Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Avian Pathol ; 52(6): 438-445, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37746729

RESUMO

The widespread occurrence of fowl adenovirus serotype 4 (FAdV-4)-induced hepatitis-hydropericardium syndrome (HHS) has led to significant economic losses for the poultry industry. A sensitive, accurate, and practical FAdV-4 diagnostic approach is urgently required to limit the incidence of the disease. In the present study, a practical method for detecting FAdV-4 was developed using the CRISPR/Cas13a system and recombinase-aided amplification. The approach was based on 37°C isothermal detection with visible results being achieved. The detection limit of the target gene with this approach was only 101 copies/µl, making it very sensitive and specific. Clinical samples fared well when tested with the Cas13a detection method. For identifying FAdV-4, this novel detection approach was found to be sensitive, specific, and effective.RESEARCH HIGHLIGHTS First study using the CRISPR/Cas13a-based lateral flow detection assay for FAdV-4 detection.The results can be observed by the naked eye.The developed assay could provide an alternative tool for detection of FAdV-4 with minimal equipment.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Doenças das Aves Domésticas , Animais , Infecções por Adenoviridae/diagnóstico , Infecções por Adenoviridae/veterinária , Sorogrupo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Galinhas , Adenoviridae/genética , Aviadenovirus/genética
2.
Proc Natl Acad Sci U S A ; 117(41): 25722-25731, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32958655

RESUMO

Asymptomatic carriers of Plasmodium parasites hamper malaria control and eradication. Achieving malaria eradication requires ultrasensitive diagnostics for low parasite density infections (<100 parasites per microliter blood) that work in resource-limited settings (RLS). Sensitive point-of-care diagnostics are also lacking for nonfalciparum malaria, which is characterized by lower density infections and may require additional therapy for radical cure. Molecular methods, such as PCR, have high sensitivity and specificity, but remain high-complexity technologies impractical for RLS. Here we describe a CRISPR-based diagnostic for ultrasensitive detection and differentiation of Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, and Plasmodium malariae, using the nucleic acid detection platform SHERLOCK (specific high-sensitivity enzymatic reporter unlocking). We present a streamlined, field-applicable, diagnostic comprised of a 10-min SHERLOCK parasite rapid extraction protocol, followed by SHERLOCK for 60 min for Plasmodium species-specific detection via fluorescent or lateral flow strip readout. We optimized one-pot, lyophilized, isothermal assays with a simplified sample preparation method independent of nucleic acid extraction, and showed that these assays are capable of detection below two parasites per microliter blood, a limit of detection suggested by the World Health Organization. Our P. falciparum and P. vivax assays exhibited 100% sensitivity and specificity on clinical samples (5 P. falciparum and 10 P. vivax samples). This work establishes a field-applicable diagnostic for ultrasensitive detection of asymptomatic carriers as well as a rapid point-of-care clinical diagnostic for nonfalciparum malaria species and low parasite density P. falciparum infections.


Assuntos
Portador Sadio/diagnóstico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas e Procedimentos Diagnósticos , Técnicas Genéticas , Malária/diagnóstico , Plasmodium/genética , Plasmodium/isolamento & purificação , Portador Sadio/parasitologia , Humanos , Malária/parasitologia , Plasmodium/classificação , Plasmodium/fisiologia
3.
BMC Bioinformatics ; 23(1): 428, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241974

RESUMO

BACKGROUND: CRISPR-Cas based diagnostic assays provide a portable solution which bridges the benefits of qRT-PCR and serological assays in terms of portability, specificity and ease of use. CRISPR-Cas assays are rapidly fieldable, specific and have been rigorously validated against a number of targets, including HIV and vector-borne pathogens. Recently, CRISPR-Cas12 and CRISPR-Cas13 diagnostic assays have been granted FDA approval for the detection of SARS-CoV-2. A critical step in utilizing this technology requires the design of highly-specific and efficient CRISPR RNAs (crRNAs) and isothermal primers. This process involves intensive manual curation and stringent parameters for design in order to minimize off-target detection while also preserving detection across divergent strains. As such, a single, streamlined bioinformatics platform for rapidly designing crRNAs for use with the CRISPR-Cas12 platform is needed. Here we offer PrimedSherlock, an automated, computer guided process for selecting highly-specific crRNAs and primers for targets of interest. RESULTS: Utilizing PrimedSherlock and publicly available databases, crRNAs were designed against a selection of Flavivirus genomes, including West Nile, Zika and all four serotypes of Dengue. Using outputs from PrimedSherlock in concert with both wildtype A.s Cas12a and Alt-R Cas12a Ultra nucleases, we demonstrated sensitive detection of nucleic acids of each respective arbovirus in in-vitro fluorescence assays. Moreover, primer and crRNA combinations facilitated the detection of their intended targets with minimal off-target background noise. CONCLUSIONS: PrimedSherlock is a novel crRNA design tool, specific for CRISPR-Cas12 diagnostic platforms. It allows for the rapid identification of highly conserved crRNA targets from user-provided primer pairs or PrimedRPA output files. Initial testing of crRNAs against arboviruses of medical importance demonstrated a robust ability to distinguish multiple strains by exploiting polymorphisms within otherwise highly conserved genomic regions. As a freely-accessible software package, PrimedSherlock could significantly increase the efficiency of CRISPR-Cas12 diagnostics. Conceptually, the portability of detection kits could also be enhanced when coupled with isothermal amplification technologies.


Assuntos
COVID-19 , Ácidos Nucleicos , Infecção por Zika virus , Zika virus , Sistemas CRISPR-Cas/genética , Humanos , RNA , SARS-CoV-2/genética , Zika virus/genética
4.
J Artif Organs ; 25(2): 105-109, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34524593

RESUMO

Recently, the Sherlock 3CG™ Tip Confirmation System, including a magnetic tracking system and an intracavitary electrocardiography guidance system, has been introduced for bedside peripherally inserted central catheter (PICC) insertion. Magnetic field sources interfere with the magnetic tracking system. Electromagnetic interference of the ventricular assist device (VAD) has already been reported with various devices but not on Sherlock 3CG™. We assessed the availability of the magnetic tracking system in patients with and without a VAD during Sherlock 3CG™ insertion and evaluated the rate of optimal PICC tip position. We retrospectively reviewed 99 patients who had undergone PICC insertion using Sherlock 3CG™ on the bedside at our institutional intensive care unit from February 2018 to December 2020. Patients were divided into groups with and without a VAD. The availability of magnetic navigation and the success rate of optimal catheter tip position in each group were assessed. Among 87 cases analyzed, there were 12 and 75 cases with a VAD and without a VAD, respectively. The availability of magnetic navigation during Sherlock 3CG™ insertion was significantly lower in the group with a VAD [4/12 (33%) with VAD vs. 72/75 (96%) without VAD, P < 0.001]. In addition, the rate of optimal PICC tip position was also significantly lower in the group with a VAD [6/12 (50%) vs. 63/75 (84%), P = 0.015] The VAD significantly led to magnetic tracking system failure due to its electromagnetic interference during Sherlock 3CG™ insertion and significantly reduced the success rate of PICC insertions in the optimal position.


Assuntos
Cateterismo Venoso Central , Cateterismo Periférico , Cateteres Venosos Centrais , Coração Auxiliar , Humanos , Fenômenos Magnéticos , Estudos Retrospectivos
5.
J Pak Med Assoc ; 72(6): 1166-1174, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35751329

RESUMO

COVID-19 infection has emerged as an unparalleled pandemic with morbidity and mortality tolls challenging diagnostic approaches and therapeutic interventions, and raising serious questions for healthcare policy-makers. From the diagnostic perspective, Reverse transcriptase polymerase chain reaction remains the gold standard. However, issues associated with gene primer variation in different countries, low analytical sensitivity, cross-reactivity with certain human coronaviruses have raised serious concerns within the scientific community. Alongside longer turnaround times, requirements of sophisticated equipment and trained technicians are the other challenges for conventional reverse transcriptase polymerase chain reaction testing. The recent biotechnological boom has now allowed newer nucleic acid testing options for diagnosing severe acute respiratory syndrome Coronovairus 2 (SARS-CoV2) with much better diagnostic efficiency, reduced turnaround times and possible benefit for use as a point-of-care test. Isothermal techniques with simple equipment requirements along with uniform temperature for analysis have emerged to be more sensitive and specific with turnaround times as low as 10-15 minutes. Similarly, Cluster Regularly Interspaced Short Palindromic Repeats have also been seen to play a very decisive role in COVID-19 diagnostics with much superior diagnostic efficiency and feasibility as a point-of-care test and its possible use for sequencing. The current narrative review was planned to consolidate data for all possible nucleic acid testing options under research/clinical use, and to provide a comparative assessment from the perspective of both the clinician and the laboratory.


Assuntos
COVID-19 , Ácidos Nucleicos , COVID-19/diagnóstico , Teste para COVID-19 , Técnicas de Laboratório Clínico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Reação em Cadeia da Polimerase , RNA Viral/genética , SARS-CoV-2/genética , Sensibilidade e Especificidade
6.
J Clin Microbiol ; 59(3)2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33148705

RESUMO

Infectious diseases are one of the most intimidating threats to human race, responsible for an immense burden of disabilities and deaths. Rapid diagnosis and treatment of infectious diseases offers a better understanding of their pathogenesis. According to the World Health Organization, the ideal approach for detecting foreign pathogens should be rapid, specific, sensitive, instrument-free, and cost-effective. Nucleic acid pathogen detection methods, typically PCR, have numerous limitations, such as highly sophisticated equipment requirements, reagents, and trained personnel relying on well-established laboratories, besides being time-consuming. Thus, there is a crucial need to develop novel nucleic acid detection tools that are rapid, specific, sensitive, and cost-effective, particularly ones that can be used for versatile point-of-care diagnostic applications. Two new methods exploit unpredicted in vitro properties of CRISPR-Cas effectors, turning activated nucleases into basic amplifiers of a specific nucleic acid binding event. These effectors can be attached to a diversity of reporters and utilized in tandem with isothermal amplification approaches to create sensitive identification in multiple deployable field formats. Although still in their beginning, SHERLOCK and DETECTR technologies are potential methods for rapid detection and identification of infectious diseases, with ultrasensitive tests that do not require complicated processing. This review describes SHERLOCK and DETECTR technologies and assesses their properties, functions, and prospective to become the ultimate diagnostic tools for diagnosing infectious diseases and curbing disease outbreaks.


Assuntos
Doenças Transmissíveis Emergentes , Doenças Transmissíveis , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Doenças Transmissíveis/diagnóstico , Humanos , Estudos Prospectivos
7.
Annu Rev Biomed Eng ; 22: 371-386, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32501770

RESUMO

Rapid diagnostic tests (point-of-care devices) are critical components of informed patient care and public health monitoring (surveillance applications). We propose that among the many rapid diagnostics platforms that have been tested or are in development, lateral flow immunoassays and synthetic biology-based diagnostics (including CRISPR-based diagnostics) represent the best overall options given their ease of use, scalability for manufacturing, sensitivity, and specificity. This review describes the identification of lateral flow immunoassay monoclonal antibody pairs that detect and distinguish between closely related pathogens and that are used in combination with functionalized multicolored nanoparticles and computational methods to deconvolute data. We also highlight the promise of synthetic biology-based diagnostic tests, which use synthetic genetic circuits that activate upon recognition of a pathogen-associated nucleic acid sequence, and discuss how the combined or parallel use of lateral flow immunoassays and synthetic biology tools may represent the future of scalable rapid diagnostics.


Assuntos
Imunoensaio/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Biologia Sintética/métodos , Infecção por Zika virus/diagnóstico , Zika virus , Animais , Sistemas CRISPR-Cas , Biologia Computacional , DNA/análise , Humanos , Nanopartículas Metálicas/química , Camundongos , Nanopartículas/química , Nanotecnologia/métodos , Ácidos Nucleicos/química , Sensibilidade e Especificidade
8.
Appl Microbiol Biotechnol ; 105(20): 7593-7605, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34542686

RESUMO

The emergence of SARS-CoV-2 has brought the world to a standstill, and till date, effective treatments and diagnostics against this idiosyncratic pathogen are lacking. As compared to the standard WHO/CDC qPCR detection method, which consumes several hours for detection, CRISPR-based SHERLOCK, DETECTR, and FELUDA have emerged as rapid diagnostic tools for the detection of the RNA genome of SARS-CoV-2 within an hour with 100% accuracy, specificity, and sensitivity. These attributes of CRISPR-based detection technologies have taken themselves one step ahead of available detection systems and are emerging as an inevitable tool for quick detection of the virus. Further, the discovery of Cas13s nucleases and their orthologs has opened a new corridor for exploitation of Cas13s as an antiviral therapy against SARS-CoV-2 and other viral diseases. One such approach is Prophylactic Antiviral CRISPR in huMAN cells (PACMAN), which needs a long haul to bring into therapy. The approval of SHERLOCK as the first CRISPR-based SARS-CoV-2 test kit by the FDA, for emergency diagnosis of COVID-19 patients, has given positive hope to scientists that sooner human trials of CRISPR-based therapy will be ratified. In this review, we have extensively reviewed the present CRISPR-based approaches, challenges, and future prospects in the light of diagnostics and therapeutics against SARS-CoV-2. KEY POINTS: • The discovery of Cas12 and Cas13 siblings allowed scientists to detect the viral genes. • Cas13d's identification aided scientists in precisely cleaving the SARS-CoV-2 ssRNA. • CRISPR-Cas system acts as "molecular detector and antiviral proctor."


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais , Sistemas CRISPR-Cas , Humanos , RNA Viral , Reação em Cadeia da Polimerase em Tempo Real
9.
Microchem J ; 167: 106305, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33897053

RESUMO

Since December 2019, we have been in the battlefield with a new threat to the humanity known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, we describe the four main methods used for diagnosis, screening and/or surveillance of SARS-CoV-2: Real-time reverse transcription polymerase chain reaction (RT-PCR); chest computed tomography (CT); and different complementary alternatives developed in order to obtain rapid results, antigen and antibody detection. All of them compare the highlighting advantages and disadvantages from an analytical point of view. The gold standard method in terms of sensitivity and specificity is the RT-PCR. The different modifications propose to make it more rapid and applicable at point of care (POC) are also presented and discussed. CT images are limited to central hospitals. However, being combined with RT-PCR is the most robust and accurate way to confirm COVID-19 infection. Antibody tests, although unable to provide reliable results on the status of the infection, are suitable for carrying out maximum screening of the population in order to know the immune capacity. More recently, antigen tests, less sensitive than RT-PCR, have been authorized to determine in a quicker way whether the patient is infected at the time of analysis and without the need of specific instruments.

10.
Indian J Clin Biochem ; 36(4): 459-467, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33879980

RESUMO

The current pandemic of COVID-19, with its climbing number of cases and deaths, has us searching for tools for rapid, reliable, and affordable methods of detection on one hand, and novel, improved therapeutic strategies on the other. The currently employed RT-PCR method, despite its all-encompassing utility, has its shortcomings. Newer diagnostic tools, based on the Clustered Regularly Interspaced Short Palindromic Repeats/Cas(CRISPR-Cas) system, with its better diagnostic accuracy measures, have come up to fill that void. These assay platforms are expected to slowly take up the place of COVID-19 diagnostics. Further, the current therapeutic options focus mainly on counteracting the viral proteins and components and their entry into host cells. The CRISPR-based system, especially through the RNA-guided Cas13 approach, can identify the genomic characteristics of SARS-CoV-2 and provide a novel inhibition strategy for coronaviruses. In this mini-review, we have discussed the available and upcoming CRISPR-based diagnostic assays and the potential of the CRISPR/Cas system as a therapeutic or prevention strategy in COVID-19. CRISPR-Cas system shows promise in both diagnostics as well as therapeutics and may as well change the face of molecular diagnosis and precision medicine.

11.
Biol Proced Online ; 22: 22, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32939188

RESUMO

Interest in CRISPR technology, an instrumental component of prokaryotic adaptive immunity which enables prokaryotes to detect any foreign DNA and then destroy it, has gained popularity among members of the scientific community. This is due to CRISPR's remarkable gene editing and cleaving abilities. While the application of CRISPR in human genome editing and diagnosis needs to be researched more fully, and any potential side effects or ambiguities resolved, CRISPR has already shown its capacity in an astonishing variety of applications related to genome editing and genetic engineering. One of its most currently relevant applications is in diagnosis of infectious and non-infectious diseases. Since its initial discovery, 6 types and 22 subtypes of CRISPR systems have been discovered and explored. Diagnostic CRISPR systems are most often derived from types II, V, and VI. Different types of CRISPR-Cas systems which have been identified in different microorganisms can target DNA (e.g. Cas9 and Cas12 enzymes) or RNA (e.g. Cas13 enzyme). Viral, bacterial, and non-infectious diseases such as cancer can all be diagnosed using the cleavage activity of CRISPR enzymes from the aforementioned types. Diagnostic tests using Cas12 and Cas13 enzymes have already been developed for detection of the emerging SARS-CoV-2 virus. Additionally, CRISPR diagnostic tests can be performed using simple reagents and paper-based lateral flow assays, which can potentially reduce laboratory and patient costs significantly. In this review, the classification of CRISPR-Cas systems as well as the basis of the CRISPR/Cas mechanisms of action will be presented. The application of these systems in medical diagnostics with emphasis on the diagnosis of COVID-19 will be discussed.

12.
J Clin Periodontol ; 47(5): 583-593, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32031269

RESUMO

AIM: To identify risk variants associated with gene expression in peripheral blood and to identify genes whose expression change may contribute to the susceptibility to periodontitis. MATERIAL AND METHODS: We systematically integrated the genetic associations from a recent large-scale periodontitis GWAS and blood expression quantitative trait loci (eQTL) data using Sherlock, a Bayesian statistical framework. We then validated the potential causal genes in independent gene expression data sets. Gene co-expression analysis was used to explore the functional relationship for the identified causal genes. RESULTS: Sherlock analysis identified 10 genes (rs7403881 for MT1L, rs12459542 for SIGLEC5, rs12459542 for SIGLEC14, rs6680386 for S100A12, rs10489524 for TRIM33, rs11962642 for HIST1H3E, rs2814770 for AIM2, rs7593959 for FASTKD2, rs10416904 for PKN1, and rs10508204 for WDR37) whose expression may influence periodontitis. Among these genes, AIM2 was consistent significantly upregulated in periodontium of periodontitis patients across four data sets. The cis-eQTL (rs2814770, ~16 kb upstream of AIM2) showed significant association with AIM2 (p = 6.63 × 10-6 ) and suggestive association with periodontitis (p = 7.52 × 10-4 ). We also validated the significant association between rs2814770 and AIM2 expression in independent expression data set. Pathway analysis revealed that genes co-expressed with AIM2 were significantly enriched in immune- and inflammation-related pathways. CONCLUSION: Our findings implicate that AIM2 is a susceptibility gene, expression of which in gingiva may influence periodontitis risk. Further functional investigation of AIM2 may provide new insight for periodontitis pathogenesis.


Assuntos
Estudo de Associação Genômica Ampla , Periodontite , Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Teorema de Bayes , Proteínas de Ligação a DNA , Predisposição Genética para Doença/genética , Humanos , Lectinas , Periodontite/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Receptores de Superfície Celular , Fatores de Transcrição
13.
Ann Hepatol ; 19(1): 113-116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31838027

RESUMO

Writing about the history of Hepatology would necessarily imply writing about the history of the Liver Unit and the School of Hepatology created by Dr. Sheila Scherlock at the Royal Free Hospital (London). On the 70th anniversary of the creation of the first liver unit (Hammersmith Hospital) this article presents a brief account of the history, organization, structure, educational program and contributions of perhaps the first and the most influential medical research models created for the study of liver diseases: the Royal Free Hospital Liver Unit.


Assuntos
Pesquisa Biomédica/história , Gastroenterologia/história , Hepatopatias , Aniversários e Eventos Especiais , Pesquisa Biomédica/organização & administração , Bolsas de Estudo/história , Gastroenterologia/educação , História do Século XX , História do Século XXI , Unidades Hospitalares/história , Unidades Hospitalares/organização & administração , Humanos , Londres
14.
Pract Neurol ; 19(5): 427-430, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30948556

RESUMO

There are three classes of people: those who see, those who see when they are shown, those who do not see Leonardo da Vinci The three cardinal qualities necessary for the ideal neurologist are observation, the ability to reason backwards inferentially and specialist knowledge. Modern medical technology has greatly increased the ability to diagnose and treat disease but it has also encouraged a benign variant of abulia, which is killing off the art and science of clinical reasoning. Intent gazing at the unfamiliar with old eyes or a long look at the familiar with new eyes offers the neurologist an opportunity to discover hitherto unnoticed diagnostic signs far beyond the resolution of the brain scanner and even the light microscope. While there may be nothing new under the sun, there are plenty of old things that no one has observed, which have the potential to greatly improve clinical practice.


Assuntos
Neurologistas , Neurologia , História do Século XIX , Humanos , Neurologistas/história , Neurologia/história , Pacientes , Padrões de Prática Médica/história
15.
Chin Chem Lett ; 30(12): 2201-2204, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32288403

RESUMO

Canine parvovirus type 2 (CPV-2) infection is the most lethal disease of dogs with higher mortality in puppies worldwide. In today's world, dogs are an integral part of our communities as well as dogs breeding and rearing has become a lucrative business. Therefore, a fast, accurate, portable, and cost-effective CPV-2 detection method with the ability for on-site detection is highly desired. In this study, we for the first time proposed a nanosystem for CPV-2 DNA detection with RNA-guided RNA endonuclease Cas13a, which upon activation results in collateral RNA degradation. We expressed LwCas13a in prokaryotic expression system and purified it through nickel column. Activity of Cas13a was verified by RNA-bound fluorescent group while using a quenched fluorescent probe as signals. Further Cas13a was combined with Recombinase polymerase amplification (RPA) and T7 transcription to establish molecular detection system termed specific high-sensitivity enzymatic reporter un-locking (SHERLOCK) for sensitive detection of CPV-2 DNA. This nanosystem can detect 100 amol/L CPV-2 DNA within 30 min. The proposed nanosystem exhibited high specificity when tested for CPV-2 and other dog viruses. This CRISPR-Cas13a mediated sensitive detection approach can be of formidable advantage during CPV-2 outbreaks because it is time-efficient, less laborious and does not involve the use of sophisticated instruments.

16.
Poult Sci ; 103(10): 104068, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39096825

RESUMO

Avian influenza virus (AIV) subtype H9N2 has significantly threatened the poultry business in recent years by having become the predominant subtype in flocks of chickens, ducks, and pigeons. In addition, the public health aspects of H9N2 AIV pose a significant threat to humans. Early and rapid diagnosis of H9N2 AIV is therefore of great importance. In this study, a new method for the detection of H9N2 AIV based on fluorescence intensity was successfully established using CRISPR/Cas13a technology. The Cas13a protein was first expressed in a prokaryotic system and purified using nickel ion affinity chromatography, resulting in a high-purity Cas13a protein. The best RPA (recombinase polymerase amplification) primer pairs and crRNA were designed and screened, successfully constructing the detection of H9N2 AIV based on CRISPR/Cas13a technology. Optimal concentration of Cas13a and crRNA was determined to optimize the constructed assay. The sensitivity of the optimized detection system is excellent, with a minimum detection limit of 10° copies/µL and didn't react with other avian susceptible viruses, with excellent specificity. The detection method provides the basis for the field detection of the H9N2 AIV.

17.
ACS Nano ; 18(8): 5998-6007, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38345242

RESUMO

Molecular diagnostics (MD) is widely employed in multiple scientific disciplines, such as oncology, pathogen detection, forensic investigations, and the pharmaceutical industry. Techniques such as polymerase chain reaction (PCR) revolutionized the rapid and accurate identification of nucleic acids (DNA, RNA). More recently, CRISPR and its CRISPR-associated protein (Cas) have been a ground-breaking discovery that is the latest revolution in molecular biology, including MD. Surface-enhanced Raman scattering (SERS) is a very attractive alternative to fluorescence as the currently most widely used optical readout in MD. In this Perspective, milestones in the development of MD, SERS-PCR, and next-generation approaches to MD, such as Specific High-Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK) and DNA Endonuclease-Targeted CRISPR Trans Reporter (DETECTR), are briefly summarized. Our perspective on the future convergence of SERS with MD is focused on SERS-based CRISPR/Cas (SERS-CRISPR) since we anticipate many promising applications in this rapidly emerging field. We predict that major future developments will exploit the advantages of real-time monitoring with the superior brightness, photostability, and spectral multiplexing potential of SERS nanotags in an automated workflow for rapid assays under isothermal, amplification-free conditions.


Assuntos
Ácidos Nucleicos , Análise Espectral Raman , Análise Espectral Raman/métodos , DNA/análise , Ácidos Nucleicos/análise , RNA
18.
Mol Biotechnol ; 65(3): 311-325, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36163606

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (CRISPR/Cas) system has altered life science research offering enormous options in manipulating, detecting, imaging, and annotating specific DNA or RNA sequences of diverse organisms. This system incorporates fragments of foreign DNA (spacers) into CRISPR cassettes, which are further transcribed into the CRISPR arrays and then processed to make guide RNA (gRNA). The CRISPR arrays are genes that encode Cas proteins. Cas proteins provide the enzymatic machinery required for acquiring new spacers targeting invading elements. Due to programmable sequence specificity, numerous Cas proteins such as Cas9, Cas12, Cas13, and Cas14 have been exploited to develop new tools for genome engineering. Cas variants stimulated genetic research and propelled the CRISPR/Cas tool for manipulating and editing nucleic acid sequences of living cells of diverse organisms. This review aims to provide detail on two classes (class 1 and 2) of the CRISPR/Cas system, and the mechanisms of all Cas proteins, including Cas12, Cas13, and Cas14 discovered so far. In addition, we also discuss the pros and cons and recent applications of various Cas proteins in diverse fields, including those used to detect viruses like severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This review enables the researcher to gain knowledge on various Cas proteins and their applications, which have the potential to be used in next-generation precise genome engineering.


Assuntos
COVID-19 , Sistemas CRISPR-Cas , Humanos , Edição de Genes/métodos , SARS-CoV-2/genética , DNA
19.
J Oral Microbiol ; 15(1): 2207336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187674

RESUMO

Decades of ongoing research has established that oral microbial communities play a role in oral diseases such as periodontitis and caries. Yet the detection of oral bacteria and the profiling of oral polymicrobial communities currently rely on methods that are costly, slow, and technically complex, such as qPCR or next-generation sequencing. For the widescale screening of oral microorganisms suitable for point-of-care settings, there exists the need for a low-cost, rapid detection technique. Here, we tailored the novel CRISPR-Cas-based assay SHERLOCK for the species-specific detection of oral bacteria. We developed a computational pipeline capable of generating constructs suitable for SHERLOCK and experimentally validated the detection of seven oral bacteria. We achieved detection within the single-molecule range that remained specific in the presence of off-target DNA found within saliva. Further, we adapted the assay for detecting target sequences directly from unprocessed saliva samples. The results of our detection, when tested on 30 healthy human saliva samples, fully aligned with 16S rRNA sequencing. Looking forward, this method of detecting oral bacteria is highly scalable and can be easily optimized for implementation at point-of-care settings.

20.
Mol Biotechnol ; 65(5): 699-714, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36494593

RESUMO

Persistence and prevalence of microbial diseases (pandemics, epidemics) is the most alarming threats to the human resulting in huge health and economic losses. Rapid detection and understanding of the disease dynamics by molecular biotechnology tools allow for robust reporting, treatment and control of diseases. As per WHO, the optimal diagnostic approach should be quick, specific, sensitive, without a stringed instrument, and low cost. The drawbacks of traditional detection techniques promote the use of CRISPR-mediated nucleic acid detection methods such as SHERLOCK as detection method. It takes advantage of the unexpected in vitro features of CRISPR-Cas system to develop field-deployable sensitive detection tools. Previously, CRISPR-mediated diagnostic methods have extensively been reviewed particularly for SARS-COV-2 detection, but it fails to provide the insight into advances of this technique. This study is the first attempt to review the advances of SHERLOCK approach as diagnostic tool for viral diseases detection. Variations of SHERLOCK mechanism for improved efficiency are discussed. Particularly integrated SHERLOCK approaches in terms of extraction-free assay and Bluetooth-enabled detection are reviewed to access their feasibility for the development of simpler and cost-effective diagnostic toolkits. Insight in to perks and limitations of diagnostic methods indicates its potential as ultimate diagnostic instrument for disease management.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Teste para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA