Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
J Proteome Res ; 23(9): 3877-3889, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39161190

RESUMO

The goal of proteomics experiments is to identify proteins to observe changes in cellular processes and diseases. One challenge in proteomics is the removal of contaminants following protein extraction, which can limit protein identifications. Single-pot, solid-phase-enhanced sample preparation (SP3) is a cleanup technique in which proteins are captured on carboxylate-modified particles through a proposed hydrophilic-interaction-liquid-chromatography (HILIC)-like mechanism. Recent results have suggested that proteins are captured in SP3 due to a protein-aggregation mechanism. Solvent precipitation, single-pot, solid-phase-enhanced sample preparation (SP4) is a newer cleanup technique that employs protein aggregation to capture proteins without modified particles. We hypothesize that differences in capture mechanisms of SP3 and SP4 affect which proteins are identified by each cleanup technique. Herein, we assess the proteins identified and enriched using SP3 versus SP4 for MCF7 subcellular fractions and correlate protein capture in each method to protein hydrophobicity. Our results indicate that SP3 captures more hydrophilic proteins through a combination of HILIC-like and protein-aggregation mechanisms, while SP4 captures more hydrophobic proteins through a protein-aggregation mechanism. Ultimately, we demonstrate that protein-capture mechanisms are distinct, and the selection of a cleanup technique that yields high proteome coverage is dependent on protein-sample hydrophobicity. Data has been deposited into MassIVE (MSV000094130) and ProteomeXchange (PXD049965).


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Proteômica , Proteômica/métodos , Humanos , Cromatografia Líquida/métodos , Células MCF-7 , Proteínas/química , Proteínas/isolamento & purificação , Proteínas/análise , Proteínas/metabolismo , Agregados Proteicos
2.
BMC Cancer ; 24(1): 220, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365636

RESUMO

BACKGROUND: Glioblastoma (GBM) is a relatively prevalent primary tumor of the central nervous system in children, characterized by its high malignancy and mortality rates, along with the intricate challenges of achieving complete surgical resection. Recently, an increasing number of studies have focused on the crucial role of super-enhancers (SEs) in the occurrence and development of GBM. This study embarks on the task of evaluating the effectiveness of MZ1, an inhibitor of BRD4 meticulously designed to specifically target SEs, within the intricate framework of GBM. METHODS: The clinical data of GBM patients was sourced from the Chinese Glioma Genome Atlas (CGGA) and the Gene Expression Profiling Interactive Analysis 2 (GEPIA2), and the gene expression data of tumor cell lines was derived from the Cancer Cell Line Encyclopedia (CCLE). The impact of MZ1 on GBM was assessed through CCK-8, colony formation assays, EdU incorporation analysis, flow cytometry, and xenograft mouse models. The underlying mechanism was investigated through RNA-seq and ChIP-seq analyses. RESULTS: In this investigation, we made a noteworthy observation that MZ1 exhibited a substantial reduction in the proliferation of GBM cells by effectively degrading BRD4. Additionally, MZ1 displayed a notable capability in inducing significant cell cycle arrest and apoptosis in GBM cells. These findings were in line with our in vitro outcomes. Notably, MZ1 administration resulted in a remarkable decrease in tumor size within the xenograft model with diminished toxicity. Furthermore, on a mechanistic level, the administration of MZ1 resulted in a significant suppression of pivotal genes closely associated with cell cycle regulation and epithelial-mesenchymal transition (EMT). Interestingly, our analysis of RNA-seq and ChIP-seq data unveiled the discovery of a novel prospective oncogene, SDC1, which assumed a pivotal role in the tumorigenesis and progression of GBM. CONCLUSION: In summary, our findings revealed that MZ1 effectively disrupted the aberrant transcriptional regulation of oncogenes in GBM by degradation of BRD4. This positions MZ1 as a promising candidate in the realm of therapeutic options for GBM treatment.


Assuntos
Neoplasias Encefálicas , Proteínas que Contêm Bromodomínio , Glioblastoma , Animais , Criança , Humanos , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteínas que Contêm Bromodomínio/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estudos Prospectivos , Sindecana-1/antagonistas & inibidores , Fatores de Transcrição/genética
3.
Int J Colorectal Dis ; 39(1): 142, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289219

RESUMO

OBJECTIVE: The aim of this study is to evaluate the significance of combined detection of Septin9 and syndecan-2 (SDC2) methylation markers and serum tumor markers for the early diagnosis of colorectal cancer. METHODS: A total of 116 patients diagnosed with colorectal cancer between December 2022 and February 2024 were designated as the colorectal cancer group. Additionally, 31 patients with colorectal adenoma were assigned to the adenoma group, while 44 individuals undergoing routine physical examinations were included in the control group. Concentrations of Septin9, SDC2, fecal occult blood (FOB), and four tumor markers-carcinoembryonic antigen (CEA), carbohydrate antigen 199 (CA199), carbohydrate antigen 125 (CA125), and carbohydrate antigen 724 (CA724)-were measured. Diagnostic performance was assessed using receiver operating characteristic (ROC) curves for Septin9, SDC2, the four tumor markers, FOB, the combination of Septin9 and SDC2, and the combined use of all seven indicators (CEA, CA19-9, CA125, CA72-4, FOB, Septin9, and SDC2). RESULTS: The colorectal cancer group exhibited the highest positive rates for Septin9, SDC2, the four tumor markers, the combined detection of Septin9 and SDC2, and the combined detection of all seven indicators, compared to both the adenoma and control groups (P < 0.05). The adenoma group also showed higher positive rates than the control group (P < 0.05). For patients with stage I-III colorectal cancer, the positive rates for the combined detection of Septin9 and SDC2 were 81.3%, 78.9%, and 90.2%, respectively, surpassing those for the combined detection of the four tumor markers (43.8%, 55.3%, and 61.0%). Additionally, the positive rates for the two-gene combination in stage III colorectal cancer were higher than those for FOB (P < 0.05). The sensitivity and area under the curve (AUC) for SDC2 were 73.3% and 0.855, respectively, exceeding the sensitivity and AUC for the combined four tumor markers, which were 60.3% and 0.734 (P < 0.05). The combined detection of the two methylated genes demonstrated a sensitivity of 86.2% and an AUC of 0.908, outperforming both FOB and the combined detection of the four tumor markers (P < 0.05). CONCLUSION: The detection of SDC2 exhibits high sensitivity for colorectal cancer, and when combined with Septin9, it significantly enhances the diagnostic accuracy for early-stage colorectal cancer, offering substantial clinical value.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Detecção Precoce de Câncer , Septinas , Sindecana-2 , Humanos , Septinas/sangue , Septinas/genética , Sindecana-2/sangue , Neoplasias Colorretais/sangue , Neoplasias Colorretais/diagnóstico , Biomarcadores Tumorais/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Detecção Precoce de Câncer/métodos , Idoso , Curva ROC , Adulto , Sangue Oculto
4.
BMC Vet Res ; 20(1): 52, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341543

RESUMO

BACKGROUND: Tracheal collapse (TC), a common disease in dogs, is characterized by cough; however, little is known about the serum biomarkers that can objectively evaluate the severity of cough in canine TC. Furthermore, studies elucidating the relationship of fluoroscopic characteristics with the severity of cough are lacking. Therefore, this study aimed to evaluate the relationship between cough severity and clinical characteristics, fluoroscopic images, and new serum biomarkers in canine TC. RESULTS: Fifty-one client-owned dogs diagnosed with TC based on fluoroscopic and clinical signs were enrolled in this study and divided into three groups according to the severity of cough (grade of cough: 0, 1, and 2). Signalments, comorbidities, and fluoroscopic characteristics were compared among the groups retrospectively. The serum matrix metalloproteinase-9 (MMP-9), interleukin-6 (IL-6), surfactant protein-A (SP-A), and syndecan-1 (SDC-1) levels were measured in all groups. No significant differences in age, breed, sex, or clinical history were observed among the groups. Concomitant pharyngeal collapse increased significantly with the severity of cough (p = .031). Based on the fluoroscopic characteristics, the TC grade of the carinal region increased significantly and consistently with the grade of cough (p = .03). The serum MMP-9 level was significantly higher in the grade 2 group than that in the grade 0 group (p = .014). The serum IL-6 level was significantly lower in the grade 1 group than that in the grade 0 group (p = .020). The serum SP-A and SDC-1 levels did not differ significantly among the groups. CONCLUSIONS: The severity of cough with the progression of TC can be predicted with the fluoroscopic TC grade at the carinal region. MMP-9 may be used as an objective serum biomarker that represents cough severity to understand the pathogenesis.


Assuntos
Doenças do Cão , Metaloproteinase 9 da Matriz , Humanos , Cães , Animais , Estudos Transversais , Estudos Retrospectivos , Interleucina-6 , Tosse/veterinária , Biomarcadores , Doenças do Cão/diagnóstico por imagem , Doenças do Cão/etiologia
5.
J Dairy Sci ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39343222

RESUMO

In mastitis, excessive inflammation caused by lipopolysaccharide (LPS) is an important factor leading to mammary tissue damage. Therefore, exploring the regulatory factors that can inhibit the widespread inflammation caused by LPS is crucial. Syndecan-3 (SDC3) has been found to play an active role in anti-inflammatory infection by inhibiting leukocyte adhesion, reducing the accumulation of inflammatory products, such as reactive oxygen species, and competing with chemokines; however, the role and regulatory mechanism of SDC3 in mastitis remains unknown. Therefore, this study aimed to reveal the effect of SDC3 on LPS-induced inflammation in bovine mammary epithelial cells (BMECs) and explore its possible molecular mechanisms. First, we constructed a BMEC inflammatory model. It was found that cells stimulated with 10 µg/mL LPS for 24 h strongly induced the expression of inflammatory cytokines and had no toxic effect on cells, which was the best condition to simulate the BMECs inflammatory response in vitro. Subsequently, we used overexpression and RNAi interference, Real Time Quantitative PCR (RT-qPCR), and Western blot assays to explore the effects of SDC3 on LPS-induced inflammatory factors and their mechanisms. The results showed that overexpression of SDC3 could inhibit the transcriptional levels of inflammatory cytokines IL-6, IL-1ß, and TNFα induced by LPS and inhibit the activation of the NF-κB inflammatory pathway by inhibiting the expression of NF-κB p50 and p-IκBα and promoting the expression of IκBα. Our results suggest that SDC3 inhibits the LPS-induced inflammatory response of BMECs through the NF-κB pathway, in which NF-κB p50 may be an important target of SDC3. These findings lay the foundation for elucidating the molecular regulatory mechanisms of dairy cow mastitis.

6.
Environ Monit Assess ; 196(4): 389, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512521

RESUMO

To test the serial discontinuity concept (SDC) predictions in a regulated river ecosystem, environmental parameters and phytoplankton community structure were determined in a subtropical river (China) which was regulated by 11 cascade dams. Our results showed that total phosphorus (TP) and silicate during the wet period in several dams supported the SDC predictions. Variations of phytoplankton species composition in several cascade dams, such as Datengxia (DTX) and Changzhou (CZ), also supported the SDC predictions. Moreover, the stations near the dams showed the maximum or minimum values of total species numbers in each cascade segment. Predictive model indicated that the types of phytoplankton decreased in the middle reaches, conforming to SDC predictions. In the whole system of cascading dams, an increase in silicate concentration and phytoplankton communities in the downstream was also consistent with SDC predictions. Therefore, these findings aligned with the SDC predictions in the aspects of both single dam and whole cascade dam system to some extent. In future research, our aim is to further investigate the effects of cascade damming on additional phytoplankton-related indices in this aquatic ecosystem. We hope to gather more comprehensive data to fully validate the SDC predictions.


Assuntos
Ecossistema , Fitoplâncton , Biomarcadores Ambientais , Monitoramento Ambiental , China , Silicatos
7.
Clin Immunol ; 251: 109635, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37150238

RESUMO

IL-34 shares a common receptor with M-CSF, while it can bind to other distinct receptors including protein-tyrosine phosphatase zeta (PTPζ), and syndecan1 (SDC-1). In physiological conditions, IL-34 has a critical role in the maintenance and development of Langerhans and microglial cells in part through PTPζ ligation. Conversely, in autoimmune diseases such as rheumatoid arthritis (RA), SDC-1-induced phosphorylation of M-CSFR was responsible for the pathological effect of IL-34 in patient cells and/or preclinical models. Intriguingly, enrichment of IL-34 is strongly linked to rheumatoid factor (RF), disease activity score (DAS)28, erythrocyte sedimentation rate (ESR), c-reactive protein (CRP), and radiographic progression. In parallel, IL-34-induced naïve cell reprogramming into glycolytic RA CD14+CD86+GLUT1+ macrophage was dysregulated via M-CSFR or SDC-1 antibody therapy. Moreover, the inflammatory and erosive imprints of IL-34 arthritic mice were mitigated by glucose uptake inhibition and SDC-1, or RAG deficiency through nullifying macrophage metabolic rewiring and their ability to advance Th1/Th17 cell polarization. Consistently, IL-34-/- and SDC-1-/- mice could effectively impair CIA joint inflammation, osteoclast formation, and neovascularization by restraining monocyte infiltration as well as suppressing the inflammatory macrophage and T effector cell reconfiguration via metabolic deactivation. In conclusion, targeting IL-34/SDC-1 signaling, or its interconnected metabolites can uniquely intercept the crosstalk between glycolytic RA myeloid and lymphoid cells and their ability to trigger arthritis.


Assuntos
Artrite Reumatoide , Animais , Camundongos , Diferenciação Celular , Interleucinas/metabolismo , Macrófagos , Monócitos , Humanos
8.
Cancer Cell Int ; 23(1): 76, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069585

RESUMO

BACKGROUND: Immune checkpoint inhibitors are the most studied forms of immunotherapy for triple-negative breast cancer (TNBC). The Cancer Genome Map (TCGA) and METABRIC project provide large-scale cancer samples that can be used for comprehensive and reliable immunity-related gene research. METHODS: We analyzed data from TCGA and METABRIC and established an immunity-related gene prognosis model for breast cancer. The SDC1 expression in tumor and cancer associated fibroblasts (CAFs) was then observed in 282 TNBC patients by immunohistochemistry. The effects of SDC1 on MDA-MB-231 proliferation, migration and invasion were evaluated. Qualitative real-time PCR and western blotting were performed to identify mRNA and protein expression, respectively. RESULTS: SDC1, as a key immunity-related gene, was significantly correlated with survival in the TCGA and METABRIC databases, while SDC1 was found to be highly expressed in TNBC in the METABRIC database. In the TNBC cohort, patients with high SDC1 expression in tumor cells and low expression in CAFs had significantly lower disease-free survival (DFS) and fewer tumor-infiltrating lymphocytes (TILs). The downregulation of SDC1 decreased the proliferation of MDA-MB-231, while promoting the migration of MDA-MB-231 cells by reducing the gene expression of E-cadherin and TGFb1 and activating p-Smad2 and p-Smad3 expression. CONCLUSION: SDC1 is a key immunity-related gene that is highly expressed TNBC patients. Patients with high SDC1 expression in tumors and low expression in CAFs had poor prognoses and low TILs. Our findings also suggest that SDC1 regulates the migration of MDA-MB-231 breast cancer cells through a TGFb1-Smad and E-cadherin-dependent mechanism.

9.
Cell Mol Life Sci ; 79(2): 110, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35098380

RESUMO

The role of telomerase reverse transcriptase (TERT) induction and telomere maintenance in carcinogenesis including cervical cancer (CC) pathogenesis has been well established. However, it remains unclear whether they affect infection of high-risk human papillomavirus (hrHPV), an initiating event for CC development. Similarly, genetic variants at the TERT locus are shown to be associated with susceptibility to CC, but it is unclear whether these SNPs modify the risk for cervical HPV infection. Here we show that in CC-derived HeLa cells, TERT overexpression inhibits, while its depletion upregulates expression of Syndecan-1 (SDC-1), a key component for HPV entry receptors. The TCGA cohort of CC analyses reveals an inverse correlation between TERT and SDC-1 expression (R = -0.23, P = 0.001). We further recruited 1330 females (520 non-HPV and 810 hrHPV-infected) without CC or high-grade cervical intraepithelial neoplasia to analyze telomeres in cervical epithelial cells and SNPs at rs2736098, rs2736100 and rs2736108, previously identified TERT SNPs for CC risk. Non-infected females exhibited age-related telomere shortening in cervical epithelial cells and their telomeres were significantly longer than those in hrHPV-infected group (1.31 ± 0.62 vs 1.19 ± 0.48, P < 0.001). There were no differences in rs2736098 and rs2736100 genotypes, but non-infected individuals had significantly a higher C-allele frequency (associated with higher TERT expression) while lower T-allele levels at rs2736108 compared with those in the hrHPV group (P = 0.020). Collectively, appropriate telomere maintenance and TERT expression in normal cervical cells may prevent CC by modulating hrHPV infection predisposition, although they are required for CC development and progression.


Assuntos
Predisposição Genética para Doença/genética , Infecções por Papillomavirus/genética , Telomerase/genética , Telômero/genética , Neoplasias do Colo do Útero/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Epitélio/metabolismo , Epitélio/virologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Pessoa de Meia-Idade , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/virologia , Polimorfismo de Nucleotídeo Único , Telomerase/metabolismo , Telômero/enzimologia , Neoplasias do Colo do Útero/complicações , Neoplasias do Colo do Útero/metabolismo , Adulto Jovem
10.
Cell Mol Life Sci ; 79(11): 557, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36264388

RESUMO

Osteoarthritis (OA) is closely linked to the increase in the number of senescent cells in joint tissues, and the senescence-associated secretory phenotype (SASP) is implicated in cartilage degradation. In the last decade, extracellular vesicles (EV) in combination with the use of miRNAs to modify post-transcriptional expressions of multiple genes have shown their utility in new therapies to treat inflammatory diseases. This work delves into the anti-inflammatory effect of extracellular vesicles derived from mesenchymal stem cells (MSC) previously modified to inhibit the expression of miR-21. We compare the efficacy of two treatments, MSC with their miR-21 inhibited through lentiviral transfection and their EV, against inflammation in a new OA animal model. The modified MSC and their EV were intraperitoneally injected in an OA animal model twice. One month after treatment, we checked which therapy was the most effective to reduce inflammation compared with animals untreated. Treated OA model sera were analyzed for cytokines and chemokines. Subsequently, different organs were analyzed to validate the results obtained. EV were the most effective treatment to reduce chemokines and cytokines in serum of OA animals as well as SASP, in their organs checked by proteomic and genomic techniques, compared with MSC alone in a statistically significant way. In conclusion, MSC-miR-21--derived EV showed a higher therapeutic potential in comparison with MSCs-miR-21-. They ameliorate the systemic inflammation through inactivation of ERK1/2 pathway in OA in vivo model. Workflow of the realization of the animal model of OA by injecting cells into the joint cavity of the left knee of the animals, which produces an increase in serum cytokines and chemokines in the animals in addition to the increase in SASP and markers of inflammation. Inhibition of miR-21 in MSCs, from the stroma of the human umbilical cord, by lentivirus and extraction of their EVs by ultracentrifugation. Finally, application of MSC therapy with its miR-21 inhibited or its EVs produces a decrease in serum cytokines and chemokines in the treated animals, in addition to an increase in SASP and markers of inflammation. The cell-free therapy being the one that produces a greater decrease in the parameters studied.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteoartrite , Humanos , Animais , Proteômica , Osteoartrite/metabolismo , Cordão Umbilical/metabolismo , Inflamação/terapia , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Citocinas/metabolismo , Quimiocinas/metabolismo , Modelos Animais de Doenças , Anti-Inflamatórios/metabolismo
11.
Mol Cell Proteomics ; 20: 100051, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33549647

RESUMO

SDS is widely used in sample preparation for proteomic research. However, SDS is incompatible with LC and electrospray ionization. SDS depletion is therefore required ahead of LC-MS analysis. Most of current SDS removal strategies are time consuming, laborious, and have low reproducibility. Here, we describe a method, SDS-cyclodextrin (CD)-assisted sample preparation, by which CD can bind to SDS and form CD-SDS complexes in solutions, allowing for direct tryptic digestion. We demonstrate that SDS-CD-assisted sample preparation is a simple, fast, and robust SDS-based sample preparation method for proteomics application.


Assuntos
Proteômica/métodos , Animais , Linhagem Celular , Ciclodextrinas/química , Humanos , Camundongos Endogâmicos C57BL , Dodecilsulfato de Sódio/química , Tripsina/química
12.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047630

RESUMO

Transcriptome sequencing showed that syndecan-3 (SDC3) was differentially expressed in high-fat and low-fat mammary epithelial cells of Chinese Holstein cows. Previous studies found that SDC3 plays an important role in inflammatory diseases and virus infection. However, those studies did not confirm whether or not the functional gene SDC3, which plays an important role in regulating milk fat metabolism, has an effect on susceptibility to breast tissue diseases. Therefore, we studied the effects of SDC3 on milk lipid metabolism and inflammation in bovine mammary epithelial cells (BMECs) and further explored the common regulatory pathway of SDC3 in both. The overexpression of SDC3 increased the contents of triglycerides and cholesterol, reduced the content of non-esterified fatty acids, inhibited the expression of inflammatory factors (IL-6, IL-1ß, TNF-α and COX-2), and reduced the production of ROS in BMECs. However, silenced SDC3 had the opposite effect. Further exploring the mechanisms of SDC3, we found that SDC3 upregulated the expression of peroxisome proliferator-activated receptor gamma (PPARG) through the AMPK/SIRT1 signal pathway to promote milk fat synthesis. It also regulated the activation of the NF-κB pathway through the AMPK/SIRT1 signal pathway, reducing the expression of inflammatory factors and ROS production, thus inhibiting the inflammatory response of BMECs. Nuclear factor kappa B subunit 1 (NF-κB p50) was an important target of SDC3 in this process. To sum up, our results showed that SDC3 coregulated milk fat metabolism and inflammation through the AMPK/SIRT1 signaling pathway. This study laid a foundation for the comprehensive evaluation of breeding value based on multi-effect functional genes in dairy cow molecular breeding.


Assuntos
Leite , NF-kappa B , Feminino , Bovinos , Animais , Leite/metabolismo , NF-kappa B/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sindecana-3/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glândulas Mamárias Animais/metabolismo , Transdução de Sinais , Metabolismo dos Lipídeos , Inflamação/metabolismo , Células Epiteliais/metabolismo
13.
Molecules ; 28(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985485

RESUMO

The hydrothermal synthesis of nickel oxide in the presence of triethanolamine was studied. Furthermore, the relationship between the synthesis conditions, thermal behavior, crystal structure features, phase composition and microstructure of semi-products, and the target oxide nanopowders was established. The thermal behavior of the semi-products was studied using a simultaneous thermal analysis (in particular, using one that involved thermogravimetric analysis and differential scanning calorimetry, TGA/DSC). An X-ray diffraction (XRD) analysis revealed that varying the triethanolamine and nickel chloride concentration in the reaction system can govern the formation of α- and ß-Ni(OH)2-based semi-products that contain Ni(HCO3)2 or Ni2(CO3)(OH)2 as additional components. The set of functional groups in the powders was determined using a Fourier-transform infrared (FTIR) spectroscopy analysis. Using microextrusion printing, a composite NiO-(CeO2)0.80(Sm2O3)0.20 anode film was fabricated. Using XRD, scanning electron microscopy (SEM), and atomic force microscopy (AFM) analyses, it was demonstrated that the crystal structure, dispersity, and microstructure character of the obtained material correspond to the initial nanopowders. Using Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM), the local electrophysical properties of the printed composite film were examined. The value of its conductivity was evaluated using the four-probe method on a direct current in the temperature range of 300-650 °C. The activation energy for the 500-650 °C region, which is of most interest in the context of intermediate-temperature SOFCs working temperatures, has been estimated.

14.
BMC Med ; 20(1): 463, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36447229

RESUMO

BACKGROUND: Compared with patients who require fewer antihypertensive agents, those with apparent treatment-resistant hypertension (aTRH) are at increased risk for cardiovascular and all-cause mortality, independent of blood pressure control. However, the etiopathogenesis of aTRH is still poorly elucidated. METHODS: We performed a genome-wide association study (GWAS) in first cohort including 586 aTRHs and 871 healthy controls. Next, expression quantitative trait locus (eQTL) analysis was used to identify genes that are regulated by single nucleotide polymorphisms (SNPs) derived from the GWAS. Then, we verified the genes obtained from the eQTL analysis in the validation cohort including 65 aTRHs, 96 hypertensives, and 100 healthy controls through gene expression profiling analysis and real-time quantitative polymerase chain reaction (RT-qPCR) assay. RESULTS: The GWAS in first cohort revealed four suggestive loci (1p35, 4q13.2-21.1, 5q22-23.2, and 15q11.1-q12) represented by 23 SNPs. The 23 significant SNPs were in or near LAPTM5, SDC3, UGT2A1, FTMT, and NIPA1. eQTL analysis uncovered 14 SNPs in 1p35 locus all had same regulation directions for SDC3 and LAPTM5. The disease susceptible alleles of SNPs in 1p35 locus were associated with lower gene expression for SDC3 and higher gene expression for LAPTM5. The disease susceptible alleles of SNPs in 4q13.2-21.1 were associated with higher gene expression for UGT2B4. GTEx database did not show any statistically significant eQTLs between the SNPs in 5q22-23.2 and 15q11.1-q12 loci and their influenced genes. Then, gene expression profiling analysis in the validation cohort confirmed lower expression of SDC3 in aTRH but no significant differences on LAPTM5 and UGT2B4, when compared with controls and hypertensives, respectively. RT-qPCR assay further verified the lower expression of SDC3 in aTRH. CONCLUSIONS: Our study identified a novel association of SDC3 with aTRH, which contributes to the elucidation of its etiopathogenesis and provides a promising therapeutic target.


Assuntos
Estudo de Associação Genômica Ampla , Hipertensão , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/genética , Locos de Características Quantitativas/genética , Polimorfismo de Nucleotídeo Único/genética , Anti-Hipertensivos , Sindecana-3 , Glucuronosiltransferase
15.
BMC Cancer ; 22(1): 1042, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199068

RESUMO

OBJECTIVE: Pancreatic adenocarcinoma (PAAD) is a leading cause of cancer-related mortality in adults. Syndecan-4 (SDC4) is involved in cancer pathogenesis. Therefore, this study aimed to explore the expression and clinical significance of SDC4 in PAAD. METHODS: Differentially expressed genes (DEGs) between PAAD and normal pancreas were screened from the GTEx and TCGA databases, and the correlationship between the DEGs and prognosis were analyzed. The prognostic value of the screened SDC4, SERPINE1, and SLC2A1 was evaluated using the Kaplan-Meier curve and SDC4 was subsequently selected as the better candidate. Also, SDC4 expression was analyzed in PAAD tissues, the other risk factors affecting postoperative survival were analyzed using Cox regression analysis, and SDC4-mediated pathways enrichment was identified by GSVA and GSEA. SDC4 expression in PAAD tissues and adjacent normal tissues of selected PAAD patients was detected by RT-qPCR and immunohistochemistry. The correlation between SDC4 and clinical features was evaluated by the χ2 test. RESULTS: SDC4 was highly expressed in PAAD tissues. Elevated SDC4 was correlated with reduced overall survival. SDC4 enrichment pathways included spliceosome function, proteasome activity, pentose phosphate pathway, base excision repair, mismatch repair, DNA replication, oxidative phosphorylation, mitotic spindle formation, epithelial-mesenchymal transition, and G2M checkpoints. SDC4 was elevated in PAAD tissues of PAAD patients compared with adjacent normal tissues. High SDC4 expression was related to metastatic differentiation, TNM stage, lymphatic metastasis, and lower 3-year survival rate. SDC4 was an independent risk factor affecting postoperative survival. CONCLUSION: SDC4 was highly expressed in PAAD and was related to clinicopathological features and poor prognosis, which might be an important index for PAAD early diagnosis and prognosis.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pancreáticas/patologia , Prognóstico , Complexo de Endopeptidases do Proteassoma/genética , Sindecana-4/genética , Sindecana-4/metabolismo , Neoplasias Pancreáticas
16.
BMC Gastroenterol ; 22(1): 314, 2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35754025

RESUMO

BACKGROUND: A growing body of research suggests that methylated genes can be used as early diagnostic markers for cancer. Some studies on methylated Syndecan 2 (SDC2) have shown that it has a great diagnostic ability in colorectal cancer. This meta-analysis was aimed to estimate the diagnostic performance of methylated SDC2 as a potential novel biomarker to screen for the colorectal cancer. METHODS: Two independent researchers conducted a comprehensive literature search to identify all relevant studies on SDC2 methylation for the diagnosis of colorectal cancer from inception to March 1, 2021. By using STATA and Revman software, the data were analyzed using a Bivariate mixed model. The quality of each study was also evaluated. RESULTS: A total of 12 studies comprised of 1574 colorectal cancer patients and 1945 healthy people were included in our meta-analysis. Bivariate analysis showed a pooled sensitivity of 0.81 [95% confidence interval (CI) 0.74-0.86], specificity of 0.95 (95% CI 0.93-0.96), positive likelihood ratio of 15.29 (95% CI 10.83-21.60), and negative likelihood ratio of 0.21 (95% CI 0.15-0.27). The diagnostic odds ratio and the area under the summary ROC curve for diagnosing colorectal cancer were 74.42 (95% CI45.44-121.89) and 0.96 (95% CI 0.94-0.97), respectively. For adenomas, the pooled sensitivity and specificity were 0.47 (95% CI 0.34-0.61) and 0.95 (95% CI 0.92-0.97), respectively. CONCLUSIONS: Our analysis revealed that methylated SDC2 could be considered as a potential novel biomarker to screen for colorectal cancer.


Assuntos
Neoplasias Colorretais , Sindecana-2 , Biomarcadores Tumorais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , DNA , Metilação de DNA , Detecção Precoce de Câncer , Humanos , Sensibilidade e Especificidade , Sindecana-2/genética
17.
BMC Gastroenterol ; 22(1): 88, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35227195

RESUMO

BACKGROUND: Methylated SDC2 and TFPI2 are widely used for colorectal cancer (CRC) detection. However, they often miss some CRCs, which directly diminishes the sensitivity. Further investigations of the underlying mechanisms leading to the missed samples will facilitate developing more eligible methylation markers. METHODS: CRC samples from TCGA and GEO datasets were divided into three groups, High-methylation/ High-methylation (HH), High-methylation/Low-methylation (HL), and Low-methylation/Low-methylation (LL) according to the methylation status of SDC2 and TFPI2 promoters. Variations in age, tumor location and microsatellite instable were then assessed between the three groups and verified in our custom cohort. RESULTS: Samples of HL group preferred to derive from left-sided CRCs (P < 0.05). HH samples showed the highest microsatellite instability and mutation load (mean nonsynonymous mutations for HH/HL/LL: 10.55/3.91/7.02, P = 0.0055). Almost all mutations of BRAF, one of the five typical CpG island methylator phenotype (CIMP) related genes, were observed in HH group (HH/HL/LL: 51/0/1, P = 0.018). Besides, older patients were frequently found in HH group. Expression analysis identified 37, 84, and 22 group-specific differentially expressed genes (DEGs) for HH, HL, and LL, respectively. Functional enrichment analysis revealed that HH-specific DEGs were mainly related to transcription regulation, while LL-specific DEGs were enriched in the biological processes of extracellular matrix interaction and cell migration. CONCLUSIONS: The current study revealed that the performance of methylation-based markers might be affected by tumor location, patient age, mutation load and MSI, and these respective sides should be considered when developing new methylation markers for CRC detection.


Assuntos
Neoplasias Colorretais , Metilação de DNA , Glicoproteínas/genética , Sindecana-2 , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ilhas de CpG/genética , Humanos , Instabilidade de Microssatélites , Mutação , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , Sindecana-2/genética
18.
BMC Gastroenterol ; 22(1): 191, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35436855

RESUMO

BACKGROUND: Methylated SDC2 has been proved as a diagnostic marker for human colorectal cancer (CRC), noninvasive stool DNA-based methylation testing also emerges as a novel approach for detecting CRC. The aim of this study was to evaluate the clinical performance of stool DNA-based SDC2 methylation test by a new qPCR detection reagent for early detection of CRC. METHODS: A new qPCR detection reagent contained two differentially methylated regions in SDC2 CpG islands for the detection of CRC was used in this study. Performance of the SDC2 methylation detection reagent was evaluated by analyzing limit of detection, precision, and specificity. The effect of interfering substances on assay performance was also tested. 339 subjects (102 CRC patients, 50 patients with advanced adenomas, 39 patients with non-advanced adenomas, 18 colitis patients and 130 normal individuals) from the China-Japan Friendship Hospital were evaluated. Approximately 2.5 g of stool sample was collected from each participant. Stool DNA was extracted and bisulfite-converted, followed by qPCR assay, which contained two pairs of primers for the methylation detection of two fragments of the SDC2 gene (named SDC2-A and SDC2-B). The diagnostic value of this test in CRC was evaluated by calculating receiver operating characteristic (ROC) curve, and value of the area under the curve (AUC). RESULTS: The test kit was able to detect methylated SDC2 in stool DNA samples with concentrations as low as 90 copies/µL in 100% of replicates. The sensitivity for detecting CRC by methylated SDC2-A alone was 85.29% (95% CI 77.03-91.00%) with a specificity of 96.15% (95% CI 91.08-98.58%). The sensitivity by methylated SDC2-B alone was 83.33% (95% CI 74.82-89.42%) with a specificity of 97.69% (95% CI 93.14-99.51%). However, when methylated SDC2-A and methylated SDC2-B were combined, the sensitivity for CRC detection improved to 87.25% (95% CI 79.27-92.53%) with a specificity of 94.62% (95% CI 89.11-97.56%). Further, the detection reagent achieved ROC-AUC 0.874 (95% CI 0.822-0.927) for SDC2-A, 0.906 (95% CI 0.859-0.952) for SDC2-B, and 0.939 (95% CI 0.902-0.977) for SDC2-Combine A&B. CONCLUSIONS: This study validated the capability of stool DNA-based SDC2 methylation test for early screening of CRC, and combined detection of two fragments of SDC2 gene could improve detection sensitivity.


Assuntos
Adenoma , Neoplasias Colorretais , Adenoma/diagnóstico , Adenoma/genética , Biomarcadores Tumorais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , DNA/análise , Metilação de DNA , Detecção Precoce de Câncer/métodos , Fezes/química , Humanos , Sensibilidade e Especificidade , Sindecana-2/genética
19.
Int J Colorectal Dis ; 37(6): 1231-1238, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35499710

RESUMO

PURPOSE: Molecular diagnostics of colorectal cancer (CRC) can be used as an auxiliary approach for patients recommended for colonoscopy, providing more CRC supplemental diagnosis options. This study investigated whether combined detection of KRAS/BRAF/APC mutation and SDC2/SFRP2 methylation can serve as auxiliary diagnostics in clinical management. METHODS: KRAS/BRAF/APC mutation and SDC2/SFRP2 methylation in stool samples from healthy donors, patients with CRC, advanced adenoma (AA), non-advanced adenoma (NAA), or other gastroenterological diseases were evaluated using quantitative PCR (qPCR) or methylation-specific quantitative PCR (MSP). Test accuracy was determined by evaluating the tests' sensitivity, specificity, positive/negative predictive value (PPV/NPV), or positive/negative likelihood ratio (PLR/NLR). RESULTS: The combined fecal KRAS/BRAF/APC mutation and SFRP2/SDC2 methylation detection test achieved a sensitivity of 88.57% with a PPV of 93.64% and a PLR of 7.10 for CRC patients. In comparison, the corresponding parameters for multigene mutation were 46.67%, 92.59%, and 36.26 and 83.81%, 93.94%, and 7.47, for DNA methylation, separately. The sensitivity of the combined test, gene mutation test, and DNA methylation test approach was 75%, 28.26%, and 72.83%. Furthermore, the specificity of this approach in the NAA group was 79.49%. Meanwhile, the overall diagnostic specificity for the combined test in NAA, healthy control, and interference groups was 88.42%. In addition, the sensitivity of the combined detection method increased with the disease stage in CRC patients and elevated along with the lesion size (≥ 1 cm) in AA patients. CONCLUSION: Combined detection of fecal KRAS/BRAF/APC mutation and SFRP2/SDC2 methylation has potential application value for the auxiliary diagnosis of CRC and AA.


Assuntos
Adenoma , Neoplasias Colorretais , Adenoma/diagnóstico , Adenoma/genética , Biomarcadores Tumorais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Metilação de DNA/genética , Detecção Precoce de Câncer/métodos , Fezes , Humanos , Proteínas de Membrana/genética , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Sensibilidade e Especificidade , Sindecana-2/genética
20.
Heart Vessels ; 37(6): 1085-1096, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35320391

RESUMO

Atherosclerosis (AS) is the basic lesion underlying the occurrence and development of cerebrovascular diseases. Abnormal proliferation of vascular smooth muscle cells (VSMCs) plays a crucial role in AS. We aimed to explore the role of SNHG16 in AS and the molecular mechanism of VSMC involvement in the regulation of AS. The expression levels of SNHG16, miR-30c-5p and SDC2 were detected by qRT-PCR. CCK-8, wound healing and Transwell assays were used to assess ox-LDL-induced VSMC proliferation, migration, and invasion, respectively. Western blot analysis was used to detect SDC2 and MEK/ERK pathway-related protein levels. A dual-luciferase reporter assay confirmed the binding of SNHG16 with miR-30c-5p and miR-30c-5p with SDC2. SNHG16 and SDC2 expression was upregulated in patients with AS and ox-LDL-induced VSMCs, while miR-30c-5p was downregulated. Ox-LDL-induced VSMC proliferation and migration were increased, and the MEK/ERK signalling pathway was activated. MiR-30c-5p was targeted to SNHG16 and SDC2. Downregulating SNHG16 or upregulating miR-30c-5p inhibited ox-LDL-induced VSMC proliferation and migration and inhibited MEK/ERK signalling pathway activation. In contrast, downregulating miR-30c-5p or upregulating SDC2 reversed the effects of downregulating SNHG16 or upregulating miR-30c-5p. Furthermore, downregulating SDC2 inhibited ox-LDL-induced proliferation and migration of VSMCs and inhibited activation of the MEK/ERK signalling pathway, while upregulating lncRNA SNHG16 reversed the effects of downregulating SDC2. Downregulation of SNHG16 inhibited VSMC proliferation and migration in AS by targeting the miR-30c-5p/SDC2 axis. This study provides a possible therapeutic approach to AS.


Assuntos
Aterosclerose , Arteriosclerose Intracraniana , MicroRNAs , RNA Longo não Codificante/genética , Aterosclerose/patologia , Movimento Celular , Proliferação de Células/genética , Células Cultivadas , Regulação para Baixo , Humanos , Arteriosclerose Intracraniana/metabolismo , Arteriosclerose Intracraniana/patologia , Lipoproteínas LDL , MicroRNAs/genética , MicroRNAs/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Sindecana-2/genética , Sindecana-2/metabolismo , Sindecana-2/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA