Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.650
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 177(3): 622-638.e22, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31002797

RESUMO

DNA repair has been hypothesized to be a longevity determinant, but the evidence for it is based largely on accelerated aging phenotypes of DNA repair mutants. Here, using a panel of 18 rodent species with diverse lifespans, we show that more robust DNA double-strand break (DSB) repair, but not nucleotide excision repair (NER), coevolves with longevity. Evolution of NER, unlike DSB, is shaped primarily by sunlight exposure. We further show that the capacity of the SIRT6 protein to promote DSB repair accounts for a major part of the variation in DSB repair efficacy between short- and long-lived species. We dissected the molecular differences between a weak (mouse) and a strong (beaver) SIRT6 protein and identified five amino acid residues that are fully responsible for their differential activities. Our findings demonstrate that DSB repair and SIRT6 have been optimized during the evolution of longevity, which provides new targets for anti-aging interventions.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Longevidade/genética , Sirtuínas/metabolismo , Sequência de Aminoácidos , Animais , Peso Corporal , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Evolução Molecular , Fibroblastos/citologia , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Humanos , Cinética , Masculino , Mutagênese , Filogenia , Roedores/classificação , Alinhamento de Sequência , Sirtuínas/química , Sirtuínas/genética , Raios Ultravioleta
2.
Cell ; 170(4): 664-677.e11, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802039

RESUMO

The process of aging and circadian rhythms are intimately intertwined, but how peripheral clocks involved in metabolic homeostasis contribute to aging remains unknown. Importantly, caloric restriction (CR) extends lifespan in several organisms and rewires circadian metabolism. Using young versus old mice, fed ad libitum or under CR, we reveal reprogramming of the circadian transcriptome in the liver. These age-dependent changes occur in a highly tissue-specific manner, as demonstrated by comparing circadian gene expression in the liver versus epidermal and skeletal muscle stem cells. Moreover, de novo oscillating genes under CR show an enrichment in SIRT1 targets in the liver. This is accompanied by distinct circadian hepatic signatures in NAD+-related metabolites and cyclic global protein acetylation. Strikingly, this oscillation in acetylation is absent in old mice while CR robustly rescues global protein acetylation. Our findings indicate that the clock operates at the crossroad between protein acetylation, liver metabolism, and aging.


Assuntos
Envelhecimento/metabolismo , Ritmo Circadiano , Fígado/metabolismo , Redes e Vias Metabólicas , Acetilcoenzima A/metabolismo , Acetilação , Envelhecimento/patologia , Animais , Restrição Calórica , Histonas/metabolismo , Fígado/patologia , Camundongos , NAD/metabolismo , Proteínas/metabolismo , Sirtuína 1/metabolismo , Células-Tronco/metabolismo , Transcriptoma
3.
Mol Cell ; 84(4): 744-759.e6, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266638

RESUMO

Serine metabolism is involved in the fate decisions of immune cells; however, whether and how de novo serine synthesis shapes innate immune cell function remain unknown. Here, we first demonstrated that inflammatory macrophages have high expression of phosphoglycerate dehydrogenase (PHGDH, the rate-limiting enzyme of de novo serine synthesis) via nuclear factor κB signaling. Notably, the pharmacological inhibition or genetic modulation of PHGDH limits macrophage interleukin (IL)-1ß production through NAD+ accumulation and subsequent NAD+-dependent SIRT1 and SIRT3 expression and activity. Mechanistically, PHGDH not only sustains IL-1ß expression through H3K9/27 acetylation-mediated transcriptional activation of Toll-like receptor 4 but also supports IL-1ß maturation via NLRP3-K21/22/24/ASC-K21/22/24 acetylation-mediated activation of the NLRP3 inflammasome. Moreover, mice with myeloid-specific depletion of Phgdh show alleviated inflammatory responses in lipopolysaccharide-induced systemic inflammation. This study reveals a network by which a metabolic enzyme, involved in de novo serine synthesis, mediates post-translational modifications and epigenetic regulation to orchestrate IL-1ß production, providing a potential inflammatory disease target.


Assuntos
NAD , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Acetilação , Epigênese Genética , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , NAD/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Processamento de Proteína Pós-Traducional , Serina/metabolismo
4.
Mol Cell ; 82(21): 4099-4115.e9, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36208627

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive hepatic lipid accumulation, which can progress to nonalcoholic steatohepatitis (NASH). Histone deacetylase Sirtuin 6 (SIRT6) regulates NAFLD by regulating metabolism-related gene expression, but an extrachromosomal role for SIRT6 in NAFLD development remains elusive. We investigated whether SIRT6 functions on NAFLD in the cytoplasm. We found that SIRT6 binds saturated fatty acids, especially palmitic acid. This binding leads to its nuclear export, where it deacetylates long-chain acyl-CoA synthase 5 (ACSL5), thereby facilitating fatty acid oxidation. High-fat diet-induced NAFLD is suppressed by ACSL5 hepatic overexpression but is exacerbated by its depletion. As confirmation, overexpression of a deacetylated ACSL5 mimic attenuated NAFLD in Sirt6 liver-specific knockout mice. Moreover, NASH-hepatic tissues from both patients and diet-fed mice exhibited significantly reduced cytoplasmic SIRT6 levels and increased ACSL5 acetylation. The SIRT6/ACSL5 signaling pathway has a critical role in NAFLD progression and might constitute an avenue for therapeutic intervention.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Sirtuínas , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Acil Coenzima A/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Metabolismo dos Lipídeos , Camundongos Knockout , Ácidos Graxos/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Citoplasma/metabolismo
5.
Mol Cell ; 81(18): 3833-3847.e11, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34289383

RESUMO

Mutant isocitrate dehydrogenase (IDH) 1 and 2 play a pathogenic role in cancers, including acute myeloid leukemia (AML), by producing oncometabolite 2-hydroxyglutarate (2-HG). We recently reported that tyrosine phosphorylation activates IDH1 R132H mutant in AML cells. Here, we show that mutant IDH2 (mIDH2) R140Q commonly has K413 acetylation, which negatively regulates mIDH2 activity in human AML cells by attenuating dimerization and blocking binding of substrate (α-ketoglutarate) and cofactor (NADPH). Mechanistically, K413 acetylation of mitochondrial mIDH2 is achieved through a series of hierarchical phosphorylation events mediated by tyrosine kinase FLT3, which phosphorylates mIDH2 to recruit upstream mitochondrial acetyltransferase ACAT1 and simultaneously activates ACAT1 and inhibits upstream mitochondrial deacetylase SIRT3 through tyrosine phosphorylation. Moreover, we found that the intrinsic enzyme activity of mIDH2 is much higher than mIDH1, thus the inhibitory K413 acetylation optimizes leukemogenic ability of mIDH2 in AML cells by both producing sufficient 2-HG for transformation and avoiding cytotoxic accumulation of intracellular 2-HG.


Assuntos
Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/metabolismo , Acetil-CoA C-Acetiltransferase/metabolismo , Acetilação , Animais , Antineoplásicos/farmacologia , Feminino , Humanos , Isocitrato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/metabolismo , Leucemia Mieloide Aguda/genética , Lisina/genética , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Mutação/genética , NADP/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Polimorfismo de Nucleotídeo Único/genética , Cultura Primária de Células , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Quinases/metabolismo
6.
Immunity ; 50(2): 418-431.e6, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30770245

RESUMO

Sepsis is a bi-phasic inflammatory disease that threatens approximately 30 million lives and claims over 14 million annually, yet little is known regarding the molecular switches and pathways that regulate this disease. Here, we have described ABCF1, an ATP-Binding Cassette (ABC) family member protein, which possesses an E2 ubiquitin enzyme activity, through which it controls the Lipopolysaccharide (LPS)- Toll-like Receptor-4 (TLR4) mediated gram-negative insult by targeting key proteins for K63-polyubiquitination. Ubiquitination by ABCF1 shifts the inflammatory profile from an early phase MyD88-dependent to a late phase TRIF-dependent signaling pathway, thereby regulating TLR4 endocytosis and modulating macrophage polarization from M1 to M2 phase. Physiologically, ABCF1 regulates the shift from the inflammatory phase of sepsis to the endotoxin tolerance phase, and modulates cytokine storm and interferon-ß (IFN-ß)-dependent production by the immunotherapeutic mediator, SIRT1. Consequently, ABCF1 controls sepsis induced mortality by repressing hypotension-induced renal circulatory dysfunction.


Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Macrófagos/imunologia , Sepse/imunologia , Choque Séptico/imunologia , Enzimas de Conjugação de Ubiquitina/imunologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Interferon beta/imunologia , Interferon beta/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/classificação , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Interferência de RNA , Sepse/genética , Sepse/metabolismo , Choque Séptico/genética , Choque Séptico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/imunologia
7.
Mol Cell ; 78(5): 835-849.e7, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32369735

RESUMO

Disrupted sleep-wake and molecular circadian rhythms are a feature of aging associated with metabolic disease and reduced levels of NAD+, yet whether changes in nucleotide metabolism control circadian behavioral and genomic rhythms remains unknown. Here, we reveal that supplementation with the NAD+ precursor nicotinamide riboside (NR) markedly reprograms metabolic and stress-response pathways that decline with aging through inhibition of the clock repressor PER2. NR enhances BMAL1 chromatin binding genome-wide through PER2K680 deacetylation, which in turn primes PER2 phosphorylation within a domain that controls nuclear transport and stability and that is mutated in human advanced sleep phase syndrome. In old mice, dampened BMAL1 chromatin binding, transcriptional oscillations, mitochondrial respiration rhythms, and late evening activity are restored by NAD+ repletion to youthful levels with NR. These results reveal effects of NAD+ on metabolism and the circadian system with aging through the spatiotemporal control of the molecular clock.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Proteínas Circadianas Period/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores Etários , Envelhecimento/genética , Animais , Proteínas CLOCK/genética , Ritmo Circadiano/fisiologia , Citocinas/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Proteínas Circadianas Period/genética , Sirtuína 1/metabolismo , Sirtuínas/metabolismo
8.
Mol Cell ; 79(5): 846-856.e8, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32755594

RESUMO

Resveratrol is a natural product associated with wide-ranging effects in animal and cellular models, including lifespan extension. To identify the genetic target of resveratrol in human cells, we conducted genome-wide CRISPR-Cas9 screens to pinpoint genes that confer sensitivity or resistance to resveratrol. An extensive network of DNA damage response and replicative stress genes exhibited genetic interactions with resveratrol and its analog pterostilbene. These genetic profiles showed similarity to the response to hydroxyurea, an inhibitor of ribonucleotide reductase that causes replicative stress. Resveratrol, pterostilbene, and hydroxyurea caused similar depletion of nucleotide pools, inhibition of replication fork progression, and induction of replicative stress. The ability of resveratrol to inhibit cell proliferation and S phase transit was independent of the histone deacetylase sirtuin 1, which has been implicated in lifespan extension by resveratrol. These results establish that a primary impact of resveratrol on human cell proliferation is the induction of low-level replicative stress.


Assuntos
Proliferação de Células/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Resveratrol/farmacologia , Sistemas CRISPR-Cas , Linhagem Celular , Resistência a Medicamentos/genética , Humanos , Hidroxiureia/farmacologia , Células Jurkat , Nucleotídeos/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Sirtuína 1/metabolismo , Estilbenos/farmacologia
9.
Mol Cell ; 77(4): 810-824.e8, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31901447

RESUMO

Lipid droplets (LDs) provide a reservoir for triacylglycerol storage and are a central hub for fatty acid trafficking and signaling in cells. Lipolysis promotes mitochondrial biogenesis and oxidative metabolism via a SIRT1/PGC-1α/PPARα-dependent pathway through an unknown mechanism. Herein, we identify that monounsaturated fatty acids (MUFAs) allosterically activate SIRT1 toward select peptide-substrates such as PGC-1α. MUFAs enhance PGC-1α/PPARα signaling and promote oxidative metabolism in cells and animal models in a SIRT1-dependent manner. Moreover, we characterize the LD protein perilipin 5 (PLIN5), which is known to enhance mitochondrial biogenesis and function, to be a fatty-acid-binding protein that preferentially binds LD-derived monounsaturated fatty acids and traffics them to the nucleus following cAMP/PKA-mediated lipolytic stimulation. Thus, these studies identify the first-known endogenous allosteric modulators of SIRT1 and characterize a LD-nuclear signaling axis that underlies the known metabolic benefits of MUFAs and PLIN5.


Assuntos
Ácidos Graxos Monoinsaturados/metabolismo , Gotículas Lipídicas/química , Perilipina-5/metabolismo , Sirtuína 1/metabolismo , Regulação Alostérica , Animais , Transporte Biológico , Linhagem Celular , Células Cultivadas , Dieta , Ácidos Graxos/metabolismo , Lipase/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Azeite de Oliva , Perilipina-5/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transcrição Gênica
10.
Physiol Rev ; 100(1): 145-169, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31437090

RESUMO

Mammalian sirtuins have emerged in recent years as critical modulators of multiple biological processes, regulating cellular metabolism, DNA repair, gene expression, and mitochondrial biology. As such, they evolved to play key roles in organismal homeostasis, and defects in these proteins have been linked to a plethora of diseases, including cancer, neurodegeneration, and aging. In this review, we describe the multiple roles of SIRT6, a chromatin deacylase with unique and important functions in maintaining cellular homeostasis. We attempt to provide a framework for such different functions, for the ability of SIRT6 to interconnect chromatin dynamics with metabolism and DNA repair, and the open questions the field will face in the future, particularly in the context of putative therapeutic opportunities.


Assuntos
Cromatina/metabolismo , Sirtuínas/metabolismo , Animais , DNA/metabolismo , Reparo do DNA , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Neoplasias/metabolismo
11.
Mol Cell ; 75(4): 823-834.e5, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31302001

RESUMO

Sirt3, as a major mitochondrial nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, is required for mitochondrial metabolic adaption to various stresses. However, how to regulate Sirt3 activity responding to metabolic stress remains largely unknown. Here, we report Sirt3 as a SUMOylated protein in mitochondria. SUMOylation suppresses Sirt3 catalytic activity. SUMOylation-deficient Sirt3 shows elevated deacetylation on mitochondrial proteins and increased fatty acid oxidation. During fasting, SUMO-specific protease SENP1 is accumulated in mitochondria and quickly de-SUMOylates and activates Sirt3. SENP1 deficiency results in hyper-SUMOylation of Sirt3 and hyper-acetylation of mitochondrial proteins, which reduces mitochondrial metabolic adaption responding to fasting. Furthermore, we find that fasting induces SENP1 translocation into mitochondria to activate Sirt3. The studies on mice show that Sirt3 SUMOylation mutation reduces fat mass and antagonizes high-fat diet (HFD)-induced obesity via increasing oxidative phosphorylation and energy expenditure. Our results reveal that SENP1-Sirt3 signaling modulates Sirt3 activation and mitochondrial metabolism during metabolic stress.


Assuntos
Cisteína Endopeptidases/metabolismo , Mitocôndrias/metabolismo , Mutação , Obesidade/metabolismo , Transdução de Sinais , Sirtuína 3/metabolismo , Sumoilação , Acetilação , Animais , Cisteína Endopeptidases/genética , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Mutantes , Mitocôndrias/genética , Mitocôndrias/patologia , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/patologia , Sirtuína 3/genética
12.
Mol Cell ; 75(4): 683-699.e7, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31399344

RESUMO

Transcriptional regulation in eukaryotes occurs at promoter-proximal regions wherein transcriptionally engaged RNA polymerase II (Pol II) pauses before proceeding toward productive elongation. The role of chromatin in pausing remains poorly understood. Here, we demonstrate that the histone deacetylase SIRT6 binds to Pol II and prevents the release of the negative elongation factor (NELF), thus stabilizing Pol II promoter-proximal pausing. Genetic depletion of SIRT6 or its chromatin deficiency upon glucose deprivation causes intragenic enrichment of acetylated histone H3 at lysines 9 (H3K9ac) and 56 (H3K56ac), activation of cyclin-dependent kinase 9 (CDK9)-that phosphorylates NELF and the carboxyl terminal domain of Pol II-and enrichment of the positive transcription elongation factors MYC, BRD4, PAF1, and the super elongation factors AFF4 and ELL2. These events lead to increased expression of genes involved in metabolism, protein synthesis, and embryonic development. Our results identified SIRT6 as a Pol II promoter-proximal pausing-dedicated histone deacetylase.


Assuntos
Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Sirtuínas/metabolismo , Elongação da Transcrição Genética , Acetilação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Deleção de Genes , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Polimerase II/genética , Sirtuínas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
13.
Mol Cell ; 74(4): 651-663.e8, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30954402

RESUMO

Accumulating evidence supports the role of the DNA damage response (DDR) in the negative regulation of tumorigenesis. Here, we found that DDR signaling poises a series of epigenetic events, resulting in activation of pro-tumorigenic genes but can go as far as reactivation of the pluripotency gene OCT4. Loss of DNA methylation appears to be a key initiating event in DDR-dependent OCT4 locus reactivation although full reactivation required the presence of a driving oncogene, such as Myc and macroH2A downregulation. Using genetic-lineage-tracing experiments and an in situ labeling approach, we show that DDR-induced epigenetic reactivation of OCT4 regulates the resistance to chemotherapy and contributes to tumor relapse both in mouse and primary human cancers. In turn, deletion of OCT4 reverses chemoresistance and delays the relapse. Here, we uncovered an unexpected tumor-promoting role of DDR in cancer cell reprogramming, providing novel therapeutic entry points for cancer intervention strategies.


Assuntos
Carcinogênese/genética , Metilação de DNA/genética , Neoplasias/genética , Fator 3 de Transcrição de Octâmero/genética , Animais , Reprogramação Celular/genética , Dano ao DNA/genética , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica , Histonas/genética , Humanos , Camundongos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Recidiva , Transdução de Sinais/genética
14.
Mol Cell ; 76(4): 660-675.e9, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31542297

RESUMO

Histone posttranslational modifications (PTMs) regulate chromatin structure and dynamics during various DNA-associated processes. Here, we report that lysine glutarylation (Kglu) occurs at 27 lysine residues on human core histones. Using semi-synthetic glutarylated histones, we show that an evolutionarily conserved Kglu at histone H4K91 destabilizes nucleosome in vitro. In Saccharomyces cerevisiae, the replacement of H4K91 by glutamate that mimics Kglu influences chromatin structure and thereby results in a global upregulation of transcription and defects in cell-cycle progression, DNA damage repair, and telomere silencing. In mammalian cells, H4K91glu is mainly enriched at promoter regions of highly expressed genes. A downregulation of H4K91glu is tightly associated with chromatin condensation during mitosis and in response to DNA damage. The cellular dynamics of H4K91glu is controlled by Sirt7 as a deglutarylase and KAT2A as a glutaryltransferase. This study designates a new histone mark (Kglu) as a new regulatory mechanism for chromatin dynamics.


Assuntos
Montagem e Desmontagem da Cromatina , Dano ao DNA , Glutaratos/metabolismo , Histonas/metabolismo , Mitose , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Células HEK293 , Células HL-60 , Células HeLa , Células Hep G2 , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Humanos , Lisina , Camundongos , Nucleossomos/genética , Células RAW 264.7 , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Sirtuínas/genética , Sirtuínas/metabolismo , Fatores de Tempo
15.
Mol Cell ; 75(4): 807-822.e8, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442424

RESUMO

mTORC2 controls glucose and lipid metabolism, but the mechanisms are unclear. Here, we show that conditionally deleting the essential mTORC2 subunit Rictor in murine brown adipocytes inhibits de novo lipid synthesis, promotes lipid catabolism and thermogenesis, and protects against diet-induced obesity and hepatic steatosis. AKT kinases are the canonical mTORC2 substrates; however, deleting Rictor in brown adipocytes appears to drive lipid catabolism by promoting FoxO1 deacetylation independently of AKT, and in a pathway distinct from its positive role in anabolic lipid synthesis. This facilitates FoxO1 nuclear retention, enhances lipid uptake and lipolysis, and potentiates UCP1 expression. We provide evidence that SIRT6 is the FoxO1 deacetylase suppressed by mTORC2 and show an endogenous interaction between SIRT6 and mTORC2 in both mouse and human cells. Our findings suggest a new paradigm of mTORC2 function filling an important gap in our understanding of this more mysterious mTOR complex.


Assuntos
Adipócitos Marrons/metabolismo , Proteína Forkhead Box O1/metabolismo , Lipólise , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Sirtuínas/metabolismo , Adipócitos Marrons/citologia , Animais , Proteína Forkhead Box O1/genética , Células HEK293 , Células HeLa , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Transgênicos , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Sirtuínas/genética
16.
Proc Natl Acad Sci U S A ; 121(17): e2314201121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38635631

RESUMO

To effectively protect the host from viral infection while avoiding excessive immunopathology, the innate immune response must be tightly controlled. However, the precise regulation of antiviral innate immunity and the underlying mechanisms remain unclear. Here, we find that sirtuin3 (SIRT3) interacts with mitochondrial antiviral signaling protein (MAVS) to catalyze MAVS deacetylation at lysine residue 7 (K7), which promotes MAVS aggregation, as well as TANK-binding kinase I and IRF3 phosphorylation, resulting in increased MAVS activation and enhanced type I interferon signaling. Consistent with these findings, loss of Sirt3 in mice and zebrafish renders them more susceptible to viral infection compared to their wild-type (WT) siblings. However, Sirt3 and Sirt5 double-deficient mice exhibit the same viral susceptibility as their WT littermates, suggesting that loss of Sirt5 in Sirt3-deficient mice may counteract the increased viral susceptibility displayed in Sirt3-deficient mice. Thus, we not only demonstrate that SIRT3 positively regulates antiviral immunity in vitro and in vivo, likely via MAVS, but also uncover a previously unrecognized mechanism by which SIRT3 acts as an accelerator and SIRT5 as a brake to orchestrate antiviral innate immunity.


Assuntos
Sirtuína 3 , Sirtuínas , Viroses , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Imunidade Inata , Lisina , Sirtuína 3/genética , Sirtuínas/genética , Peixe-Zebra , Proteínas de Peixe-Zebra
17.
Proc Natl Acad Sci U S A ; 121(25): e2409269121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38870055

RESUMO

Sirtuin 7 (SIRT7) is a member of the mammalian family of nicotinamide adenine dinucleotide (NAD+)-dependent histone/protein deacetylases, known as sirtuins. It acts as a potent oncogene in numerous malignancies, but the molecular mechanisms employed by SIRT7 to sustain lung cancer progression remain largely uncharacterized. We demonstrate that SIRT7 exerts oncogenic functions in lung cancer cells by destabilizing the tumor suppressor alternative reading frame (ARF). SIRT7 directly interacts with ARF and prevents binding of ARF to nucleophosmin, thereby promoting proteasomal-dependent degradation of ARF. We show that SIRT7-mediated degradation of ARF increases expression of protumorigenic genes and stimulates proliferation of non-small-cell lung cancer (NSCLC) cells both in vitro and in vivo in a mouse xenograft model. Bioinformatics analysis of transcriptome data from human lung adenocarcinomas revealed a correlation between SIRT7 expression and increased activity of genes normally repressed by ARF. We propose that disruption of SIRT7-ARF signaling stabilizes ARF and thus attenuates cancer cell proliferation, offering a strategy to mitigate NSCLC progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Progressão da Doença , Neoplasias Pulmonares , Sirtuínas , Humanos , Sirtuínas/metabolismo , Sirtuínas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
18.
EMBO J ; 41(21): e110393, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36215696

RESUMO

Sirtuin 6 (SIRT6) is a deacylase and mono-ADP ribosyl transferase (mADPr) enzyme involved in multiple cellular pathways implicated in aging and metabolism regulation. Targeted sequencing of SIRT6 locus in a population of 450 Ashkenazi Jewish (AJ) centenarians and 550 AJ individuals without a family history of exceptional longevity identified enrichment of a SIRT6 allele containing two linked substitutions (N308K/A313S) in centenarians compared with AJ control individuals. Characterization of this SIRT6 allele (centSIRT6) demonstrated it to be a stronger suppressor of LINE1 retrotransposons, confer enhanced stimulation of DNA double-strand break repair, and more robustly kill cancer cells compared with wild-type SIRT6. Surprisingly, centSIRT6 displayed weaker deacetylase activity, but stronger mADPr activity, over a range of NAD+ concentrations and substrates. Additionally, centSIRT6 displayed a stronger interaction with Lamin A/C (LMNA), which was correlated with enhanced ribosylation of LMNA. Our results suggest that enhanced SIRT6 function contributes to human longevity by improving genome maintenance via increased mADPr activity and enhanced interaction with LMNA.


Assuntos
Lamina Tipo A , Sirtuínas , Idoso de 80 Anos ou mais , Humanos , Centenários , Alelos , Instabilidade Genômica
19.
EMBO Rep ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866979

RESUMO

As a hallmark of senescent cells, the derepression of Long Interspersed Elements 1 (LINE1) transcription results in accumulated LINE1 cDNA, which triggers the secretion of the senescence-associated secretory phenotype (SASP) and paracrine senescence in a cGAS-STING pathway-dependent manner. However, transcription factors that govern senescence-associated LINE1 reactivation remain ill-defined. Here, we predict several transcription factors that bind to human LINE1 elements to regulate their transcription by analyzing the conserved binding motifs in the 5'-untranslated regions (UTR) of the commonly upregulated LINE1 elements in different types of senescent cells. Further analysis reveals that PAX5 directly binds to LINE1 5'-UTR and the binding is enhanced in senescent cells. The enrichment of PAX5 at the 5'-UTR promotes cellular senescence and SASP by activating LINE1. We also demonstrate that the longevity gene SIRT6 suppresses PAX5 transcription by directly binding to the PAX5 promoter, and overexpressing PAX5 abrogates the suppressive effect of SIRT6 on stress-dependent cellular senescence. Our work suggests that PAX5 could serve as a potential target for drug development aiming to suppress LINE1 activation and treat senescence-associated diseases.

20.
EMBO Rep ; 25(3): 1361-1386, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332150

RESUMO

Non-alcoholic fatty liver disease is a chronic liver abnormality that exhibits high variability and can lead to liver cancer in advanced stages. Hepatic ablation of SIRT6 results in fatty liver disease, yet the potential mechanism of SIRT6 deficiency, particularly in relation to downstream mediators for NAFLD, remains elusive. Here we identify Serpina12 as a key gene regulated by Sirt6 that plays a crucial function in energy homeostasis. Specifically, Sirt6 suppresses Serpina12 expression through histone deacetylation at its promoter region, after which the transcription factor, Cebpα, binds to and regulates its expression. Sirt6 deficiency results in an increased expression of Serpina12 in hepatocytes, which enhances insulin signaling and promotes lipid accumulation. Importantly, CRISPR-Cas9 mediated Serpina12 knockout in the liver ameliorated fatty liver disease caused by Sirt6 ablation. Finally, we demonstrate that Sirt6 functions as a tumor suppressor in the liver, and consequently, deletion of Sirt6 in the liver leads to not only the spontaneous development of tumors but also enhanced tumorigenesis in response to DEN treatment or under conditions of obesity.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Sirtuínas , Humanos , Sirtuínas/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA