Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Calcif Tissue Int ; 112(1): 118-122, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322168

RESUMO

Osteogenesis imperfecta (OI) type VI is a rare inherited disorder of the connective tissue caused by pathogenic variants in SERPINF1 gene, which encodes the pigment epithelium-derived factor (PEDF). PEDF is implicated in many biologic processes, including an anti-cancer role. This information is supported by in vitro and in vivo studies that evidenced its anti-angiogenic, anti-tumorigenic, and anti-metastatic properties. Although OI is related to skeletal changes such as bone fragility and deformities, as well as to other connective tissue defects, it does not represent a greater predisposition to the development of skeletal tumors. Here, we report on an adult with OI in which a deletion in exon 8 of the SERPINF1 gene (c.1152_1170del; p.384_390del) was identified. The patient presented popcorn calcification in both femoral epiphyses, but one of them presented radiological characteristics and evolution suspected of malignancy. Later, it was diagnosed as chondrosarcoma. This paper discusses that OI type VI patients may be at risk of developing some types of cancer.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Osteogênese Imperfeita , Adulto , Humanos , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/diagnóstico , Condrossarcoma/genética , Genótipo , Éxons , Neoplasias Ósseas/genética , Mutação
2.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047644

RESUMO

Osteogenesis imperfecta (OI) is a group of connective tissue disorders with different types of inheritance. OI is characterized by bone fragility and deformities, frequent fractures, low bone-mineral density, and impaired bone micro-architectonics. We described here a case of a one-year-old Tuvan patient with multiple fractures. The disease manifestation occurred first at 12 weeks of age as a shoulder joint bruise, and during the year, the patient sustained 27 fractures. Genetic testing revealed a novel homozygous mutation, c.259_260insCGGCC (p.T87fs), in the SERPINF1 gene. This insertion leads to an open-reading frameshift, and the mutation is not represented in the databases. Mutations in SERPINF1 lead to type VI OI, the clinical picture of which is similar to the disease phenotype manifestation of the patient. Thus, the patient's diagnosis was established by finding a novel pathogenic variant in the SERPINF1 gene.


Assuntos
Fraturas Ósseas , Osteogênese Imperfeita , Humanos , Osso e Ossos , Colágeno Tipo I/genética , Fraturas Ósseas/genética , Homozigoto , Mutação , Osteogênese Imperfeita/genética
3.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887093

RESUMO

The retinal pigment epithelium (RPE) expresses the Serpinf1 gene to produce pigment epithelium-derived factor (PEDF), a retinoprotective protein that is downregulated with cell senescence, aging and retinal degenerations. We determined the expression of senescence-associated genes in the RPE of 3-month-old mice that lack the Serpinf1 gene and found that Serpinf1 deletion induced H2ax for histone H2AX protein, Cdkn1a for p21 protein, and Glb1 gene for ß-galactosidase. Senescence-associated ß-galactosidase activity increased in the Serpinf1 null RPE when compared with wild-type RPE. We evaluated the subcellular morphology of the RPE and found that ablation of Serpinf1 increased the volume of the nuclei and the nucleoli number of RPE cells, implying chromatin reorganization. Given that the RPE phagocytic function declines with aging, we assessed the expression of the Pnpla2 gene, which is required for the degradation of photoreceptor outer segments by the RPE. We found that both the Pnpla2 gene and its protein PEDF-R declined with the Serpinf1 gene ablation. Moreover, we determined the levels of phagocytosed rhodopsin and lipids in the RPE of the Serpinf1 null mice. The RPE of the Serpinf1 null mice accumulated rhodopsin and lipids compared to littermate controls, implying an association of PEDF deficiency with RPE phagocytosis dysfunction. Our findings establish PEDF loss as a cause of senescence-like changes in the RPE, highlighting PEDF as both a retinoprotective and a regulatory protein of aging-like changes associated with defective degradation of the photoreceptor outer segment in the RPE.


Assuntos
Epitélio Pigmentado da Retina , Serpinas , Animais , Células Cultivadas , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Lipídeos , Camundongos , Camundongos Knockout , Fatores de Crescimento Neural , Fagocitose/genética , Epitélio Pigmentado da Retina/metabolismo , Rodopsina/metabolismo , Serpinas/metabolismo , beta-Galactosidase/metabolismo
4.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34948073

RESUMO

PURPOSE: NK-5962 is a key component of photoelectric dye-coupled polyethylene film, designated Okayama University type-retinal prosthesis (OUReP™). Previously, we found that NK-5962 solution could reduce the number of apoptotic photoreceptors in the eyes of the Royal College of Surgeons (RCS) rats by intravitreal injection under a 12 h light/dark cycle. This study aimed to explore possible molecular mechanisms underlying the anti-apoptotic effect of NK-5962 in the retina of RCS rats. METHODS: RCS rats received intravitreal injections of NK-5962 solution in the left eye at the age of 3 and 4 weeks, before the age of 5 weeks when the speed in the apoptotic degeneration of photoreceptors reaches its peak. The vehicle-treated right eyes served as controls. All rats were housed under a 12 h light/dark cycle, and the retinas were dissected out at the age of 5 weeks for RNA sequence (RNA-seq) analysis. For the functional annotation of differentially expressed genes (DEGs), the Metascape and DAVID databases were used. RESULTS: In total, 55 up-regulated DEGs, and one down-regulated gene (LYVE1) were found to be common among samples treated with NK-5962. These DEGs were analyzed using Gene Ontology (GO) term enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway analyses. We focused on the up-regulated DEGs that were enriched in extracellular matrix organization, extracellular exosome, and PI3K-Akt signaling pathways. These terms and pathways may relate to mechanisms to protect photoreceptor cells. Moreover, our analyses suggest that SERPINF1, which encodes pigment epithelium-derived factor (PEDF), is one of the key regulatory genes involved in the anti-apoptotic effect of NK-5962 in RCS rat retinas. CONCLUSIONS: Our findings suggest that photoelectric dye NK-5962 may delay apoptotic death of photoreceptor cells in RCS rats by up-regulating genes related to extracellular matrix organization, extracellular exosome, and PI3K-Akt signaling pathways. Overall, our RNA-seq and bioinformatics analyses provide insights in the transcriptome responses in the dystrophic RCS rat retinas that were induced by NK-5962 intravitreal injection and offer potential target genes for developing new therapeutic strategies for patients with retinitis pigmentosa.


Assuntos
Compostos de Anilina/uso terapêutico , RNA-Seq , Retina/metabolismo , Retinose Pigmentar/tratamento farmacológico , Tiazóis/uso terapêutico , Compostos de Anilina/administração & dosagem , Animais , Apoptose , Biologia Computacional , Modelos Animais de Doenças , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Regulação da Expressão Gênica , Ontologia Genética , Injeções Intravítreas , Masculino , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/fisiologia , Ratos , Retina/fisiopatologia , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/fisiopatologia , Serpinas/genética , Serpinas/fisiologia , Tiazóis/administração & dosagem , Próteses Visuais
5.
Exp Eye Res ; 198: 108121, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32721425

RESUMO

The SERPINF1 gene encodes pigment epithelium-derived factor (PEDF), a member of the serpin superfamily with neurotrophic and antiangiogenic properties in the retina. We hypothesized that absence of PEDF would lead to increased stress-associated retinal degeneration in Serpinf1 null mice. Accordingly, using a Serpinf1 null mouse model, we investigated the impact of PEDF absence on retinal morphology, and susceptibility to induced and inherited retinal degeneration. We studied the pattern of Serpinf1 expression in the mouse retina layers. PEDF protein was detected by western blotting. Transmission electron microscopy was performed on mouse retina. Serpinf1 null mice and wild type littermates were injected with NaIO3 (30 mg/kg body weight) intraperitonially. At post-injection day 1, 3, 4, 6 and 8 mice were euthanized, and eyes were enucleated. Serpinf1 null and rd10 double mutant mice were generated and their eyes enucleated at different time points from post-natal day 15 to post-natal day 28. Enucleated eyes were processed for hematoxylin and eosin staining and histopathological evaluations. We found that Serpinf1 was expressed in the retinal pigment epithelium, in the inner nuclear layer and in the ganglion cell layer, but undetectable in the outer nuclear layer of wild type mice. Plasma PEDF protein levels were undetectable in Serpinf1 null animals. RPE atrophy and retinal thinning were observed in NaIO3-treated wild type mice that progressed with time post-injection. NaIO3-treated Serpinf1 null mice showed comparatively better retinal morphology than wild type mice at day 4 post-injection. However, the absence of PEDF in Serpinf1 null x rd10 mice increased the susceptibility to retinal degeneration relative to that of rd10 mice. We concluded that histopathological evaluation of retinas lacking PEDF showed that removal of the Serpinf1 gene may activate PEDF-independent compensatory mechanisms to protect the retina against oxidative stress, while it increases the susceptibility to degenerate the retina in inherited retinal degeneration models.


Assuntos
Fatores de Crescimento Neural/deficiência , Degeneração Retiniana/metabolismo , Serpinas/deficiência , Animais , Western Blotting , Modelos Animais de Doenças , Progressão da Doença , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Serpinas/genética , Serpinas/metabolismo
6.
Mol Genet Genomics ; 294(4): 1001-1006, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30968248

RESUMO

Otosclerosis is a common form of hearing loss (HL) due to abnormal remodeling of the otic capsule. The genetic causes of otosclerosis remain largely unidentified. Only mutations in a single gene, SERPINF1, were previously published in patients with familial otosclerosis. To unravel the contribution of genetic variation in this gene to otosclerosis, this gene was re-sequenced in a large population of otosclerosis patients and controls. Resequencing of the 5' and 3' UTRs, coding regions, and exon-intron boundaries of SERPINF1 was performed in 1604 unrelated otosclerosis patients and 1538 unscreened controls, and in 62 large otosclerosis families. Our study showed no enrichment of rare variants, stratified by type, in SERPINF1 in patients versus controls. Furthermore, the c.392C > A (p.Ala131Asp) variant, previously reported as pathogenic, was identified in three patients and four controls, not replicating its pathogenic nature. We could also not find evidence for a pathogenic role in otosclerosis for 5' UTR variants in the SERPINF1-012 transcript (ENST00000573763), described as the major transcript in human stapes. Furthermore, no rare variants were identified in the otosclerosis families. This study does not support a pathogenic role for variants in SERPINF1 as a cause of otosclerosis. Therefore, the etiology of the disease remains largely unknown and will undoubtedly be the focus of future studies.


Assuntos
Proteínas do Olho/genética , Fatores de Crescimento Neural/genética , Otosclerose/genética , Análise de Sequência de DNA/métodos , Serpinas/genética , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Linhagem
7.
Calcif Tissue Int ; 100(1): 55-66, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27796462

RESUMO

Osteogenesis imperfecta (OI) is a group of inherited disorders characterized by recurrent fragile fractures. Serpin peptidase inhibitor, clade F, member 1 (SERPINF1) is known to cause a distinct, extremely rare autosomal recessive form of type VI OI. Here we report, for the first time, the detection of SERPINF1 mutations in Chinese OI patients. We designed a novel targeted next-generation sequencing panel of OI-related genes to identify pathogenic mutations, which were confirmed with Sanger sequencing and by co-segregation analysis. We also investigated the phenotypes of OI patients by evaluating bone mineral density, radiological fractures, serum bone turnover markers, and pigment epithelium-derived factor (PEDF) concentration. Six patients with moderate-to-severe bone fragility, significantly low bone mineral density, and severe deformities of the extremities were recruited from five unrelated families for this study. Six pathogenic mutations in SERPINF1 gene were identified, five of which were novel: (1) a homozygous in-frame insertion in exon 3 (c.271_279dup, p.Ala91_Ser93dup); (2) compound heterozygous mutations in intron 3 (c.283 + 1G > T, splicing site) and exon 5 (c.498_499delCA, p.Arg167SerfsX35, frameshift); (3) a homozygous frameshift mutation in exon 8 (c.1202_1203delCA, p.Thr401ArgfsX); (4) compound heterozygous missense mutation (c.184G > A, p.Gly62Ser) and in-frame insertion (c.271_279dup, p.Ala91_Ser93dup) in exon 3; and (5) a heterozygous nonsense mutation in exon 4 (c.397C>T + ?, p.Gln133X + ?). Serum PEDF levels were barely detectable in almost all subjects. We identified five novel mutations in SERPINF1 and confirmed the diagnostic value of serum PEDF level for the first time in Chinese patients with the extremely rare OI type VI.


Assuntos
Proteínas do Olho/genética , Fraturas Ósseas/genética , Predisposição Genética para Doença/genética , Mutação/genética , Fatores de Crescimento Neural/genética , Osteogênese Imperfeita/genética , Serpinas/genética , Adolescente , Densidade Óssea/genética , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Fenótipo
8.
BMC Musculoskelet Disord ; 18(1): 39, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28122611

RESUMO

BACKGROUND: Inflammation is a major cause of cartilage destruction and leads to the imbalance of metabolic activities in the arthritic joint. Pigment epithelium-derived factor (PEDF) has been reported to have both pro- and anti-inflammatory activities in various cell types and to be upregulated in the arthritic joint, but its role in joint destruction is unclear. Our aim was to investigate the role of PEDF in cartilage degeneration under inflammatory conditions. METHODS: PEDF was ectopically expressed in primary human articular chondrocytes, and catabolic gene expression and protein secretion in response to the pro-inflammatory cytokine interleukin 1 beta (IL-1ß) were evaluated. Metatarsal bones from PEDF-deficient and wild type mice were cultured in the presence or absence of IL-1ß. Cartilage matrix integrity and matrix metalloproteinases MMP-1, MMP-3, and MMP-13 were evaluated. PEDF-deficient and wild type mice were evaluated in the monosodium iodoacetate (MIA) inflammatory joint destruction animal model to determine the role of PEDF in inflammatory arthritis in vivo. Student's t-tests and Mann-Whitney tests were employed where appropriate, for parametric and non-parametric data, respectively. RESULTS: We showed that PEDF protein levels were higher in human osteoarthritis samples compared to normal samples. We demonstrated that ectopic PEDF expression in primary human articular chondrocytes exacerbated catabolic gene expression in the presence of IL-1ß. In whole bone organ cultures, IL-1ß induced MMP-1, MMP-3 and MMP-13 protein production, and caused significant cartilage matrix loss. Interestingly, Toluidine Blue staining showed that PEDF-deficient bones from 29 week old animals, but not 10 week old animals, had reduced matrix loss in response to IL-1ß compared to their wild type counterparts. In addition, PEDF-deficiency in 29 week old animals preserved matrix integrity and protected against cell loss in the MIA joint destruction model in vivo. CONCLUSION: We conclude that PEDF exacerbates cartilage degeneration in an age-dependent manner under an inflammatory setting. This is the first study identifying a specific role for PEDF in joint inflammation and highlights the multi-faceted activities of PEDF.


Assuntos
Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Proteínas do Olho/biossíntese , Fatores de Crescimento Neural/biossíntese , Serpinas/biossíntese , Fatores Etários , Idoso , Animais , Células Cultivadas , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Fatores de Crescimento Neural/deficiência , Serpinas/deficiência
9.
Mol Genet Metab ; 117(3): 378-82, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26693895

RESUMO

Osteogenesis imperfecta (OI) is a group of genetic disorders characterized by bone fragility and deformity. OI type VI is unique owing to the mineralization defects observed in patient biopsies. Furthermore, it has been reported to respond less well to standard therapy with bisphosphonates [1]. Others and we have previously identified SERPINF1 mutations in patients with OI type VI. SERPINF1 encodes pigment epithelium derived factor (PEDF), a secreted collagen-binding glycoprotein that is absent in the sera of patients with OI type VI. Serpinf1 null mice show increased osteoid and decreased bone mass, and thus recapitulate the OI type VI phenotype. We tested whether restoration of circulating PEDF in the blood could correct the phenotype of OI type VI in the context of protein replacement. To do so, we utilized a helper-dependent adenoviral vector (HDAd) to express human SERPINF1 in the mouse liver and assessed whether PEDF secreted from the liver was able to rescue the bone phenotype observed in Serpinf1(-/-) mice. We confirmed that expression of SERPINF1 in the liver restored the serum level of PEDF. We also demonstrated that PEDF secreted from the liver was biologically active by showing the expected metabolic effects of increased adiposity and impaired glucose tolerance in Serpinf1(-/-) mice. Interestingly, overexpression of PEDF in vitro increased mineralization with a concomitant increase in the expression of bone gamma-carboxyglutamate protein, alkaline phosphatase and collagen, type I, alpha I, but the increased serum PEDF level did not improve the bone phenotype of Serpinf1(-/-) mice. These results suggest that PEDF may function in a context-dependent and paracrine fashion in bone homeostasis.


Assuntos
Osso e Ossos/fisiologia , Proteínas do Olho/sangue , Proteínas do Olho/genética , Fígado/metabolismo , Fatores de Crescimento Neural/sangue , Fatores de Crescimento Neural/genética , Osteogênese Imperfeita/fisiopatologia , Osteogênese Imperfeita/terapia , Serpinas/sangue , Serpinas/genética , Ácido 1-Carboxiglutâmico/genética , Adenoviridae/genética , Fosfatase Alcalina/genética , Animais , Densidade Óssea , Colágeno Tipo I/genética , Técnicas de Transferência de Genes , Intolerância à Glucose , Células HEK293 , Homeostase , Humanos , Camundongos , Camundongos Knockout , Mutação , Fatores de Crescimento Neural/deficiência , Fenótipo , Serpinas/deficiência
10.
Calcif Tissue Int ; 98(6): 566-72, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26815784

RESUMO

Osteogenesis imperfecta (OI) type VI is a recessively inherited form of OI that is caused by mutations in SERPINF1, the gene coding for pigment-epithelium derived factor (PEDF). Here, we report on two apparently unrelated children with OI type VI who had the same unusual homozygous variant in intron 6 of SERPINF1 (c.787-10C>G). This variant created a novel splice site that led to the in-frame addition of three amino acids to PEDF (p.Lys262_Ile263insLeuSerGln). Western blotting showed that skin fibroblasts with this mutation produced PEDF but failed to secrete it. Both children were treated with intravenous bisphosphonates, but the treatment of Individual 1 was switched to subcutaneous injections of denosumab (dose 1 mg per kg body weight, repeated every 3 months). An iliac bone sample obtained after 5 denosumab injections (and 3 months after the last injection) showed no change in the increased osteoid parameters that are typical of OI type VI, but the number of osteoclasts in trabecular bone was markedly increased. This suggests that the effect of denosumab on osteoclast suppression is of shorter duration in children with OI type VI than what has previously been reported on adults with osteoporosis.


Assuntos
Conservadores da Densidade Óssea/uso terapêutico , Proteínas do Olho/genética , Fatores de Crescimento Neural/genética , Osteogênese Imperfeita/tratamento farmacológico , Osteogênese Imperfeita/genética , Serpinas/genética , Adolescente , Western Blotting , Canadá , Criança , Pré-Escolar , Denosumab/uso terapêutico , Feminino , Humanos , Lactente , Masculino , Mutação
11.
Am J Physiol Heart Circ Physiol ; 309(5): H812-26, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26163443

RESUMO

During dermal wound repair, hypoxia-driven proliferation results in dense but highly permeable, disorganized microvascular networks, similar to those in solid tumors. Concurrently, activated dermal fibroblasts generate an angiopermissive, provisional extracellular matrix (ECM). Unlike cancers, wounds naturally resolve via blood vessel regression and ECM maturation, which are essential for reestablishing tissue homeostasis. Mechanisms guiding wound resolution are poorly understood; one candidate regulator is pigment epithelium-derived factor (PEDF), a secreted glycoprotein. PEDF is a potent antiangiogenic in models of pathological angiogenesis and a promising cancer and cardiovascular disease therapeutic, but little is known about its physiological function. To examine the roles of PEDF in physiological wound repair, we used a reproducible model of excisional skin wound healing in BALB/c mice. We show that PEDF is abundant in unwounded and healing skin, is produced primarily by dermal fibroblasts, binds to resident microvascular endothelial cells, and accumulates in dermal ECM and epidermis. PEDF transcript and protein levels were low during the inflammatory and proliferative phases of healing but increased in quantity and colocalization with microvasculature during wound resolution. Local antibody inhibition of endogenous PEDF delayed vessel regression and collagen maturation during the remodeling phase. Treatment of wounds with intradermal injections of exogenous, recombinant PEDF inhibited nascent angiogenesis by repressing endothelial proliferation, promoted vascular integrity and function, and increased collagen maturity. These results demonstrate that PEDF contributes to the resolution of healing wounds by causing regression of immature blood vessels and stimulating maturation of the vascular microenvironment, thus promoting a return to tissue homeostasis after injury.


Assuntos
Cicatriz , Proteínas do Olho/metabolismo , Fatores de Crescimento Neural/metabolismo , Reepitelização , Serpinas/metabolismo , Animais , Linhagem Celular , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/farmacologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serpinas/genética , Serpinas/farmacologia , Pele/efeitos dos fármacos , Pele/metabolismo
12.
J Korean Med Sci ; 28(7): 1107-10, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23853499

RESUMO

Osteogenesis imperfecta (OI) comprises a heterogeneous group of disorders characterized by bone fragility, frequent fractures, and low bone mass. Dominantly inherited COL1A1 or COL1A2 mutations appear to be causative in the majority of OI types, but rare recessively inherited genes have also been reported. Recently, SERPINF1 has been reported as another causative gene in OI type VI. To date, only eight SERPINF1 mutations have been reported and all are homozygous. Our patient showed no abnormalities at birth, frequent fractures, osteopenia, and poor response on pamidronate therapy. At the time of her most recent evaluation, she was 8 yr old, and could not walk independently due to frequent lower-extremity fractures, resulting in severe deformity. No clinical signs were seen of hearing impairment, blue sclera, or dentinogenesis imperfecta. In this study, we describe the clinical and radiological findings of one Korean patient with novel compound heterozygous mutations (c.77dupC and c.421dupC) of SERPINF1.


Assuntos
Proteínas do Olho/genética , Fatores de Crescimento Neural/genética , Osteogênese Imperfeita/genética , Serpinas/genética , Densidade Óssea/genética , Criança , Colágeno Tipo I/genética , Feminino , Fraturas Ósseas/genética , Humanos , Osteogênese Imperfeita/diagnóstico
13.
Genes (Basel) ; 14(3)2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36980858

RESUMO

Serpin family F member 1 (SERPINF1) reportedly plays multiple roles in various tumors; however, its clinical significance and molecular functions in glioma have been largely understudied. In the present study, we analyzed the prognostic value of SERPINF1 in three independent glioma datasets. Next, we explored the molecular functions and transcriptional regulation of SERPINF1 at the single-cell level. Moreover, in vitro experiments were conducted to evaluate the roles of SERPINF1 in the proliferation, invasion, migration, and stemness of glioma cells. Our results showed that a higher expression of SERPINF1 correlated with a poor overall survival rate in glioma patients (hazard ratio: 4.061 in TCGA, 2.017 in CGGA, and 1.675 in GSE16011, p < 0.001). Besides, SERPINF1 knockdown could suppress the proliferation, invasion, and migration of glioma cells in vitro. In addition, SERPINF1 expression was significantly upregulated in glioma stem cells (GSCs) compared to parental glioma cells. Knocking down SERPINF1 impaired the sphere formation of GSC-A172 and GSC-LN18. Bioinformatics analysis revealed that Notch signaling activation was closely associated with high SERPINF1 expression at the single-cell level. Furthermore, STAT1, CREM, and NR2F2 may participate in the transcriptional regulation of SERPINF1 in glioma. Overall, our results suggest that SERPINF1 may be a candidate prognostic predictor and potential therapeutic target for glioma.


Assuntos
Glioma , Células-Tronco Neoplásicas , Serpinas , Humanos , Glioma/genética , Glioma/metabolismo , Prognóstico , Transdução de Sinais , Serpinas/metabolismo , Células-Tronco Neoplásicas/metabolismo
14.
Bone Rep ; 18: 101690, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37425194

RESUMO

SERPINF1 gene variants lead to a severe type of osteogenesis imperfecta (OI) attributed to defects in the matrix mineralization. We present 18 patients with SERPINF1 gene variants leading to severe progressive deforming OI, the largest series in the world to date. These patients were normal at birth and had the first fracture between 2 months to 9 years; progression of deformities was seen in 12 adolescents who became nonambulatory. Radiologically, compression fractures with kyphoscoliosis, protrusio acetabuli, and lytic lesions in the metaphysis and pelvis were seen in older children with classical popcorn appearance in the distal femoral metaphysis in three. By exome sequencing and targeted sequencing, we identified ten variants. One was unreported and novel; three other novel variants in this series were reported earlier. The recurrent deletion inframe mutation p.phe277del was found in 5 patients from three families. Alkaline phosphatase was elevated in all children on the first visit. Bone mineral density was low in all patients and showed improvement at two years in seven children on regular pamidronate therapy. For others, the 2 year BMD data were not available. The Z scores for four of the seven children showed worsening at the 2-year follow-up.

15.
Eur J Med Genet ; 66(11): 104867, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37839784

RESUMO

Osteogenesis imperfecta (OI) type VI is an extremely rare form of OI caused by biallelic variants in the SERPINF1 gene, which codes for the pigment-epithelium derived factor (PEDF). We report on four patients (three adults and one adolescent) with a severe deforming form of OI. All patients presented no abnormalities at birth, frequent long bone and vertebrae fractures (mainly during childhood), marked short stature, severe bone deformities, chronic mild to moderate pain, and severe limitation of mobility, with three being completely wheelchair bound. Blue sclera and dentinogenesis imperfecta were absent, although some patients presented tooth, ophthalmological, and/or cardiac features. Radiographic findings included, among others, thin diaphysis and popcorn calcifications, both of which are non-specific to this type of OI. The novel homozygous variants c.816_819del (p.Met272Ilefs*8) and c.283+2T > G in SERPINF1 were identified in three and one patient, respectively. The three patients carrying the frameshift variant were born in nearby regions suggesting a founder effect. Describing the long-term outcomes of four patients with OI type VI, this cohort adds relevant data on the clinical features and prognosis of this type of OI.


Assuntos
Osteogênese Imperfeita , Serpinas , Adolescente , Adulto , Humanos , Recém-Nascido , Colágeno Tipo I/genética , Mutação da Fase de Leitura , Homozigoto , Osteogênese Imperfeita/genética , Serpinas/genética
16.
Intractable Rare Dis Res ; 11(1): 15-24, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35261846

RESUMO

Osteogenesis imperfecta (OI) type VI causative gene SERPINF1, encodes a member of the serpin family that does not display the serine protease inhibitory activity shown by many of the other serpin proteins. The encoded protein (pigment epithelium-derived factor, PEDF) has anti-tumor, anti-angiogenesis, anti-inflammation, nutrition and nerve protection functions, and participates in fat metabolism. In this paper, a series of bioinformatics analyses were conducted based on the regulation of SERPINF1 in the human. Pan-cancer analysis of SERPINF1 revealed it to play a role in the prognosis of tumors, especially in KIRC, and that high expression of SERPINF1 leads to a poor prognosis of the disease, the occurrence of which is largely related to the high expression of SERPINF1 leading to immune infiltration of cancer associated fibroblasts. Mutation analysis found that SERPINF1 had eight identical amino acids alterations sites with different in both cancer and OI patients. which hints the possible relationship between genotype and phenotype.

17.
Front Immunol ; 13: 1016612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505458

RESUMO

Background: Gastric cancer (GC) is one of the most lethal malignant tumors worldwide with poor outcomes. Vascular mimicry (VM) is an alternative blood supply to tumors that is independent of endothelial cells or angiogenesis. Previous studies have shown that VM was associated with poor prognosis in patients with GC, but the underlying mechanisms and the relationship between VM and immune infiltration of GC have not been well studied. Methods: In this study, expression profiles from VM-related genes were retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Cox regression was performed to identify key VM-related genes for survival. Subsequently, a novel risk score model in GC named VM index and a nomogram was constructed. In addition, the expression of one key VM-related gene (serpin family F member 1, SERPINF1) was validated in 33 GC tissues and 23 paracancer tissues using immunohistochemistry staining. Results: Univariate and multivariate Cox regression suggested that SERPINF1 and tissue factor pathway inhibitor 2 (TFPI2) were independent risk factors for the prognosis of patients with GC. The AUC (> 0.7) indicated the satisfactory discriminative ability of the nomogram. SsGESA and ESTIMATE showed that higher expression of SERPINF1 and TFPI2 is associated with immune infiltration of GC. Immunohistochemistry staining confirmed that the expression of SERPINF1 protein was significantly higher in GC tissues than that in paracancer tissues. Conclusion: A VM index and a nomogram were constructed and showed satisfactory predictive performance. In addition, VM was confirmed to be widely involved in immune infiltration, suggesting that VM could be a promising target in guiding immunotherapy. Taken together, we identified SERPINF1 and TFPI2 as immunologic and prognostic biomarkers related to VM in GC.


Assuntos
Neoplasias Gástricas , Humanos , Prognóstico , Neoplasias Gástricas/genética , Células Endoteliais , Nomogramas , Fatores de Risco
18.
Neuroscience ; 479: 48-59, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34648865

RESUMO

Diagnosis of major depressive disorder (MDD) is perplexing due to its multifactorial etiologies. Here, we isolated exosomes from the peripheral blood of MDD patients and healthy control subjects for mass spectrometry-based label-free quantitative proteomics. We identified that SERPINF1 is significantly diminished in the peripheral blood-derived exosomes of MDD patients compared to the healthy control subjects. Through RNA immunoprecipitation and luciferase reporter assays, we validated that SERPINF1 is a target of miR-186-5p that is upregulated in MDD patients' blood. In vivo studies in the chronic unpredictable mild stress (CUMS) mice further demonstrated that SERPINF1 in hippocampus is suppressed by miR-186-5p. Inhibiting the microRNA significantly restores the hippocampal SERPINF1 mRNA and protein expression, and ameliorates the depressive-like behaviors including sucrose preference and extended immobility time in the forced swim test. Instead, overexpressing miR-186-5p through tail intravenous injection of the mimics molecularly and behaviorally phenocopies the CUMS mice in wild-type mice. Our results indicate that the exosomal SERPINF1 in peripheral blood could serve as a reliable biomarker indicating MDD development, and miR-186-5p is a potential therapeutic target for the disease.


Assuntos
Transtorno Depressivo Maior , Exossomos , MicroRNAs , Animais , Depressão , Hipocampo , Humanos , Camundongos , MicroRNAs/genética
19.
J Pediatr Endocrinol Metab ; 33(12): 1617-1624, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33031053

RESUMO

OBJECTIVES: Osteogenesis imperfecta type VI (OI VI) follows a progressive and severe course, yet unlike other forms of severe OI it has a later onset of fractures, and extra-skeletal findings are not part of the clinical picture. Another difference is that there is an increase in unmineralized osteoid tissue in OI VI, which hinders the effect of bisphosphonates-the current standard of treatment for OI. Therefore, the response to standard treatments in OI VI is not satisfactory. Herein, we report long-term follow-up of two cases with novel SERPINF1 mutations, who show great variation in their treatment response to bisphosphonates. CASE PRESENTATION: The first case was given pamidronate at the age of 15 months when he could sit independently, followed a fluctuating course under treatment, fracture rate did not decrease, however he was able to mobilize with walker at the age of 10 years. On the other hand, the second case developed severe deformities and became wheelchair-bound under pamidronate, thus the treatment was switched to denosumab. Unfortunately, there was no improvement under denosumab after 15 months too, and since bone pain increased, denosumab treatment was stopped. He was put on zoledronic acid instead. CONCLUSION: SERPINF1 transcript amount may be an important factor to explain the variation in response to pamidronate therapy. In OI VI patients, the factors affecting the clinical course should be identified and new or combined treatment options should be established.


Assuntos
Conservadores da Densidade Óssea/uso terapêutico , Osteogênese Imperfeita/tratamento farmacológico , Pamidronato/uso terapêutico , Densidade Óssea , Criança , Humanos , Lactente , Masculino , Osteogênese Imperfeita/patologia , Prognóstico
20.
Ocul Surf ; 18(3): 460-469, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32387568

RESUMO

PURPOSE: In this study, we quantify Pigment Epithelium-derived Factor (PEDF) secreted by corneal epithelial cells and evaluate its immunomodulatory functions in a murine model of dry eye disease (DED). METHODS: We induced DED in female C57BL/6 mice using a controlled environment chamber for 14 days. We quantified mRNA expression of Serpinf1 gene and PEDF protein synthesis by corneal epithelial cells (CEpCs) using RT-PCR and ELISA. CEpCs from normal or DED mice were cultured with IFNγ-stimulated-dendritic cells (DCs) for 24 h, and expression of MHC-II and CD86 by DCs was determined using flow cytometry. Next, we either added recombinant PEDF (rPEDF) or anti-PEDF antibody to co-culture, and DC expression of the above maturation markers was quantified. Lastly, we treated DED mice with either topical rPEDF, anti-PEDF Ab or murine serum albumin (MSA), and DC maturation, expression of pro-inflammatory cytokines, and DED severity were investigated. RESULTS: Serpinf1 mRNA expression and PEDF protein production levels by CEpCs were upregulated in DED. CEpCs from DED mice exhibited an enhanced suppressive effect on the expression of MHC-II and CD86 by DCs, compared to normal mice. This effect was abolished by blocking endogenous PEDF with anti-PEDF Ab or enhanced by supplementing with rPEDF. Treatment with anti-PEDF antibody blocked the effect of endogenous-PEDF and increased DC maturation, expression of pro-inflammatory cytokines in conjunctivae, and exacerbated disease severity in DED mice. Conversely, topical rPEDF enhanced the suppressive effect of endogenous PEDF on DC maturation, decreased expression of pro-inflammatory cytokines in conjunctivae, and reduced disease severity. CONCLUSIONS: The results from our study elucidate the role of PEDF in impeding DC maturation, and suppression of ocular surface inflammation, explicating a promising therapeutic potential of PEDF in limiting the corneal epitheliopathy as a consequence of DED.


Assuntos
Síndromes do Olho Seco , Animais , Células Dendríticas , Modelos Animais de Doenças , Células Epiteliais , Proteínas do Olho/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural , Serpinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA