Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Clin Genet ; 106(3): 360-366, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38801004

RESUMO

Biallelic variants in PISD cause a phenotypic spectrum ranging from short stature with spondyloepimetaphyseal dysplasia (SEMD) to a multisystem disorder affecting eyes, ears, bones, and brain. PISD encodes the mitochondrial-localized enzyme phosphatidylserine decarboxylase. The PISD precursor is self-cleaved to generate a heteromeric mature enzyme that converts phosphatidylserine to the phospholipid phosphatidylethanolamine. We describe a 17-year-old male patient, born to unrelated healthy parents, with disproportionate short stature and SEMD, featuring platyspondyly, prominent epiphyses, and metaphyseal dysplasia. Trio genome sequencing revealed compound heterozygous PISD variants c.569C>T; p.(Ser190Leu) and c.799C>T; p.(His267Tyr) in the patient. Investigation of fibroblasts showed similar levels of the PISD precursor protein in both patient and control cells. However, patient cells had a significantly higher proportion of fragmented mitochondria compared to control cells cultured under basal condition and after treatment with 2-deoxyglucose that represses glycolysis and stimulates respiration. Structural data from the PISD orthologue in Escherichia coli suggest that the amino acid substitutions Ser190Leu and His267Tyr likely impair PISD's autoprocessing activity and/or phosphatidylethanolamine biosynthesis. Based on the data, we propose that the novel PISD p.(Ser190Leu) and p.(His267Tyr) variants likely act as hypomorphs and underlie the pure skeletal phenotype in the patient.


Assuntos
Carboxiliases , Mitocôndrias , Mutação de Sentido Incorreto , Osteocondrodisplasias , Humanos , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Masculino , Mutação de Sentido Incorreto/genética , Adolescente , Mitocôndrias/genética , Mitocôndrias/patologia , Carboxiliases/genética , Alelos , Fenótipo , Nanismo/genética , Nanismo/patologia
2.
Clin Genet ; 104(1): 100-106, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37121912

RESUMO

Spondyloepimetaphyseal dysplasia (SEMD), RPL13-related is caused by heterozygous variants in RPL13, which encodes the ribosomal protein eL13, a component of the 60S human ribosomal subunit. Here, we describe the clinical and radiological evolution of 11 individuals, 7 children and 4 adults, from 6 families. Some of the skeletal features improved during the course of this condition, whilst others worsened. We describe for the first time "corner fractures" as a feature of this dysplasia which as with other dysplasias disappear with age. In addition, we review the heights and skeletal anomalies of these reported here and previously in a total of 25 individuals from 15 families. In this study, six different RPL13 variants were identified, five of which were novel. All were located in the apparently hotspot region, located in intron 5 and exon 6. Splicing assays were performed for two of the three previously undescribed splicing variants. Until now, all splice variants have occurred in the intron 5 splice donor site, incorporating an additional 18 amino acids to the mutant protein. Here, we report the first variant in intron 5 splice acceptor site which generates two aberrant transcripts, deleting the first three and four amino acids encoded by exon 6. Thus, this study doubles the number of SEMD-RPL13-related cases and variants reported to date and describes unreported age-related clinical and radiological features.


Assuntos
Osteocondrodisplasias , Proteínas Ribossômicas , Criança , Adulto , Humanos , Proteínas Ribossômicas/genética , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Radiografia , Éxons , Aminoácidos , Proteínas de Neoplasias
3.
Am J Med Genet A ; 188(10): 2861-2868, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36097642

RESUMO

Spondylo-epi-metaphyseal dysplasias (SEMDs) are a clinically and genetically heterogeneous group of skeletal dysplasias characterized by short stature and abnormal modeling of the spine and long bones. A novel form of rhizomelic skeletal dysplasia, Ain-Naz type, associated with a homozygous variant in GNPNAT1 was recently identified. Herein, we report an Egyptian patient, offspring of consanguineous parents, who presented with a severe form of unclassified SEMD. Whole exome sequencing identified a novel homozygous variant in exon 3, c.77T>G, (p.Phe26Cys) in GNPNAT1, that was confirmed by Sanger sequencing and both parents were found to be heterozygous for the identified variant. Main features included severe short stature, rhizomelic limb shortening, and wide flared metaphysis. Short broad long bones, brachydactyly, delayed epiphyseal ossification of long bones, advanced bone age, and immunodeficiency were additional findings expanding the clinical phenotype described in the previously reported family. We conclude that variants in the GNPNAT1 gene cause an autosomal recessive form of SEMD resembling Desbuquois like dysplasia caused by PGM3, which is involved in the same pathway as GNPNAT1.


Assuntos
Nanismo , Osteocondrodisplasias , Nanismo/diagnóstico por imagem , Nanismo/genética , Glucosamina 6-Fosfato N-Acetiltransferase/genética , Heterozigoto , Humanos , Hiperplasia , Osteocondrodisplasias/genética , Fosfoglucomutase/genética , Sequenciamento do Exoma
4.
Am J Med Genet A ; 173(4): 1102-1108, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28328135

RESUMO

Since the original description of the IARS2-related cataracts, growth hormone deficiency, sensory neuropathy, sensorineural hearing loss, skeletal dysplasia syndrome (CAGSSS; OMIM 616007) in an extended consanguineous family of French-Canadian descent, no further patients have been reported. IARS2 (OMIM 612801) encodes the mitochondrial isoleucine-tRNA synthetase which belongs to the class-I aminoacyl-tRNA synthetase family, and has been implicated in CAGSSS and a form of Leigh syndrome. Here, we report on a female Danish patient with a novel homozygous IARS2 mutation, p.Gly874Arg, who presented at birth with bilateral hip dislocation and short stature. At 3 months, additional dysmorphic features were noted and at 18 months her radiographic skeletal abnormalities were suggestive of an underlying spondyloepimetaphyseal dysplasia (SEMD). Retrospective analysis of the neonatal radiographs confirmed that the skeletal changes were present at birth. It was only with time that several of the other manifestations of the CAGSSS emerged, namely, cataracts, peripheral neuropathy, and hearing loss. Growth hormone deficiency has not (yet) manifested. We present her clinical features and particularly highlight her skeletal findings, which confirm the presence of a primary SEMD skeletal dysplasia in a growing list of mitochondrial-related disorders including CAGSSS, CODAS, EVEN-PLUS, and X-linked SEMD-MR syndromes.


Assuntos
Catarata/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Hormônio do Crescimento/deficiência , Perda Auditiva Neurossensorial/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Isoleucina-tRNA Ligase/genética , Mutação , Osteocondrodisplasias/genética , Catarata/diagnóstico , Catarata/patologia , Criança , Exoma , Feminino , Expressão Gênica , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/patologia , Neuropatias Hereditárias Sensoriais e Autônomas/diagnóstico , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/patologia , Radiografia , Síndrome
5.
Am J Med Genet A ; 167A(12): 3103-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26250472

RESUMO

Dysspondyloenchondromatosis (DSC) is a rare skeletal dysplasia characterized by enchondroma-like lesions and anisospondyly. The former leads to discrepancies in limb length, and the latter, to progressive kyphoscoliosis. Two recent cases have highlighted the genetic heterogeneity of DSC, one demonstrating the presence and, the other, the absence of a COL2A1 mutation. This may have important clinical implications, for example, screening for complications including atlanto-axial instability associated with type II collagenopathies, as well as long-term patient management. We report on a case with radiographic features of DSC with overlap into the type II collagenopathy spondyloepimetaphyseal dysplasia, Strudwick type, who was found to carry a novel heterozygous mutation in the COL2A1 gene. Testing for COL2A1 mutations should be performed in all patients with radiological features of DSC. Further research is needed to identify the underlying molecular cause in cases where no COL2A1 mutation is identified.


Assuntos
Colágeno Tipo II/genética , Anormalidades Musculoesqueléticas/genética , Mutação/genética , Osteocondrodisplasias/genética , Humanos , Recém-Nascido , Masculino , Anormalidades Musculoesqueléticas/diagnóstico por imagem , Anormalidades Musculoesqueléticas/patologia , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/patologia , Prognóstico , Tomografia Computadorizada por Raios X
6.
J Clin Res Pediatr Endocrinol ; 16(1): 4-10, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38084048

RESUMO

3'-Phosphoadenosine 5'-phosphosulfate synthase 2 (PAPSS2) deficiency is a rare disorder due to biallelic pathogenic variants in the PAPSS2 gene. This disorder was first described in 1998 by Ahmad et al. and Faiyaz ul Haque et al. To date, 79 patients with PAPSS2 deficiency have been reported. The main reported features of these patients are related to bone abnormalities and clinical/biochemical androgen excess. Disproportionate short stature and symptoms associated with spondylar skeletal dysplasia are the most common clinical features that require clinical attention. Androgen excess has been described much less commonly. This review summarizes the currently published clinical, molecular, and biochemical features of patients with PAPSS2 deficiency.


Assuntos
Androgênios , Nanismo , Humanos , Fenótipo
7.
J Bone Miner Res ; 39(3): 287-297, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38477767

RESUMO

Heterozygous variants in KIF22, encoding a kinesin-like protein, are responsible for spondyloepimetaphyseal dysplasia with joint laxity, leptodactilic type (lepto-SEMDJL), characterized by short stature, flat face, generalized joint laxity with multiple dislocations, and progressive scoliosis and limb deformity. By targeted gene sequencing analysis, we identified a homozygous KIF22 variant (NM_007317.3: c.146G>A, p.Arg49Gln) in 3 patients from 3 unrelated families. The clinical features appeared similar to those of patients carrying heterozygous KIF22 variant (c.443C>T or c.446G>A), although the spinal involvement appeared later and was less severe in patients with a recessive variant. Relatives harboring the c.146G>A variant at the heterozygous state were asymptomatic. The homozygous KIF22 variant c.146G>A affected a conserved residue located in the active site and potentially destabilized ATP binding. RT-PCR and western blot analyses demonstrated that both dominant and recessive KIF22 variants do not affect KIF22 mRNA and protein expression in patient fibroblasts compared to controls. As lepto-SEMDJL presents phenotypic overlap with chondrodysplasias with multiple dislocations (CMD), related to defective proteoglycan biosynthesis, we analyzed proteoglycan synthesis in patient skin fibroblasts. Compared to controls, DMMB assay showed a significant decrease of total sulfated proteoglycan content in culture medium but not in the cell layer, and immunofluorescence demonstrated a strong reduction of staining for chondroitin sulfates but not for heparan sulfates, similarly in patients with recessive or dominant KIF22 variants. These data identify a new recessive KIF22 pathogenic variant and link for the first time KIF22 pathogenic variants to altered proteoglycan biosynthesis and place the lepto-SEMDJL in the CMD spectrum.


Heterozygous variants in KIF22, encoding a kinesin-like protein, are responsible for spondyloepimetaphyseal dysplasia with joint laxity, leptodactilic type (lepto-SEMDJL), characterized by short stature, flat face, generalized joint laxity with multiple dislocations, and progressive scoliosis and limb deformity. We identified a homozygous KIF22 variant (NM_007317.3: c.146G>A, p.Arg49Gln) in 3 patients from 3 unrelated families. The clinical features appeared similar to those of patients carrying heterozygous KIF22. The homozygous KIF22 variant c.146G>A affected a conserved residue located in the active site and potentially destabilized ATP binding. As lepto-SEMDJL presents phenotypic overlap with chondrodysplasias with multiple dislocations, related to defective proteoglycan biosynthesis, we analyzed proteoglycan synthesis in patient skin fibroblasts and showed a significant decrease of total sulfated proteoglycan content in culture medium, similarly in patients with recessive or dominant KIF22 variants. These data identify a new recessive KIF22 pathogenic variant and link for the first time KIF22 pathogenic variants to altered proteoglycan biosynthesis.


Assuntos
Instabilidade Articular , Osteocondrodisplasias , Humanos , Instabilidade Articular/genética , Cinesinas/genética , Osteocondrodisplasias/genética , Família , Proteínas de Ligação a DNA
8.
Eur J Med Genet ; 63(8): 103958, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32470407

RESUMO

Spondylo-epimetaphyseal dysplasia Matrilin 3 type (SEMD) is a rare autosomal recessive skeletal dysplasia characterized by short stature, abnormalities in the vertebral bodies and long bones, especially the lower limbs. We enrolled a consanguineous family from Pakistan in which multiple siblings suffered from severe skeletal dysplasia. The six affected subjects ranged in heights from 100 to 136 cm (~-6 standard deviation). Lower limb abnormalities with variable varus and valgus deformities and joint dysplasia were predominant features of the clinical presentation. Whole exome sequencing (WES) followed by Sanger sequencing identified a missense variant, c.542G > A, p.(Arg181Gln) in MATN3 as the genetic cause of the disorder. The variant was homozygous in all affected individuals while the obligate carriers had normal heights with no skeletal symptoms, consistent with a recessive pattern of inheritance. Multiple sequence alignment revealed that MATN3 domain affected by the variant is highly conserved in orthologous proteins. The c.542G > A, p.(Arg181Gln) variant is only the fourth variant in MATN3 causing an autosomal recessive disorder and thus expands the genotypic spectrum.


Assuntos
Mutação de Sentido Incorreto , Osteocondrodisplasias/genética , Consanguinidade , Feminino , Homozigoto , Humanos , Masculino , Proteínas Matrilinas/química , Proteínas Matrilinas/genética , Osteocondrodisplasias/patologia , Linhagem , Domínios Proteicos
9.
Bone Rep ; 12: 100245, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32025536

RESUMO

INTRODUCTION: Spondylo-epi-metaphyseal dysplasia (SEMD) represents a group of osteo-chondrodysplasias characterized by vertebral, epiphyseal as well as metaphyseal abnormalities. Several genes have been identified underlying the different forms. METHODOLOGY AND RESULTS: Two relatives (cousins) in a family were found to have disproportionate short stature with clinical and radiological features suggestive of SEMD. Metabolic bone profile was normal including parathyroid hormone and 25(OH)vitamin D3. Exome sequencing revealed a missense mutation (p. T120M) in the von-Willebrand factor A-domain of the Matrilin 3 (MATN3) gene that segregates with the disease in the family. CONCLUSION: We identified a homozygous missense mutation in MATN3, an important structural component of the extracellular matrix of cartilage, as the genetic cause of SEMD in this pedigree. MATN3 mutations have been more commonly associated with multiple epiphyseal dysplasia than SEMD. Recognition of this mutation will aid in enhancing the understanding and expanding the spectrum of this particular skeletal dysplasia.

11.
Matrix Biol ; 32(7-8): 387-92, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23665482

RESUMO

Spondyloepimetaphyseal dysplasia with joint laxity-leptodactylic type (SEMDJL2) is an autosomal dominant skeletal dysplasia which is characterized by midface hypoplasia, short stature, joint laxity with dislocations, genua valga, progressive scoliosis, and slender fingers. Recently, heterozygous missense mutations in KIF22, a gene which encodes a member of the kinesin-like protein family, have been identified in sporadic as well as familial cases of SEMDJL2. In the present study homozygosity mapping and whole-exome sequencing were combined to analyze a consanguineous family with a phenotype resembling SEMDJL2. We identified homozygous missense mutations in the two nearby genes NIN (Ninein) and POLE2 (DNA polymerase epsilon subunit B) which segregate with the disease in the family and were not present in 500 healthy control individuals and in the 1094 control individuals contained within the 1000-genomes database. We present several lines of evidence that mutant Ninein is most likely causative for the SEMDJL2-like phenotype. The centrosomal protein NIN shows a functional relationship with KIF22 and other proteins associated with chromosome congression/movement, centrosomal function, and ciliogenesis, which have been associated with skeletal dysplasias. Moreover, compound heterozygous missense mutations at more N-terminal positions of Ninein have very recently been identified in a family with microcephalic primordial dwarfism. Together with the present report this strongly supports a fundamental role of Ninein in skeletal development.


Assuntos
Proteínas do Citoesqueleto/genética , Instabilidade Articular/genética , Instabilidade Articular/patologia , Mutação de Sentido Incorreto/genética , Proteínas Nucleares/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , DNA Polimerase II/genética , Componentes do Gene , Humanos , Dados de Sequência Molecular , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Isoformas de Proteínas/genética , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA