Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
EMBO J ; 40(19): e108482, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459010

RESUMO

Sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA) 2b is a ubiquitous SERCA family member that conducts Ca2+ uptake from the cytosol to the ER. Herein, we present a 3.3 Å resolution cryo-electron microscopy (cryo-EM) structure of human SERCA2b in the E1·2Ca2+ state, revealing a new conformation for Ca2+ -bound SERCA2b with a much closer arrangement of cytosolic domains than in the previously reported crystal structure of Ca2+ -bound SERCA1a. Multiple conformations generated by 3D classification of cryo-EM maps reflect the intrinsically dynamic nature of the cytosolic domains in this state. Notably, ATP binding residues of SERCA2b in the E1·2Ca2+ state are located at similar positions to those in the E1·2Ca2+ -ATP state; hence, the cryo-EM structure likely represents a preformed state immediately prior to ATP binding. Consistently, a SERCA2b mutant with an interdomain disulfide bridge that locks the closed cytosolic domain arrangement displayed significant autophosphorylation activity in the presence of Ca2+ . We propose a novel mechanism of ATP binding to SERCA2b.


Assuntos
Trifosfato de Adenosina/química , Microscopia Crioeletrônica , Modelos Moleculares , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Hidrólise , Conformação Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Relação Estrutura-Atividade
2.
J Biol Chem ; 299(9): 105184, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37611826

RESUMO

Termination codon readthrough (TCR) is a process in which ribosomes continue to translate an mRNA beyond a stop codon generating a C-terminally extended protein isoform. Here, we demonstrate TCR in mammalian NNAT mRNA, which encodes NNAT, a proteolipid important for neuronal differentiation. This is a programmed event driven by cis-acting RNA sequences present immediately upstream and downstream of the canonical stop codon and is negatively regulated by NONO, an RNA-binding protein known to promote neuronal differentiation. Unlike the canonical isoform NNAT, we determined that the TCR product (NNATx) does not show detectable interaction with the sarco/endoplasmic reticulum Ca2+-ATPase isoform 2 Ca2+ pump, cannot increase cytoplasmic Ca2+ levels, and therefore does not enhance neuronal differentiation in Neuro-2a cells. Additionally, an antisense oligonucleotide that targets a region downstream of the canonical stop codon reduced TCR of NNAT and enhanced the differentiation of Neuro-2a cells to cholinergic neurons. Furthermore, NNATx-deficient Neuro-2a cells, generated using CRISPR-Cas9, showed increased cytoplasmic Ca2+ levels and enhanced neuronal differentiation. Overall, these results demonstrate regulation of neuronal differentiation by TCR of NNAT. Importantly, this process can be modulated using a synthetic antisense oligonucleotide.


Assuntos
Cálcio , Neurônios , Biossíntese de Proteínas , Animais , Cálcio/metabolismo , Diferenciação Celular , Códon de Terminação , Mamíferos/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neurônios/citologia
3.
J Transl Med ; 22(1): 77, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243248

RESUMO

BACKGROUND: The sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA2a) depression substantially contributes to diastolic dysfunction in heart failure (HF), suggesting that SERCA2a stimulation may be a mechanism-based HF therapy. Istaroxime is a drug endowed with both a SERCA2a stimulatory activity and a Na+/K+ pump inhibitory activity for acute HF treatment. Its main metabolite PST3093 shows a more favorable therapeutic profile as compared to the parent drug, but it is still unsuitable for chronic usage. Novel PST3093 derivatives have been recently developed for oral (chronic) HF treatment; compound 8 was selected among them and here characterized. METHODS: Effects of compound 8 were evaluated in a context of SERCA2a depression, by using streptozotocin-treated rats, a well-known model of diastolic dysfunction. The impact of SERCA2a stimulation by compound 8 was assessed at the cellular level ad in vivo, following i.v. infusion (acute effects) or oral administration (chronic effects). RESULTS: As expected from SERCA2a stimulation, compound 8 induced SR Ca2+ compartmentalization in STZ myocytes. In-vivo echocardiographic analysis during i.v. infusion and after repeated oral administration of compound 8, detected a significant improvement of diastolic function. Moreover, compound 8 did not affect electrical activity of healthy guinea-pig myocytes, in line with the absence of off-target effects. Finally, compound 8 was well tolerated in mice with no evidence of acute toxicity. CONCLUSIONS: The pharmacological evaluation of compound 8 indicates that it may be a safe and selective drug for a mechanism-based treatment of chronic HF by restoring SERCA2a activity.


Assuntos
Etiocolanolona/análogos & derivados , Insuficiência Cardíaca , Ratos , Camundongos , Animais , Cobaias , Insuficiência Cardíaca/metabolismo , Doença Crônica , Inibidores Enzimáticos , Cardiotônicos/uso terapêutico , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo
4.
Toxicol Appl Pharmacol ; 486: 116947, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38688426

RESUMO

AIMS: SERCA2, one of the P-type pumps encoded by gene ATP2A2, is the only calcium reflux channel of the endoplasmic reticulum (ER) and participates in maintaining calcium homeostasis. The present study was designed to explore SERCA2 expression pattern in auditory hair cells and the possible mechanism underlying the effects of SERCA2 on cisplatin-induced ototoxicity. MAIN METHODS: The SERCA2 expression pattern in cochlea hair cells and HEI-OC1 cells was measured by Western blot (WB) and immunofluorescence staining. The apoptosis and its related factors were detected by TUNEL assay and WB. The expression levels of ER stress-related factors, ATF6, PERK, IRE1α, and GRP78, were measured via WB. As for the determination of SERCA2 overexpression and knockdown, plasmids and lentiviral vectors were constructed, respectively. KEY FINDINGS: We found that SERCA2 was highly expressed in cochlea hair cells and HEI-OC1 cells. Of note, the level of SERCA2 expression in neonatal mice was remarkably higher than that in adult mice. Under the exposure of 30 µM cisplatin, SERCA2 was down-regulated significantly compared with the control group. In addition, cisplatin administration triggered the occurrence of ER stress and apoptosis. Those events were reversed by overexpressing SERCA2. On the contrary, SERCA2 knockdown could aggravate the above processes. SIGNIFICANCE: The findings from the present study disclose, for the first time, that SERCA2 is abundantly expressed in cochlea hair cells, and the suppression of SERCA2 caused by cisplatin could trigger ER homeostasis disruption, thereby implying that SERCA2 might be a promising target to prevent cisplatin-induced cytotoxicity of hair cells.


Assuntos
Apoptose , Cisplatino , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Células Ciliadas Auditivas , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Cisplatino/toxicidade , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Apoptose/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Linhagem Celular , Antineoplásicos/toxicidade , Masculino , Ototoxicidade/prevenção & controle
5.
FASEB J ; 37(7): e23030, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37302010

RESUMO

Almost half of the people who die from sudden cardiac arrest have no detectable heart disease. Among children and young adults, the cause of approximately one-third of deaths from sudden cardiac arrest remains unexplained after thorough examination. Sudden cardiac arrest and related sudden cardiac death are attributed to dysfunctional cardiac ion-channels. The present perspective paper proposes a pathophysiological mechanism by which phosphate toxicity from cellular accumulation of dysregulated inorganic phosphate interferes with normal calcium handling in the heart, leading to sudden cardiac arrest. During cardiac muscle relaxation following contraction, SERCA2a pumps actively transport calcium ions into the sarcoplasmic reticulum, powered by ATP hydrolysis that produces ADP and inorganic phosphate end products. Reviewed evidence supports the proposal that end-product inhibition of SERCA2a occurs as increasing levels of inorganic phosphate drive up phosphate toxicity and bring cardiac function to a sudden and unexpected halt. The paper concludes that end-product inhibition from ATP hydrolysis is the mediating factor in the association of sudden cardiac arrest with phosphate toxicity. However, current technology lacks the ability to directly measure this pathophysiological mechanism in active myocardium, and further research is needed to confirm phosphate toxicity as a risk factor in individuals with sudden cardiac arrest. Moreover, phosphate toxicity may be reduced through modification of dietary phosphate intake, with potential for employing low-phosphate dietary interventions to reduce the risk of sudden cardiac arrest.


Assuntos
Cálcio , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Criança , Humanos , Cálcio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Morte Súbita Cardíaca/etiologia , Trifosfato de Adenosina
6.
Mol Cell Biochem ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438822

RESUMO

Diabetes is a major risk factor for cardiovascular disease. However, the exact mechanism by which diabetes contributes to vascular damage is not fully understood. The aim of this study was to investigate the role of SUMO-1 mediated SERCA2a SUMOylation in the development of atherosclerotic vascular injury associated with diabetes mellitus. ApoE-/- mice were treated with streptozotocin (STZ) injection combined with high-fat feeding to simulate diabetic atherosclerosis and vascular injury. Human aortic vascular smooth muscle cells (HAVSMCs) were treated with high glucose (HG, 33.3 mM) and palmitic acid (PA, 200 µM) for 24 h to mimic a model of diabetes-induced vascular injury in vitro. Aortic vascular function, phenotypic conversion, migration, proliferation, intracellular Ca2+ concentration, the levels of small ubiquitin-like modifier type 1 (SUMO1), SERCA2a and SUMOylated SERCA2a were detected. Diabetes-induced atherosclerotic mice presented obvious atherosclerotic plaques and vascular injury, companied by significantly lower levels of SUMO1 and SERCA2a in aorta. HG and PA treatment in HAVSMCs reduced the expressions of SUMO1, SERCA2a and SUMOylated SERCA2a, facilitated the HAVSMCs phenotypic transformation, proliferation and migration, attenuated the Ca2+ transport, and increased the resting intracellular Ca2+ concentration. We also confirmed that SUMO1 directly bound to SERCA2a in HAVSMCs. Overexpression of SUMO1 restored the function and phenotypic contractile ability of HAVSMCs by upregulating SERCA2a SUMOylation, thereby alleviating HG and PA-induced vascular injury. These observations suggest an essential role of SUMO1 to protect diabetes-induced atherosclerosis and aortic vascular injury by the regulation of SERCA2a-SUMOylation and calcium homeostasis.

7.
Exp Cell Res ; 427(1): 113572, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36990422

RESUMO

Long non-coding RNAs (lncRNAs) are pivotal regulators in heart disease, including myocardial ischemia/reperfusion (I/R) injury. LncRNA just proximal to XIST (JPX) is a molecular switch for X-chromosome inactivation. Enhancer of zeste homolog 2 (EZH2) is a core catalytic subunit of the polycomb repressive complex 2 (PRC2), which is involved in chromatin compaction and gene repression. This study aims to explore the mechanism of JPX regulating the expression of Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) by binding to EZH2 and preventing cardiomyocyte I/R damage in vivo and in vitro. First, we constructed mouse myocardial I/R and HL1 cell hypoxia/reoxygenation models, and found that JPX was low expressed in both models. JPX overexpression alleviated cardiomyocyte apoptosis in vivo and in vitro, reduced the I/R-induced infarct size in mouse hearts, lowered the serum cTnI concentration, and promoted mouse cardiac systolic function. The evidence implies that JPX can alleviate I/R-induced acute cardiac damage. Mechanistically, the FISH and RIP assays showed that JPX could bind to EZH2. The ChIP assay revealed EZH2 enrichment at the promoter region of SERCA2a. Both the EZH2 and H3K27me3 levels at the promoter region of SERCA2a were reduced in the JPX overexpression group compared to those in the Ad-EGFP group (P < 0.01). In summary, our results suggested that LncRNA JPX directly bound to EZH2 and reduced the EZH2-mediated H3K27me3 in the SERCA2a promoter region, protecting the heart from acute myocardial I/R injury. Therefore, JPX might be a potential therapeutic target for I/R injury.


Assuntos
Traumatismo por Reperfusão Miocárdica , RNA Longo não Codificante , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Apoptose/genética
8.
J Card Fail ; 29(7): 1097-1103, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37075941

RESUMO

INTRODUCTION: Istaroxime was shown, in a small study, to increase systolic blood pressure (SBP) in patients with pre-cardiogenic shock (CS) due to acute heart failure (AHF). OBJECTIVES: In the current analysis, we describe the effects of 2 doses of istaroxime 1.0 (Ista-1) and 1.5 µg/kg/min (Ista-1.5). METHODS: The target dose of istaroxime, administered in a double-blind, placebo-controlled fashion, was 1.5 µg/kg/min in the first cohort (n = 24), and it was reduced to 1.0 µg/kg/min in subsequent patients (n = 36). RESULTS: Ista-1 was associated with numerically larger effects on SBP area under the curve, with a 93.6% relative increase from baseline during the first 6 hours with Ista-1 vs 39.5% for Ista-1.5, and with a 49.4% and 24.3% relative increase, respectively, at 24 hours. Compared to placebo, Ista-1.5 had more worsening HF events until day 5 and fewer days alive out of hospital (DAOH) through day 30. Ista-1 had no worsening HF events, and DAOH to day 30 were significantly increased. Effects on echocardiographic measures were similar, although decreases in left ventricular end systolic and diastolic volumes were numerically larger in the Ista-1 group. Ista-1, but not Ista-1.5, showed numerically smaller creatinine increases and larger decreases in natriuretic peptides as compared to placebo. There were 5 serious adverse events in Ista-1.5 (4 of which were cardiac) but only 1 in Ista-1. CONCLUSIONS: In patients with pre-CS due to AHF, istaroxime 1.0 µg/kg/min induced beneficial effects on SBP and DAOH. Clinical benefits appear to be reached at dosages less than 1.5 ug/kg/min.


Assuntos
Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Choque Cardiogênico , Coração , Etiocolanolona/farmacologia , Etiocolanolona/uso terapêutico , Método Duplo-Cego
9.
Clin Exp Hypertens ; 45(1): 2272062, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37899350

RESUMO

BACKGROUND AND PURPOSE: Substitution of Cys674 (C674) in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) causes SERCA2 dysfunction which leads to activated inositol requiring enzyme 1 alpha (IRE1α) and spliced X-box binding protein 1 (XBP1s) pathway accelerating cell proliferation of pulmonary artery smooth muscle cells (PASMCs) followed by significant pulmonary vascular remodeling resembling human pulmonary hypertension. Based on this knowledge, we intend to investigate other potential mechanisms involved in SERCA2 dysfunction-induced pulmonary vascular remodeling. EXPERIMENTAL APPROACH: Heterozygous SERCA2 C674S knock-in (SKI) mice of which half of cysteine in 674 was substituted by serine to mimic the partial irreversible oxidation of C674 were used. The lungs of SKI mice and their littermate wild-type mice were collected for PASMC culture, protein expression, and pulmonary vascular remodeling analysis. RESULTS: SERCA2 dysfunction increased intracellular Ca2+ levels, which activated Ca2+-dependent calcineurin (CaN) and promoted the nuclear translocation and protein expression of the nuclear factor of activated T-lymphocytes 4 (NFAT4) in an IRE1α/XBP1s pathway-independent manner. In SKI PASMCs, the scavenge of intracellular Ca2+ by BAPTA-AM or inhibition of CaN by cyclosporin A can prevent PASMC phenotypic transition. CDN1163, a SERCA2 agonist, suppressed the activation of CaN/NFAT4 and IRE1α/XBP1s pathways, reversed the protein expression of PASMC phenotypic transition markers and cell cycle-related proteins, and inhibited cell proliferation and migration when given to SKI PASMCs. Furthermore, CDN1163 ameliorated pulmonary vascular remodeling in SKI mice. CONCLUSIONS AND IMPLICATIONS: SERCA2 dysfunction promotes PASMC phenotypic transition and pulmonary vascular remodeling by multiple mechanisms, which could be improved by SERCA2 agonist CDN1163.


'What is already known' l The dysfunction of SERCA2 promotes PASMC hyperproliferation and pulmonary vascular remodeling through activation of the IRE1α/XBP1s pathway.'What this study adds' l The dysfunction of SERCA2 activates the Ca2+-dependent CaN-mediated NFAT4 pathway to promote the PASMC phenotypic transition.l Revitalization of SERCA2 suppresses PASMC phenotypic transition and pulmonary vascular remodeling caused by SERCA2 dysfunction.'Clinical significance' l SERCA2 dysfunction-induced pulmonary vascular remodeling involves more than one mechanism, implicating that more drugable targets are to be discovered.l SERCA2 is a potential therapeutic target for preventing pulmonary vascular remodeling.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Humanos , Animais , Artéria Pulmonar , Endorribonucleases/metabolismo , Remodelação Vascular , Proteínas Serina-Treonina Quinases/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Células Cultivadas
10.
Tohoku J Exp Med ; 260(4): 315-327, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37258137

RESUMO

The incidence, prevalence, and economic burden of heart failure have continued to increase worldwide. It remains unclear whether LCZ696 can ameliorate calcium reuptake in the sarcoplasmic reticulum via the sarcoplasmic endoplasmic reticulum calcium ion-ATPase 2α (SERCA2α)-dependent pathway during cardiac diastole. We investigated whether LCZ696 could ameliorate tachycardia-induced myocardial injury by modulating cardiac SERCA2α levels. A tachycardia-induced myocardial injury model was established by daily intraperitoneal administration of 60 mg/kg isoprenaline (ISO) for 2 weeks. LCZ696 was orally administered for the following 4 weeks. SERCA2α and calcium ion (Ca2+)-related protein expression was assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. For additional in vitro studies, HL-1 cardiomyocytes were used. A SERCA2α overexpression vector was constructed and transfected into HL-1 cells. The expression of SERCA2α and Ca2+-related proteins were also measured using qRT-PCR and western blotting. Our in vivo results demonstrated that myocardial injury was successfully induced by intraperitoneal administration of ISO. The expression of both SERCA2α- and Ca2+-related proteins was impaired. Oral administration of LCZ696 increased the expression of SERCA2α, alleviated Ca2+-related protein impairment and cardiac Ca2+ dyshomeostasis, and ameliorated myocardial injury. These results were compared with our in vitro findings. Ca2+-related proteins are affected by the overexpression of SERCA2α. LCZ696 improved tachycardia-induced myocardial injury by increasing SERCA2α expression, which reversed the development of heart failure in ISO-induced mice. These results provide new insights into how sustained LCZ696 treatment in heart failure improves cardiac function through intracellular Ca2+-regulatory mechanisms.


Assuntos
Cálcio , Insuficiência Cardíaca , Camundongos , Animais , Tetrazóis/farmacologia , Antagonistas de Receptores de Angiotensina , Compostos de Bifenilo , Combinação de Medicamentos , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/tratamento farmacológico , Taquicardia/complicações , Taquicardia/tratamento farmacológico , Isoproterenol/farmacologia
11.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686067

RESUMO

This study evaluates the potential therapeutic effects of anthocyanin-rich Prunus cerasus (sour cherry) extract (PCE) on atherosclerosis-associated cardiac dysfunction, described by the impairment of the NO-PKG (nitric oxide-protein kinase G) pathway and the antioxidant capacity. Initially, a rabbit model of atherosclerotic cardiovascular disease was established by administering a cholesterol-rich diet, enabling the examination of the impact of 9 g/kg PCE on the pre-existing compromised cardiovascular condition. After that, the animals were divided into four groups for 12 weeks: the (1) untreated control group; (2) PCE-administered healthy rabbits; (3) hypercholesterolemic (HC) group kept on an atherogenic diet; and (4) PCE-treated HC group. Dyslipidemia, impaired endothelial function, and signs of diastolic dysfunction were evident in hypercholesterolemic rabbits, accompanied by a reduced cardiac expression of eNOS (endothelial nitric oxide synthase), PKG, and SERCA2a (sarco/endoplasmic reticulum calcium ATPase 2a). Subsequent PCE treatment improved the lipid profile and the cardiac function. Additionally, PCE administration was associated with elevated myocardial levels of eNOS, PKG, and SERCA2a, while no significant changes in the vascular status were observed. Western blot analysis further revealed hypercholesterolemia-induced increase and PCE-associated reduction in heme oxygenase-1 expression. The observed effects of anthocyanins indicate their potential as a valuable addition to the treatment regimen for atherosclerosis-associated cardiac dysfunction.


Assuntos
Aterosclerose , Cardiopatias , Lagomorpha , Prunus avium , Animais , Coelhos , Antocianinas/farmacologia , Antocianinas/uso terapêutico , Aterosclerose/complicações , Aterosclerose/tratamento farmacológico
12.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569807

RESUMO

Cardiac hypertrophy is an adaptive response to various pathological insults, including hypertension. However, sustained hypertrophy can cause impaired calcium regulation, cardiac dysfunction, and remodeling, accompanied by cardiac fibrosis. Our previous study identified miR-25 as a regulator of SERCA2a, and found that the inhibition of miR-25 improved cardiac function and reduced fibrosis by restoring SERCA2a expression in a murine heart failure model. However, the precise mechanism underlying the reduction in fibrosis following miR-25 inhibition remains unclear. Therefore, we postulate that miR-25 may have additional targets that contribute to regulating cardiac fibrosis. Using in silico analysis, Krüppel-like factor 4 (KLF4) was identified as an additional target of miR-25. Further experiments confirmed that KLF4 was directly targeted by miR-25 and that its expression was reduced by long-term treatment with Angiotensin II, a major hypertrophic inducer. Subsequently, treatment with an miR-25 inhibitor alleviated the cardiac dysfunction, fibrosis, and inflammation induced by Angiotensin II (Ang II). These findings indicate that inhibiting miR-25 not only enhances calcium cycling and cardiac function via SERCA2a restoration but also reduces fibrosis by restoring KLF4 expression. Therefore, targeting miR-25 may be a promising therapeutic strategy for treating hypertensive heart diseases.


Assuntos
Cardiomiopatias , Hipertensão , MicroRNAs , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 4 Semelhante a Kruppel , Angiotensina II/metabolismo , Cálcio/metabolismo , Cardiomegalia/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Fibrose , Hipertensão/metabolismo , Miócitos Cardíacos/metabolismo , Camundongos Endogâmicos C57BL
13.
Molecules ; 28(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36838628

RESUMO

The aim of the present study was to assess the effects exerted in vitro by three asymmetrical porphyrins (5-(2-hydroxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin, 5-(2-hydroxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrinatozinc(II), and 5-(2-hydroxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrinatocopper(II)) on the transmembrane potential and the membrane anisotropy of U937 cell lines, using bis-(1,3-dibutylbarbituric acid)trimethine oxonol (DiBAC4(3)) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate (TMA-DPH), respectively, as fluorescent probes for fluorescence spectrophotometry. The results indicate the hyperpolarizing effect of porphyrins in the concentration range of 0.5, 5, and 50 µM on the membrane of human U937 monocytic cells. Moreover, the tested porphyrins were shown to increase membrane anisotropy. Altogether, the results evidence the interaction of asymmetrical porphyrins with the membrane of U937 cells, with potential consequences on cellular homeostasis. Molecular docking simulations, and Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) free energy of binding calculations, supported the hypothesis that the investigated porphyrinic compounds could potentially bind to membrane proteins, with a critical role in regulating the transmembrane potential. Thus, both the free base porphyrins and the metalloporphyrins could bind to the SERCA2b (sarco/endoplasmic reticulum ATPase isoform 2b) calcium pump, while the metal complexes may specifically interact and modulate calcium-dependent (large conductance calcium-activated potassium channel, Slo1/KCa1.1), and ATP-sensitive (KATP), potassium channels. Further studies are required to investigate these interactions and their impact on cellular homeostasis and functionality.


Assuntos
Porfirinas , Humanos , Porfirinas/química , Células U937 , Cálcio/metabolismo , Simulação de Acoplamento Molecular , Membrana Celular/metabolismo , Trifosfato de Adenosina/metabolismo
14.
J Mol Cell Cardiol ; 173: 47-60, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36150524

RESUMO

Diabetes mellitus type 2 is associated with adverse clinical outcome after myocardial infarction. To better understand the underlying causes we here investigated sarcomere protein function and its calcium-dependent regulation in the non-ischemic remote myocardium (RM) of diabetic mice (db/db) after transient occlusion of the left anterior descending coronary artery. Before and 24 h after surgery db/db and non-diabetic db/+ underwent magnetic resonance imaging followed by histological and biochemical analyses of heart tissue. Intracellular calcium transients and sarcomere function were measured in isolated cardiomyocytes. Active and passive force generation was assessed in skinned fibers and papillary muscle preparations. Before ischemia and reperfusion (I/R), beat-to-beat calcium cycling was depressed in diabetic cardiomyocytes. Nevertheless, contractile function was preserved owing to increased myofilament calcium sensitivity and higher responsiveness of myocardial force production to ß-adrenergic stimulation in db/db compared to db/+. In addition, protein kinase C activity was elevated in db/db hearts leading to strong phosphorylation of the titin PEVK region and increased titin-based tension of myofilaments. I/R impaired the function of whole hearts and RM sarcomeres in db/db to a larger extent than in non-diabetic db/+, and we identified several reasons. First, the amplitude and the kinetics of cardiomyocyte calcium transients were further reduced in the RM of db/db. Underlying causes involved altered expression of calcium regulatory proteins. Diabetes and I/R additively reduced phospholamban S16-phosphorylation by 80% (P < 000.1) leading to strong inhibition of the calcium ATPase SERCA2a. Second, titin stiffening was only observed in the RM of db/+, but not in the RM of db/db. Finally, db/db myofilament calcium sensitivity and force generation upon ß-adrenergic stimulation were no longer enhanced over db/+ in the RM. The findings demonstrate that impaired cardiomyocyte calcium cycling of db/db hearts is compensated by increased myofilament calcium sensitivity and increased titin-based stiffness prior to I/R. In contrast, sarcomere function of the RM 24 h after I/R is poor because both these compensatory mechanisms fail and myocyte calcium handling is further depressed.


Assuntos
Diabetes Mellitus Experimental , Infarto do Miocárdio , Camundongos , Animais , Conectina/metabolismo , Cálcio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/metabolismo , Reperfusão , Adrenérgicos , Contração Miocárdica
15.
Am J Hum Genet ; 105(6): 1126-1147, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31735293

RESUMO

The redox state of the neural progenitors regulates physiological processes such as neuronal differentiation and dendritic and axonal growth. The relevance of endoplasmic reticulum (ER)-associated oxidoreductases in these processes is largely unexplored. We describe a severe neurological disorder caused by bi-allelic loss-of-function variants in thioredoxin (TRX)-related transmembrane-2 (TMX2); these variants were detected by exome sequencing in 14 affected individuals from ten unrelated families presenting with congenital microcephaly, cortical polymicrogyria, and other migration disorders. TMX2 encodes one of the five TMX proteins of the protein disulfide isomerase family, hitherto not linked to human developmental brain disease. Our mechanistic studies on protein function show that TMX2 localizes to the ER mitochondria-associated membranes (MAMs), is involved in posttranslational modification and protein folding, and undergoes physical interaction with the MAM-associated and ER folding chaperone calnexin and ER calcium pump SERCA2. These interactions are functionally relevant because TMX2-deficient fibroblasts show decreased mitochondrial respiratory reserve capacity and compensatory increased glycolytic activity. Intriguingly, under basal conditions TMX2 occurs in both reduced and oxidized monomeric form, while it forms a stable dimer under treatment with hydrogen peroxide, recently recognized as a signaling molecule in neural morphogenesis and axonal pathfinding. Exogenous expression of the pathogenic TMX2 variants or of variants with an in vitro mutagenized TRX domain induces a constitutive TMX2 polymerization, mimicking an increased oxidative state. Altogether these data uncover TMX2 as a sensor in the MAM-regulated redox signaling pathway and identify it as a key adaptive regulator of neuronal proliferation, migration, and organization in the developing brain.


Assuntos
Encefalopatias/patologia , Encéfalo/anormalidades , Deficiências do Desenvolvimento/patologia , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Tiorredoxinas/metabolismo , Adolescente , Adulto , Encefalopatias/genética , Encefalopatias/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Membrana/genética , Mitocôndrias/patologia , Oxirredução , Prognóstico , Pele/metabolismo , Pele/patologia , Tiorredoxinas/genética , Transcriptoma
16.
Exp Dermatol ; 31(9): 1302-1310, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35801378

RESUMO

Darier (Darier-White) disease (DD) is an autosomal dominant skin disorder caused by pathogenic mutations in the ATP2A2 gene which encodes a calcium ATPase in the sarco-endoplasmic reticulum (SERCA2). Defects in the SERCA2 protein lead to an impairment of cellular calcium homeostasis, which in turn, triggers cell death pathways. There is a high prevalence of neuropsychiatric disorders in patients affected by this condition, namely intellectual disability, bipolar disorder, schizophrenia, and suicidality. Though these associations have been well-documented over the years, little has been discussed or investigated regarding the pathophysiological mechanisms. The goal of this article is to review the literature related to the most commonly associated neuropsychiatric disorders found in patients with DD, highlight the pathophysiological mechanisms underlying each condition, and examine potential interventions that may be of interest for future development. A literature search was performed using PubMed to access and review relevant articles published in the last 40 years. Keywords searched included Darier disease neuropsychiatric, Darier disease pathophysiology, SERCA2 central nervous system, SERCA 2 skin, ATP2A2 central nervous system, ATP2A2 skin, sphingosine-1-phosphate signalling skin, sphingosine-1-phosphate signalling central nervous system, P2X7 receptor skin, and P2X7 receptor central nervous system. Our search resulted in 2692 articles, of which 61 articles were ultimately included in this review.


Assuntos
Doença de Darier , Cálcio/metabolismo , Doença de Darier/metabolismo , Humanos , Mutação , Receptores Purinérgicos P2X7/metabolismo , Pele/metabolismo
17.
Cell Commun Signal ; 20(1): 38, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331264

RESUMO

BACKGROUND: The incidence of coronary heart disease (CHD) in premenopausal women is significantly lower than that of men of the same age, suggesting protective roles of estrogen for the cardiovascular system against CHD. This study aimed to confirm the protective effect of estrogen on myocardium during myocardial ischemia/reperfusion (MI/R) injury and explore the underlying mechanisms. METHODS: Neonatal rat cardiomyocytes and Sprague-Dawley rats were used in this study. Different groups were treated by bilateral ovariectomy, 17ß-estradiol (E2), adenoviral infection, or siRNA transfection. The expression of sarcoplasmic reticulum Ca2+ ATPase pump (SERCA2a) and endoplasmic reticulum (ER) stress-related proteins were measured in each group to examine the effect of different E2 levels and determine the relationship between SERCA2a and ER stress. The cell apoptosis, myocardial infarction size, levels of apoptosis and serum cardiac troponin I, ejection fraction, calcium transient, and morphology changes of the myocardium and ER were examined to verify the effects of E2 on the myocardium. RESULTS: Bilateral ovariectomy resulted in reduced SERCA2a levels and more severe MI/R injury. E2 treatment increased SERCA2a expression. Both E2 treatment and exogenous SERCA2a overexpression decreased levels of ER stress-related proteins and alleviated myocardial damage. In contrast, SERCA2a knockdown exacerbated ER stress and myocardial damage. Addition of E2 after SERCA2a knockdown did not effectively inhibit ER stress or reduce myocardial injury. CONCLUSIONS: Our data demonstrate that estrogen inhibits ER stress and attenuates MI/R injury by upregulating SERCA2a. These results provide a new potential target for therapeutic intervention and drug discovery in CHD. Video Abstract.


Assuntos
Estresse do Retículo Endoplasmático , Estrogênios , Traumatismo por Reperfusão Miocárdica , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Animais , Apoptose , Estrogênios/farmacologia , Feminino , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos , Ratos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
18.
Cell Commun Signal ; 20(1): 143, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104752

RESUMO

Spatiotemporal regulation of subcellular protein kinase A (PKA) activity for precise substrate phosphorylation is essential for cellular responses to hormonal stimulation. Ryanodine receptor 2 (RyR2) and (sarco)endoplasmic reticulum calcium ATPase 2a (SERCA2a) represent two critical targets of ß adrenoceptor (ßAR) signaling on the sarcoplasmic reticulum membrane for cardiac excitation and contraction coupling. Using novel biosensors, we show that cardiac ß1AR signals to both RyR2 and SERCA2a nanodomains in cardiomyocytes from mice, rats, and rabbits, whereas the ß2AR signaling is restricted from these nanodomains. Phosphodiesterase 4 (PDE4) and PDE3 control the baseline PKA activity and prevent ß2AR signaling from reaching the RyR2 and SERCA2a nanodomains. Moreover, blocking inhibitory G protein allows ß2AR signaling to the RyR2 but not the SERCA2a nanodomains. This study provides evidence for the differential roles of inhibitory G protein and PDEs in controlling the adrenergic subtype signaling at the RyR2 and SERCA2a nanodomains in cardiomyocytes. Video abstract.


Assuntos
Sinalização do Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Proteínas Quinases Dependentes de AMP Cíclico , Proteínas de Ligação ao GTP , Camundongos , Fosforilação , Coelhos , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático
19.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35328344

RESUMO

The endoplasmic reticulum (ER) chaperone Grp94/gp96 appears to be involved in cytoprotection without being required for cell survival. This study compared the effects of Grp94 protein levels on Ca2+ homeostasis, antioxidant cytoprotection and protein-protein interactions between two widely studied cell lines, the myogenic C2C12 and the epithelial HeLa, and two breast cancer cell lines, MDA-MB-231 and HS578T. In myogenic cells, but not in HeLa, Grp94 overexpression exerted cytoprotection by reducing ER Ca2+ storage, due to an inhibitory effect on SERCA2. In C2C12 cells, but not in HeLa, Grp94 co-immunoprecipitated with non-client proteins, such as nNOS, SERCA2 and PMCA, which co-fractionated by sucrose gradient centrifugation in a distinct, medium density, ER vesicular compartment. Active nNOS was also required for Grp94-induced cytoprotection, since its inhibition by L-NNA disrupted the co-immunoprecipitation and co-fractionation of Grp94 with nNOS and SERCA2, and increased apoptosis. Comparably, only the breast cancer cell line MDA-MB-231, which showed Grp94 co-immunoprecipitation with nNOS, SERCA2 and PMCA, increased oxidant-induced apoptosis after nNOS inhibition or Grp94 silencing. These results identify the Grp94-driven multiprotein complex, including active nNOS as mechanistically involved in antioxidant cytoprotection by means of nNOS activity and improved Ca2+ homeostasis.


Assuntos
Neoplasias da Mama , Citoproteção , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular , Retículo Endoplasmático/metabolismo , Feminino , Humanos
20.
Am J Physiol Heart Circ Physiol ; 320(6): H2188-H2200, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33861144

RESUMO

The interaction of phospholamban (PLB) and the sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) is a key regulator of cardiac contractility and a therapeutic target in heart failure (HF). PLB-mediated increases in SERCA2a activity improve cardiac function and HF. Clinically, this mechanism can only be exploited by a general activation of the proteinkinase A (PKA), which is associated with side effects and adverse clinical outcomes. A selective interference of the PLB-SERCA2a interaction is desirable but will require novel tools that allow for an integrated assessment of this interaction under both physiological and pathophysiological conditions. A circularly permutated green fluorescent protein (cpGFP) was interposed between SERCA2a and PLB to result into a single SERCA2a-cpGFP-PLB recombinant protein (SGP). Expression, phosphorylation, fluorescence, and function of SGP were evaluated. Expression of SGP-cDNA results in a functional recombinant protein at the predicted molecular weight. The PLB domain of SGP retains its ability to polymerize and can be phosphorylated by PKA activation. This increases the fluorescent yield of SGP by between 10% and 165% depending on cell line and conditions. In conclusion, a single recombinant fusion protein that combines SERCA2a, a circularly permutated green fluorescent protein, and PLB can be expressed in cells and can be phosphorylated at the PLB domain that markedly increases the fluorescence yield. SGP is a novel cellular SERCA2a-PLB interaction monitor.NEW & NOTEWORTHY This study describes the design and characterization of a novel biosensor that can visualize the interaction of SERCA2a and phospholamban (PLB). The biosensor combines SERCA2a, a circularly permutated green fluorescent protein, and PLB into one recombinant protein (SGP). Proteinkinase A activation results in phosphorylation of the PLB domain and is associated with a marked increase in the fluorescence yield to allow for real-time monitoring of the SERCA2a and PLB interaction in cells.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , DNA Complementar , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Ratos , Proteínas Recombinantes de Fusão , Proteínas Recombinantes , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA