue (Tm3+ ), and near-infrared (NIR) emissions. The optical absorption (OA) and photoluminescence (PL) spectra of RE mixed glass displayed strong bands in the visible and NIR regions, which were analyzed using the Judd-Ofelt (J-O) theory. The J-O coefficients (Ωλ ) were found to be in the order of Ω2 > Ω4 > Ω6 for all the three glass. Notably, the Tm3+ -doped glass exhibited the lowest Ω2 value, which was attributed to a larger degree of disorder in the glass network due to lower fractions of Sb5+ and Pb4+ ions that take part in the glass network forming. This conclusion was arrived based on the IR studies. Furthermore, the quantitative analysis of PL spectra and decay curves indicated that SbHo and SbEr glass were suitable for efficient green emission, while SbTm glass is a promising choice for blue laser emission.


Assuntos
Antimônio , Chumbo , Luminescência , Dióxido de Silício , Óxidos , Vidro
20.
J Environ Manage ; 362: 121347, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838534

RESUMO

The traditional homogenous and heterogenous Fenton reactions have frequently been restrained by the lower production of Fe2+ ions, which significantly obstructs the generation of hydroxyl radicals from the decomposition of H2O2. Thus, we introduce novel photo-Fenton-assisted plasmonic heterojunctions by immobilizing Fe3O4 and Bi nanoparticles onto 3D Sb2O3 via co-precipitation and solvothermal approaches. The ternary Sb2O3/Fe3O4/Bi composites offered boosted photo-Fenton behavior with a metronidazole (MNZ) oxidation efficiency of 92% within 60 min. Among all composites, the Sb2O3/Fe3O4/Bi-5% hybrid exhibited an optimum photo-Fenton MNZ reaction constant of 0.03682 min- 1, which is 5.03 and 2.39 times higher than pure Sb2O3 and Sb2O3/Fe3O4, respectively. The upgraded oxidation activity was connected to the complementary outcomes between the photo-Fenton behavior of Sb2O3/Fe3O4 and the plasmonic effect of Bi NPs. The regular assembly of Fe3O4 and Bi NPs enhances the surface area and stability of Sb2O3/Fe3O4/Bi. Moreover, the limited absorption spectra of Sb2O3 were extended into solar radiation by the Fe3+ defect of Fe3O4 NPs and the surface plasmon resonance (SPR) effect of Bi NPs. The photo-Fenton mechanism suggests that the co-existence of Fe3O4/Bi NPs acts as electron acceptor/donor, respectively, which reduces recombination losses, prolongs the lifetime of photocarriers, and produces more reactive species, stimulating the overall photo-Fenton reactions. On the other hand, the photo-Fenton activity of MNZ antibiotics was optimized under different experimental conditions, including catalyst loading, solution pH, initial MNZ concentrations, anions, and real water environments. Besides, the trapping outcomes verified the vital participation of •OH, h+, and •O2- in the MNZ destruction over Sb2O3/Fe3O4/Bi-5%. In summary, this work excites novel perspectives in developing boosted photosystems through integrating the photocatalysis power with both Fenton reactions and the SPR effects of plasmonic materials.


Assuntos
Peróxido de Hidrogênio , Metronidazol , Oxirredução , Metronidazol/química , Peróxido de Hidrogênio/química , Ressonância de Plasmônio de Superfície , Ferro/química , Poluentes Químicos da Água/química , Antimônio/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA