Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Brain ; 144(8): 2427-2442, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-33792664

RESUMO

Marinesco-Sjögren syndrome is a rare human disorder caused by biallelic mutations in SIL1 characterized by cataracts in infancy, myopathy and ataxia, symptoms which are also associated with a novel disorder caused by mutations in INPP5K. While these phenotypic similarities may suggest commonalties at a molecular level, an overlapping pathomechanism has not been established yet. In this study, we present six new INPP5K patients and expand the current mutational and phenotypical spectrum of the disease showing the clinical overlap between Marinesco-Sjögren syndrome and the INPP5K phenotype. We applied unbiased proteomic profiling on cells derived from Marinesco-Sjögren syndrome and INPP5K patients and identified alterations in d-3-PHGDH as a common molecular feature. d-3-PHGDH modulates the production of l-serine and mutations in this enzyme were previously associated with a neurological phenotype, which clinically overlaps with Marinesco-Sjögren syndrome and INPP5K disease. As l-serine administration represents a promising therapeutic strategy for d-3-PHGDH patients, we tested the effect of l-serine in generated sil1, phgdh and inpp5k a+b zebrafish models, which showed an improvement in their neuronal phenotype. Thus, our study defines a core phenotypical feature underpinning a key common molecular mechanism in three rare diseases and reveals a common and novel therapeutic target for these patients.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Inositol Polifosfato 5-Fosfatases/genética , Mutação , Fenótipo , Fosfoglicerato Desidrogenase/genética , Degenerações Espinocerebelares/genética , Adolescente , Adulto , Animais , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Proteômica , Degenerações Espinocerebelares/patologia , Peixe-Zebra
2.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557244

RESUMO

Cell surface and secreted proteins provide essential functions for multicellular life. They enter the endoplasmic reticulum (ER) lumen co-translationally, where they mature and fold into their complex three-dimensional structures. The ER is populated with a host of molecular chaperones, associated co-factors, and enzymes that assist and stabilize folded states. Together, they ensure that nascent proteins mature properly or, if this process fails, target them for degradation. BiP, the ER HSP70 chaperone, interacts with unfolded client proteins in a nucleotide-dependent manner, which is tightly regulated by eight DnaJ-type proteins and two nucleotide exchange factors (NEFs), SIL1 and GRP170. Loss of SIL1's function is the leading cause of Marinesco-Sjögren syndrome (MSS), an autosomal recessive, multisystem disorder. The development of animal models has provided insights into SIL1's functions and MSS-associated pathologies. This review provides an in-depth update on the current understanding of the molecular mechanisms underlying SIL1's NEF activity and its role in maintaining ER homeostasis and normal physiology. A precise understanding of the underlying molecular mechanisms associated with the loss of SIL1 may allow for the development of new pharmacological approaches to treat MSS.


Assuntos
Suscetibilidade a Doenças , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Nível de Saúde , Chaperonas Moleculares/metabolismo , Animais , Biomarcadores , Gerenciamento Clínico , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Regulação da Expressão Gênica , Estudos de Associação Genética , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutação , Fenótipo , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Degenerações Espinocerebelares/diagnóstico , Degenerações Espinocerebelares/etiologia , Degenerações Espinocerebelares/metabolismo , Degenerações Espinocerebelares/terapia , Relação Estrutura-Atividade , Resposta a Proteínas não Dobradas
3.
Neuropathol Appl Neurobiol ; 46(4): 323-343, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31701543

RESUMO

Secretory and cell membrane proteins are synthesized in the endoplasmic reticulum (ER), where a network of molecular chaperones and folding factors ensure correct protein folding and export to post-ER compartments. Failure of this process leads to accumulation of unfolded/misfolded proteins, ER stress, and activation of the unfolded protein response (UPR), a complex signalling pathway aimed at restoring ER homeostasis, whose failure eventually leads to cell death. Suppressor of Ire1/Lhs1 double mutant (SIL1) is a nucleotide exchange factor for immunoglobulin binding protein, the main ER chaperone and primary sensor of ER stress. Loss of SIL1 function causes Marinesco-Sjögren syndrome (MSS), a rare multisystem disease of early infancy for which there is no cure. This review, examines the current understanding of SIL1 activities in the ER, and reviews experimental data describing the consequences of SIL1 deficiency in cell and animal models. We discuss the evidence supporting a role of the UPR - particularly the protein kinase RNA-like endoplasmic reticulum kinase branch - in the pathogenesis of MSS, and how this may be pharmacologically manipulated for treatment.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Degenerações Espinocerebelares/genética , Animais , Humanos , Mutação com Perda de Função , Degenerações Espinocerebelares/patologia , Resposta a Proteínas não Dobradas/genética
4.
Proc Natl Acad Sci U S A ; 114(47): 12489-12494, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109265

RESUMO

BiP (Kar2 in yeast) is an essential Hsp70 chaperone and master regulator of endoplasmic reticulum (ER) function. BiP's activity is regulated by its intrinsic ATPase activity that can be stimulated by two different nucleotide exchange factors, Sil1 and Lhs1. Both Sil1 and Lhs1 are glycoproteins, but how N-glycosylation regulates their function is not known. Here, we show that N-glycosylation of Sil1, but not of Lhs1, is diminished upon reductive stress. N-glycosylation of Sil1 is predominantly Ost3-dependent and requires a functional Ost3 CxxC thioredoxin motif. N-glycosylation of Lhs1 is largely Ost3-independent and independent of the CxxC motif. Unglycosylated Sil1 is not only functional but is more effective at rescuing loss of Lhs1 activity than N-glycosylated Sil1. Furthermore, substitution of the redox active cysteine pair C52 and C57 in the N terminus of Sil1 results in the Doa10-dependent ERAD of this mutant protein. We propose that reductive stress in the ER inhibits the Ost3-dependent N-glycosylation of Sil1, which regulates specific BiP functions appropriate to the needs of the ER under reductive stress.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Hexosiltransferases/genética , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Motivos de Aminoácidos , Substituição de Aminoácidos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Degradação Associada com o Retículo Endoplasmático , Proteínas Fúngicas/metabolismo , Glicosilação , Proteínas de Choque Térmico HSP70/metabolismo , Hexosiltransferases/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Oxirredução , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Neurobiol Dis ; 124: 218-229, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30468864

RESUMO

BACKGROUND: Marinesco-Sjögren Syndrome (MSS) is a rare neuromuscular condition caused by recessive mutations in the SIL1 gene resulting in the absence of functional SIL1 protein, a co-chaperone for the major ER chaperone, BiP. As BiP is decisive for proper protein processing, loss of SIL1 results in the accumulation of misshaped proteins. This accumulation likely damages and destroys cells in vulnerable tissues, leading to congenital cataracts, cerebellar ataxia, vacuolar myopathy and other MSS phenotypes. Whether the peripheral nervous system (PNS) is affected in MSS has not been conclusively shown. METHODS: To study PNS vulnerability in MSS, intramuscular nerves fibres from MSS patients and from SIL1-deficient mice (woozy) as well as sciatic nerves and neuromuscular junctions (NMJ) from these mice have been investigated via transmission electron microscopic and immunofluorescence studies accompanied by transcript studies and unbiased proteomic profiling. In addition, PNS and NMJ integrity were analyzed via immunofluorescence studies in an MSS-zebrafish model which has been generated for that purpose. RESULTS: Electron microscopy revealed morphological changes indicative of impaired autophagy and mitochondrial maintenance in distal axons and in Schwann cells. Moreover, changes of the morphology of NMJs as well as of transcripts encoding proteins important for NMJ function were detected in woozy mice. These findings were in line with a grossly abnormal structure of NMJs in SIL1-deficient zebrafish embryos. Proteome profiling of sciatic nerve specimens from woozy mice revealed altered levels of proteins implicated in neuronal maintenance suggesting the activation of compensatory mechanisms. CONCLUSION: Taken together, our combined data expand the spectrum of tissues affected by SIL1-loss and suggest that impaired neuromuscular transmission might be part of MSS pathophysiology.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Junção Neuromuscular/patologia , Nervo Isquiático/ultraestrutura , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/patologia , Animais , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/deficiência , Humanos , Camundongos Transgênicos , Músculo Esquelético/inervação , Músculo Esquelético/ultraestrutura , Junção Neuromuscular/metabolismo , Proteômica , Nervo Isquiático/metabolismo , Degenerações Espinocerebelares/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
6.
J Infect Dis ; 211(2): 226-9, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25149762

RESUMO

Kaposi sarcoma (KS) risk is affected by perturbed immunity. Herein, we compared plasma from 15 human immunodeficiency virus (HIV)-negative classic KS cases to plasma from 29 matched controls, using a multiplex panel of immunity markers. Of 70 markers, CXCL10 (IP-10), sIL-1RII, sIL-2RA, and CCL3 (MIP-1A) were strongly and significantly associated with KS, after adjustment for age and smoking status. These and previous observations are consistent with a tumor-promoting role for these cytokines, particularly CXCL10, but the small sample size and case-control design preclude firm conclusions on KS risk or pathogenesis. Larger, well-designed prospective studies are needed to better assess the association of these markers with KS.


Assuntos
Biomarcadores/sangue , Inflamação/patologia , Sarcoma de Kaposi/imunologia , Sarcoma de Kaposi/patologia , Estudos de Casos e Controles , Humanos , Itália , Masculino , Sarcoma de Kaposi/diagnóstico
7.
Neurogenetics ; 16(4): 315-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26260654

RESUMO

Two French-Canadian sibs with cerebellar ataxia and dysarthria were seen in our neurogenetics clinic. The older brother had global developmental delay and spastic paraplegia. Brain MRIs from these two affected individuals showed moderate to severe cerebellar atrophy. To identify the genetic basis for their disease, we conducted a whole exome sequencing (WES) investigation using genomic DNA prepared from the affected sibs and their healthy father. We identified two mutations in the SIL1 gene, which is reported to cause Marinesco-Sjögren syndrome. This study emphasizes how the diagnosis of patients with ataxic gait and cerebellar atrophy may benefit from WES to identify the genetic cause of their condition.


Assuntos
Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Disartria/genética , Disartria/patologia , Fatores de Troca do Nucleotídeo Guanina/genética , Mutação , Atrofia , Canadá , Ataxia Cerebelar/complicações , Cerebelo/patologia , Disartria/complicações , Feminino , Genes Recessivos , Humanos , Masculino , Irmãos , Adulto Jovem
8.
Int J Neuropsychopharmacol ; 18(7): pyv001, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25650410

RESUMO

BACKGROUND: Neurochemical studies have pointed to a modulatory role in human aggression for a variety of central neurotransmitters and neuromodulators such as cytokines. While animal studies of cytokines suggest an aggression-facilitating role for central cytokines, especially for interleukin-1ß and other cytokines, no cerebrospinal fluid studies of cytokines have yet been reported in regard to human aggression. METHODS: Basal lumbar cerebrospinal fluid samples were obtained from 38 physically healthy subjects with DSM-5 Personality Disorder and assayed for cerebrospinal fluid interleukin-6 (log IL-6) and cerebrospinal fluid soluble IL-1 Receptor II protein in the context of their relationship with measures of aggression. RESULTS: Cerebrospinal fluid soluble interleukin-1 Receptor II (r=.35, r(2) = .12, P= .03), but not log interleukin-6 (r = -.05, r(2) = .00, P= .76), levels were positively correlated with a composite measure of aggression. Adding relevant covariates, including cerebrospinal fluid levels of serotonin and dopamine metabolites, to the statistical model doubled the strength of this relationship (partial r = .54, r(2) = .29, P= .002). No relationship was seen with history of suicidal behavior or with any measure of impulsivity, negative affectivity, or of general dimensions of personality. CONCLUSION: These data suggest a positive relationship between at least one inflammatory cytokine in the central nervous system and aggression in human subjects. This finding adds to the complex picture of the central neurochemistry of impulsive aggression in human subjects.


Assuntos
Agressão/psicologia , Interleucina-6/líquido cefalorraquidiano , Transtornos da Personalidade/líquido cefalorraquidiano , Transtornos da Personalidade/psicologia , Receptores Tipo II de Interleucina-1/análise , Adulto , Citocinas/líquido cefalorraquidiano , Manual Diagnóstico e Estatístico de Transtornos Mentais , Dopamina/líquido cefalorraquidiano , Feminino , Humanos , Comportamento Impulsivo , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Escalas de Graduação Psiquiátrica/normas , Serotonina/líquido cefalorraquidiano , Punção Espinal/métodos , Ideação Suicida , Adulto Jovem
9.
Clin Genet ; 86(1): 74-84, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23829326

RESUMO

Marinesco-Sjögren syndrome (MSS; MIM 248800) is an autosomal recessive disorder characterized by congenital cerebellar ataxia, early cataracts, developmental delay, myopathy and short stature. Alterations in the gene SIL1 cause MSS in some patients with typical findings. In this study, molecular investigations including sequencing of the SIL1 gene, western blotting and microscopic investigations in fibroblast cultures were carried out in a cohort of 15 patients from 14 unrelated families, including the large, inbred family reported by Superneau et al., having the clinical features of MSS to provide insights into the pathophysiology of the disorder. A total of seven different mutations were found in eight of the patients from seven families. The mutations caused loss of the BIP-associated protein (BAP) protein in four patients by western blot. Novel clinical features such as dental abnormalities, iris coloboma, eczema and hormonal abnormalities were noticed in some patients, but there was no clear way to distinguish those with and without SIL1 mutations. Cultured fibroblasts contained numerous cytoplasmic inclusion bodies, similar to those identified in the brain of the whoozy mouse in five unrelated patients, three with and two without SIL1 mutations, suggesting some SIL1 negative patients share a common cellular pathogenesis with those who are SIL1 positive.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Fenótipo , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/fisiopatologia , Sequência de Bases , Western Blotting , Pré-Escolar , Primers do DNA/genética , Feminino , Genótipo , Humanos , Lactente , Masculino , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação/genética , Análise de Sequência de DNA
10.
Brain ; 136(Pt 12): 3634-44, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24176978

RESUMO

Marinesco-Sjögren syndrome is a rare autosomal recessive multisystem disorder featuring cerebellar ataxia, early-onset cataracts, chronic myopathy, variable intellectual disability and delayed motor development. More recently, mutations in the SIL1 gene, which encodes an endoplasmic reticulum resident co-chaperone, were identified as the main cause of Marinesco-Sjögren syndrome. Here we describe the results of SIL1 mutation analysis in 62 patients presenting with early-onset ataxia, cataracts and myopathy or combinations of at least two of these. We obtained a mutation detection rate of 60% (15/25) among patients with the characteristic Marinesco-Sjögren syndrome triad (ataxia, cataracts, myopathy) whereas the detection rate in the group of patients with more variable phenotypic presentation was below 3% (1/37). We report 16 unrelated families with a total of 19 different SIL1 mutations. Among these mutations are 15 previously unreported changes, including single- and multi-exon deletions. Based on data from our screening cohort and data compiled from the literature we found that SIL1 mutations are invariably associated with the combination of a cerebellar syndrome and chronic myopathy. Cataracts were observed in all patients beyond the age of 7 years, but might be missing in infants. Six patients with SIL1 mutations had no intellectual disability, extending the known wide range of cognitive capabilities in Marinesco-Sjögren syndrome to include normal intelligence. Modestly constant features were somatic growth retardation, skeletal abnormalities and pyramidal tract signs. Examination of mutant SIL1 expression in cultured patient lymphoblasts suggested that SIL1 mutations result in severely reduced SIL1 protein levels irrespective of the type and position of mutations. Our data broaden the SIL1 mutation spectrum and confirm that SIL1 is the major Marinesco-Sjögren syndrome gene. SIL1 patients usually present with the characteristic triad but cataracts might be missing in young children. As cognitive impairment is not obligatory, patients without intellectual disability but a Marinesco-Sjögren syndrome-compatible phenotype should receive SIL1 mutation analysis. Despite allelic heterogeneity and many families with private mutations, the phenotype related to SIL1 mutations is relatively homogenous. Based on SIL1 expression studies we speculate that this may arise from a uniform effect of different mutations on protein expression.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Mutação/genética , Degenerações Espinocerebelares/genética , Adolescente , Linfócitos B , Encéfalo/patologia , Encéfalo/ultraestrutura , Células Cultivadas , Análise Mutacional de DNA , Saúde da Família , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Estudos Retrospectivos , Degenerações Espinocerebelares/patologia , Degenerações Espinocerebelares/fisiopatologia
11.
Zool Res ; 45(4): 845-856, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39004862

RESUMO

SIL1, an endoplasmic reticulum (ER)-resident protein, is reported to play a protective role in Alzheimer's disease (AD). However, the effect of SIL1 on amyloid precursor protein (APP) processing remains unclear. In this study, the role of SIL1 in APP processing was explored both in vitro and in vivo. In the in vitro experiment, SIL1 was either overexpressed or knocked down in cells stably expressing the human Swedish mutant APP695. In the in vivo experiment, AAV-SIL1-EGFP or AAV-EGFP was microinjected into APP23/PS45 mice and their wild-type littermates. Western blotting (WB), immunohistochemistry, RNA sequencing (RNA-seq), and behavioral experiments were performed to evaluate the relevant parameters. Results indicated that SIL1 expression decreased in APP23/PS45 mice. Overexpression of SIL1 significantly decreased the protein levels of APP, presenilin-1 (PS1), and C-terminal fragments (CTFs) of APP in vivo and in vitro. Conversely, knockdown of SIL1 increased the protein levels of APP, ß-site APP cleavage enzyme 1 (BACE1), PS1, and CTFs, as well as APP mRNA expression in 2EB2 cells. Furthermore, SIL1 overexpression reduced the number of senile plaques in APP23/PS45 mice. Importantly, Y-maze and Morris Water maze tests demonstrated that SIL1 overexpression improved cognitive impairment in APP23/PS45 mice. These findings indicate that SIL1 improves cognitive impairment in APP23/PS45 mice by inhibiting APP amyloidogenic processing and suggest that SIL1 is a potential therapeutic target for AD by modulating APP processing.


Assuntos
Precursor de Proteína beta-Amiloide , Disfunção Cognitiva , Camundongos Transgênicos , Animais , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Camundongos , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/genética , Peptídeos beta-Amiloides/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Regulação da Expressão Gênica , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Humanos
12.
Mol Neurobiol ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850350

RESUMO

SIL1 is a nucleotide exchange factor for the molecular chaperone protein Bip in the endoplasmic reticulum that plays a crucial role in protein folding. The Sil1 gene is currently the only known causative gene of Marinesco-Sjögren syndrome (MSS). Intellectual developmental disability is the main symptom of MSS, and its mechanism has not been fully elucidated. Studies have shown that mutations in the Sil1 gene can delay neuronal migration during cortical development, but the underlying molecular mechanisms remain unclear. To further identify potential molecules involved in the regulation of central nervous system development by SIL1, we established a cortical neuron model with SIL1 protein deficiency and used proteomic analysis to screen for differentially expressed proteins after Sil1 silencing, followed by GO functional enrichment and protein‒protein interaction (PPI) network analysis. We identified 68 upregulated and 137 downregulated proteins in total, and among them, 10 upregulated and 3 downregulated proteins were mainly related to actin cytoskeleton dynamics. We further validated the differential changes in actin-related molecules using qRT‒PCR and Western blotting of a Sil1 gene knockout (Sil1-/-) mouse model. The results showed that the protein levels of ACTN1 and VIM decreased, while their mRNA levels increased as a compensatory response to protein deficiency. The mRNA and protein levels of IQGAP1 both showed a secondary increase. In conclusion, we identified ACTN1 and VIM as the key molecules regulated by SIL1 that are involved in neuronal migration during cortical development.

13.
Front Physiol ; 14: 1168652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664433

RESUMO

Introduction: Systemic inflammation promotes neurodegeneration in Parkinson's disease (PD). Interleukin-1 receptor type 2 (sIL-1R2) plasma levels increase during inflammation. Data on sIL-1R2 in PD patients and its relationship with PD cardiac autonomic profile are limited, given the possible anti-inflammatory effect of vagal activation. Previously, automated mechanical peripheral somatosensory stimulation (AMPSS) enhanced cardiac vagal modulation. Objectives were to 1) evaluate sIL-1R2 plasma concentrations in PD patients and healthy controls and 2) investigate the correlations between sIL-1R2 and cardiac autonomic indices obtained by spectrum analysis of heart rate variability before and after AMPSS. Methods: sIL-1R2 plasma levels were assessed in 48 PD patients and 50 healthy controls. Electrocardiogram and beat-by-beat arterial pressure were recorded at baseline and after 5 AMPSS sessions in 16 PD patients. Results: PD patients had higher sIL-1R2 levels than controls. In the PD subgroup, an inverse correlation between sIL-1R2 and HFnu was found. There was a negative correlation between changes induced by AMPSS on HFnu and sIL-1R2. Discussion: Higher sIL-1R2 levels in PD patients reflect the inflammatory dysregulation associated with the disease. In PD patients, higher sIL-1R2 was associated with reduced cardiovagal tone. Increased cardiovagal modulation following AMPSS was associated with lower sIL-1R2 levels in Parkinson's disease patients, suggesting inflammatory state improvement.

14.
Eur J Ophthalmol ; 32(3): NP92-NP97, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34075802

RESUMO

PURPOSE: This study aims to present a family with two children with MSS who presented with different ophthalmic features. We also aim to review MSS patients' ocular manifestations to provide a basis for future clinical trials and improve MSS patients' ophthalmologic care. CASE DESCRIPTION: Both patients presented with global developmental delay, microcephaly, cerebellar ataxia, and myopathy. The older sibling had developed bilateral cataracts at the age of six. Her 2 years younger sister interestingly showed bilateral hyperopic refractive error without cataracts yet. Mendeliome sequencing unraveled a novel homozygous frameshift mutation in the SIL1 gene (SIL1, NM_022464.5, c.1042dupG, p.E348Gfs*4), causing MSS. A systematic literature review revealed that cataracts appear in 96% of MSS cases with a mean onset at 3.2 years. Additional frequent ocular features were strabismus (51.6%) and nystagmus (45.2%). CONCLUSION: SIL1-related MSS is associated with marked clinical variability. Cataracts can develop later than neuromuscular features and cognitive signs. Since cataract is a relatively late finding, patients may refer to ophthalmologists for other reasons such as refractive errors, strabismus, or nystagmus. Molecular genetic testing for SIL1 is essential to facilitate early diagnosis in patients with suspected MSS.


Assuntos
Catarata , Degenerações Espinocerebelares , Estrabismo , Catarata/complicações , Catarata/diagnóstico , Catarata/genética , Feminino , Estudos de Associação Genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Degenerações Espinocerebelares/complicações , Degenerações Espinocerebelares/genética , Estrabismo/diagnóstico , Estrabismo/genética
15.
Orphanet J Rare Dis ; 17(1): 225, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698232

RESUMO

BACKGROUND: Aberrations to endoplasmic/sarcoplasmic reticulum (ER/SR) calcium concentration can result in the departure of endogenous proteins in a phenomenon termed exodosis. Redistribution of the ER/SR proteome can have deleterious effects to cell function and cell viability, often contributing to disease pathogenesis. Many proteins prone to exodosis reside in the ER/SR via an ER retention/retrieval sequence (ERS) and are involved in protein folding, protein modification, and protein trafficking. While the consequences of their extracellular presence have yet to be fully delineated, the proteins that have undergone exodosis may be useful for biomarker development. Skeletal muscle cells rely upon tightly coordinated ER/SR calcium release for muscle contractions, and perturbations to calcium homeostasis can result in myopathies. Ryanodine receptor type-1 (RYR1) is a calcium release channel located in the SR. Mutations to the RYR1 gene can compromise calcium homeostasis leading to a vast range of clinical phenotypes encompassing hypotonia, myalgia, respiratory insufficiency, ophthalmoplegia, fatigue and malignant hyperthermia (MH). There are currently no FDA approved treatments for RYR1-related myopathies (RYR1-RM). RESULTS: Here we examine the exodosis profile of skeletal muscle cells following ER/SR calcium depletion. Proteomic analysis identified 4,465 extracellular proteins following ER/SR calcium depletion with 1,280 proteins significantly different than vehicle. A total of 54 ERS proteins were identified and 33 ERS proteins significantly increased following ER/SR calcium depletion. Specifically, ERS protein, mesencephalic astrocyte-derived neurotrophic factor (MANF), was elevated following calcium depletion, making it a potential biomarker candidate for human samples. Despite no significant elevation of MANF in plasma levels among healthy volunteers and RYR1-RM individuals, MANF plasma levels positively correlated with age in RYR1-RM individuals, presenting a potential biomarker of disease progression. Selenoprotein N (SEPN1) was also detected only in extracellular samples following ER/SR calcium depletion. This protein is integral to calcium handling and SEPN1 variants have a causal role in SEPN1-related myopathies (SEPN1-RM). Extracellular presence of ER/SR membrane proteins may provide new insight into proteomic alterations extending beyond ERS proteins. Pre-treatment of skeletal muscle cells with bromocriptine, an FDA approved drug recently found to have anti-exodosis effects, curbed exodosis of ER/SR resident proteins. CONCLUSION: Changes to the extracellular content caused by intracellular calcium dysregulation presents an opportunity for biomarker development and drug discovery.


Assuntos
Retículo Endoplasmático , Doenças Musculares , Canal de Liberação de Cálcio do Receptor de Rianodina , Retículo Sarcoplasmático , Biomarcadores/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Proteínas/metabolismo , Proteômica , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
16.
Adv Med Sci ; 67(2): 257-261, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35785599

RESUMO

PURPOSE: IgG4-related disease (IgG4-RD) is a chronic fibrotic inflammatory and an immune-mediated disease characterized by high serum IgG4 concentration and IgG4-bearing plasma cell infiltration in affected organs. IgG4-related periaortitis/periarteritis is a recently identified disease entity in IgG4-RD that affects the cardiovascular system, and its pathogenesis and characteristics remain unclear. The inflammatory cytokine IL-1ß is involved in a variety of cellular activities including inflammation, fibrosis, and angiogenesis. The present study compared the levels of the inflammatory cytokine IL-1ß and two soluble IL-1 receptors, IL-1R1 and IL-1R2, between IgG4-RD patients with and without IgG4-related periaortitis/periarteritis. METHODS: The patients with IgG4-related periaortitis/periarteritis (n â€‹= â€‹38), those without (n â€‹= â€‹66) and healthy (n â€‹= â€‹33) were recruited to measure cytokines of IL-1ß and soluble receptors (sIL-1R1 and sIL-1R2) in sera by ELISA assay. RESULTS: Serum IgG4 was significantly higher in patients with periaortitis/periarteritis compared to non-periaortitis/periarteritis (p â€‹= â€‹0.0074), while serum IL-1ß was significantly lower in patients with periaortitis/periarteritis (p â€‹= â€‹0.00037). The three groups did not show significant difference in sIL1-R1, while sIL-1R2 in the periaortitis/periarteritis and healthy group was higher than in the group without periaortitis/periarteritis (p â€‹= â€‹0.00001). CONCLUSIONS: The characteristic changes in IL-1ß, sIL-1R1, and sIL-1R2 levels in IgG4-RD patients with and without IgG4-related periaortitis/periarteritis may indicate an active phase of the inflammatory process in these diseases.


Assuntos
Doença Relacionada a Imunoglobulina G4 , Receptores de Interleucina-1 , Humanos , Citocinas , Imunoglobulina G , Inflamação , Receptores Tipo II de Interleucina-1
17.
Sci Prog ; 103(1): 36850419891046, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31791191

RESUMO

Breast cancer, as one of the most malignant tumors, poses a serious threat to the lives of females. Nucleotide exchange factor SIL1 is an important regulator of endoplasmic reticulum function that might have a specific role in tumor progression. In this study, we aimed to investigate the effect of SIL1 on the proliferation, apoptosis, and metastasis of human breast cancer. SIL1-specific small interfering RNA was transfected into two breast cancer cell lines, MCF7 and MDA-MB-231, to generate SIL1 knockdown cells. Clone formation and Cell Counting Kit-8 assays were performed to determine cell proliferation. Wound healing and transwell assays were used to detect the cell migration and invasion, respectively. Cell cycle and apoptosis were determined by flow cytometry. The messenger RNA and protein levels of target genes were analyzed using quantitative real-time PCR and western blot. According to the results of TCGA and GTEx database analysis, we determined that SIL1 was overexpressed in 1085 breast cancer samples compared with 291 normal samples. Knockdown of SIL1 inhibited the proliferation, migration, and invasion of MCF7 and MDA-MB-231 cells, accordingly. The cell cycle was blocked at the G1 phase following transfection of SIL1-specific small interfering RNA through the inhibition of Cyclin D1, CDK4, and CDK6. SIL1 knockdown induced apoptosis and also promoted the activity of Caspase9 and Bax. Furthermore, SIL1 was able to promote phosphorylation of ERK1/2. Based on these results, SIL1 might act as an oncogene and accelerate the progression of human breast cancer.


Assuntos
Neoplasias da Mama , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Feminino , Fatores de Troca do Nucleotídeo Guanina/farmacologia , Humanos , Nucleotídeos/farmacologia
18.
Front Neurol ; 10: 562, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258504

RESUMO

Background and objective: Recessive mutations in the SIL1 gene cause Marinesco-Sjögren syndrome (MSS), a rare neuropediatric disorder. MSS-patients typically present with congenital cataracts, intellectual disability, cerebellar ataxia and progressive vacuolar myopathy. However, atypical clinical presentations associated with SIL1 mutations have been described over the last years; compound heterozygosity of SIL1 missense mutations even resulted in a phenotype not fulfilling the clinical diagnostic criteria of MSS. Thus, a read-out system to evaluate reliably the pathogenicity of amino acid changes in SIL1 is needed. Here, we aim to provide suitable cellular biomarkers enabling the robust evaluation of pathogenicity of SIL1 mutations. Methods: Five SIL1 variants including one polymorphism (p.K132Q), three known pathogenic mutations (p.V231_I232del, p.G312R, and p.L457P) and one ambiguous missense variant (p.R92W) were studied along with the wild-type proteins in Hek293 in vitro models by cell biological assays, immunoprecipitation, immunoblotting, and immunofluorescence as well as electron microscopy. Moreover, the SIL1-interactomes were interrogated by tandem-affinity-purification and subsequent mass spectrometry. Results: Our combined studies confirmed the pathogenicity of p.V231_I232del, p.G312R, and p.L457P by showing instability of the proteins as well as tendency to form aggregates. This observation is in line with altered structure of the ER-Golgi system and vacuole formation upon expression of these pathogenic SIL1-mutants as well as the presence of oxidative or ER-stress. Reduced cellular fitness along with abnormal mitochondrial architecture could also be observed. Notably, both the polymorphic p.K132Q and the ambiguous p.R92W variants did not elicit such alterations. Study of the SIL1-interactome identified POC1A as a novel binding partner of wild-type SIL1; the interaction is disrupted upon the presence of pathogenic mutants but not influenced by the presence of benign variants. Disrupted SIL1-POC1A interaction is associated with centrosome disintegration. Conclusions: We developed a combination of cellular outcome measures to evaluate the pathogenicity of SIL1 variants in suitable in vitro models and demonstrated that the p. R92W missense variant is a polymorphism rather than a pathogenic mutation leading to MSS.

19.
Onco Targets Ther ; 11: 3775-3783, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997438

RESUMO

PURPOSE: SIL1 is a ubiquitous protein localized to the endoplasmic reticulum and functions as a cochaperone of BiP. Previous studies have shown that function loss of SIL1 is often associated with neurological diseases, such as Marinesco-Sjögren Syndrome. However, no studies have investigated the function of SIL1 in tumors. In this study we aim to reveal functions of SIL1 and the underlying mechanisms in glioma. MATERIALS AND METHODS: First, by searching on Gene Expression Profiling Interactive Analysis, we examined SIL1 expression and prognostic value in glioblastoma multiforme (GBM) and brain lower grade glioma (LGG). Immunohistochemical analysis (IHC) was also performed to determine the endogenic SIL1 level. Cell counting kit-8 (CCK8) and clone formation assays were used to detect cell proliferation of U251 cells. Cell migration was detected by transwell assay and cell cycle and apoptosis were detected by flow cytometry. Western blot was performed to determine protein expression. RESULTS: We found that the expression of SIL1 was increased by approximately 1.5-fold in GBM and 1.3-fold in LGG compared with normal controls (P<0.05) and negatively correlated with patients' survival. IHC revealed that SIL1 expression was significantly higher in glioma tissues than that in paracancerous tissues (P<0.05). Glioma patients with high SIL1 expression accounted for 65.79% (25/38) of total samples and SIL1 expression significantly increased in grade IV glioma compared to grades I-III (P=0.026). Suppression of SIL1 expression led to significant inhibition of U251 cell proliferation. Transwell assay showed that cell migration of U251 was significantly inhibited by siSIL transfection, with an inhibitory rate reaching 69%. Flow cytometry detection showed that siSIL1 could induce apoptosis of U251 cells and upregulated the expression of the pro-apoptotic protein Bax and Caspase3-P17. However, siSIL1 transfection had no effect on the cell cycle. Mechanism studies demonstrated that siSIL1 transfection led to inactivation of AKT/mTOR signaling pathway, including decreased phosphorylation of AKT and mTOR without affecting protein expression, as well as decreased expression of the downstream effector p70S6K. CONCLUSION: Downregulation of SIL1 inhibited the progression of glioma by suppressing the AKT/mTOR signaling pathway.

20.
Biochim Biophys Acta Mol Basis Dis ; 1864(10): 3164-3180, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30293566

RESUMO

Loss-of-function mutations in the SIL1 gene are linked to Marinesco-Sjögren syndrome (MSS), a rare multisystem disease of infancy characterized by cerebellar and skeletal muscle degeneration. SIL1 is a ubiquitous adenine nucleotide exchange factor for the endoplasmic reticulum (ER) chaperone BiP. The complexity of mechanisms by which loss of SIL1 causes MSS is not yet fully understood. We used HeLa cells to test the hypothesis that impaired protein folding in the ER due to loss of SIL1 could affect secretory trafficking, impairing the transport of cargoes essential for the function of MSS vulnerable cells. Immunofluorescence and ultrastructural analysis of SIL1-knocked-down cells detected ER chaperone aggregation, enlargement of the Golgi complex, increased autophagic vacuoles, and mitochondrial swelling. SIL1-interefered cells also had delayed ER-to-plasma membrane transport with retention of Na+/K+-ATPase and procollagen-I in the ER and Golgi, and increased apoptosis. The PERK pathway of the unfolded protein response was activated in SIL1-interfered cells, and the PERK inhibitor GSK2606414 attenuated the morphological and functional alterations of the secretory pathway, and significantly reduced cell death. These results indicate that loss of SIL1 is associated with alterations of secretory transport, and suggest that inhibiting PERK signalling may alleviate the cellular pathology of SIL1-related MSS.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Degenerações Espinocerebelares/genética , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Apoptose , Autofagia , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Indóis/farmacologia , Mitocôndrias/metabolismo , Transdução de Sinais , Degenerações Espinocerebelares/metabolismo , Resposta a Proteínas não Dobradas , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA