Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296601

RESUMO

DDX3 is a DEAD-box RNA helicase with diverse biological functions through multicellular pathways. The objective of this study was to investigate the role of DDX3 in regulating melanogenesis by the exploring signaling pathways involved. Various concentrations of hydrogen peroxide were used to induce melanogenesis in SK-Mel-2 human melanoma cells. Melanin content assays, tyrosinase activity analysis, and Western blot analysis were performed to determine how DDX3 was involved in melanogenesis. Transient transfection was performed to overexpress or silence DDX3 genes. Immunoprecipitation was performed using an antityrosinase antibody. Based on the results of the cell viability test, melanin content, and activity of tyrosinase, a key melanogenesis enzyme, in SK-Mel-2 human melanoma cells, hydrogen peroxide at 0.1 mM was chosen to induce melanogenesis. Treatment with H2O2 notably increased the promoter activity of DDX3. After treatment with hydroperoxide for 4 h, melanin content and tyrosinase activity peaked in DDX3-transfected cells. Overexpression of DDX3 increased melanin content and tyrosinase expression under oxidative stress induced by H2O2. DDX3 co-immunoprecipitated with tyrosinase, a melanogenesis enzyme. The interaction between DDX3 and tyrosinase was strongly increased under oxidative stress. DDX3 could increase melanogenesis under the H2O2-treated condition. Thus, targeting DDX3 could be a novel strategy to develop molecular therapy for skin diseases.


Assuntos
Melanoma Experimental , Melanoma , Humanos , Animais , Melaninas , Peróxido de Hidrogênio/farmacologia , Monofenol Mono-Oxigenase/metabolismo , RNA Helicases DEAD-box/genética , Linhagem Celular Tumoral , Melanoma Experimental/metabolismo
2.
Mol Biol (Mosk) ; 55(4): 667-675, 2021.
Artigo em Russo | MEDLINE | ID: mdl-34432784

RESUMO

MicroRNAs epigenetically regulate physiological and pathological processes. Previously, we found that miR-204-5p is expressed at low levels in melanoma cells, and an increase in its level leads to a change in proliferation, migration, and invasion of these cancer cells. Now, using bioinformatics analysis, it has been shown that the target of miR-204-5p is FOXC1 transcription factor, which is implicated in carcinogenesis. Using the luciferase reporter assay, it was found that miR-204-5p suppresses expression of the FOXC1 gene by binding to its 3' non-coding region. Transfection of small interfering RNA (siRNA) targeting FOXC1 into melanoma cells caused a decrease in miR-204-5p levels, which is consistent with the generally accepted concept of feedback regulation of miRNA expression by target genes. According to the results of the MTT test and fluorescence microscopy, the proliferation level of melanoma cells under the influence of siRNA to FOXC1 decreased 72 h after transfection. Changes in the ratio of cells by cell cycle phase were analyzed using flow cytometry. Regulatory relationships between FOXC1 and miR-204-5p, and an inhibitory effect of FOXC1 knockdown on melanoma cell proliferation were revealed. Based on the results, it can be assumed that miR-204-5p regulates proliferation of melanoma cells by affecting FOXC1 expression.


Assuntos
Melanoma , MicroRNAs , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Fatores de Transcrição Forkhead , Humanos , Melanoma/genética , MicroRNAs/genética
3.
BMC Genomics ; 21(1): 485, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669102

RESUMO

BACKGROUND: Telomeric DNA is typically comprised of G-rich tandem repeat motifs and maintained by telomerase (Greider CW, Blackburn EH; Cell 51:887-898; 1987). In eukaryotes lacking telomerase, a variety of DNA repair and DNA recombination based pathways for telomere maintenance have evolved in organisms normally dependent upon telomerase for telomere elongation (Webb CJ, Wu Y, Zakian VA; Cold Spring Harb Perspect Biol 5:a012666; 2013); collectively called Alternative Lengthening of Telomeres (ALT) pathways. By measuring (TTAGGG) n tract lengths from the same large DNA molecules that were optically mapped, we simultaneously analyzed telomere length dynamics and subtelomere-linked structural changes at a large number of specific subtelomeric loci in the ALT-positive cell lines U2OS, SK-MEL-2 and Saos-2. RESULTS: Our results revealed loci-specific ALT telomere features. For example, while each subtelomere included examples of single molecules with terminal (TTAGGG) n tracts as well as examples of recombinant telomeric single molecules, the ratio of these molecules was subtelomere-specific, ranging from 33:1 (19p) to 1:25 (19q) in U2OS. The Saos-2 cell line shows a similar percentage of recombinant telomeres. The frequency of recombinant subtelomeres of SK-MEL-2 (11%) is about half that of U2OS and Saos-2 (24 and 19% respectively). Terminal (TTAGGG) n tract lengths and heterogeneity levels, the frequencies of telomere signal-free ends, and the frequency and size of retained internal telomere-like sequences (ITSs) at recombinant telomere fusion junctions all varied according to the specific subtelomere involved in a particular cell line. Very large linear extrachromosomal telomere repeat (ECTR) DNA molecules were found in all three cell lines; these are in principle capable of templating synthesis of new long telomere tracts via break-induced repair (BIR) long-tract DNA synthesis mechanisms and contributing to the very long telomere tract length and heterogeneity characteristic of ALT cells. Many of longest telomere tracts (both end-telomeres and linear ECTRs) displayed punctate CRISPR/Cas9-dependent (TTAGGG) n labeling patterns indicative of interspersion of stretches of non-canonical telomere repeats. CONCLUSION: Identifying individual subtelomeres and characterizing linked telomere (TTAGGG) n tract lengths and structural changes using our new single-molecule methodologies reveals the structural consequences of telomere damage, repair and recombination mechanisms in human ALT cells in unprecedented molecular detail and significant differences in different ALT-positive cell lines.


Assuntos
Homeostase do Telômero , Telômero/química , Linhagem Celular Tumoral , DNA/química , Humanos , Sequências Repetitivas de Ácido Nucleico
4.
Mol Pharm ; 14(3): 928-939, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28169546

RESUMO

Cancer is a global health problem and chemoprevention is a promising approach for reducing cancer burden. Inositol hexaphosphate (IP6), a natural bioactive constituent of cereals, legumes, etc., has momentous potential as an antiangiogenic agent, that specifically affects malignant cells. The shortcoming is its quick absorption on oral/topical administration. Niosomes are flexible carriers for topical drug delivery. The central venture of current research was to optimize and characterize niosomal delivery system of IP6 for treatment of skin cancer. Thin film hydration method was utilized to prepare IP6 niosomes, and these were dispersed as a suspension in a suitable base. Developed formulations were analyzed for various physicochemical and pharmacological parameters such as particle size, encapsulation efficiency, morphology, drug release, texture analysis, irritability, cell line studies, Western blotting, RT-PCR, and histopathology. IP6 niosomal suspension and IP6 in acetone displayed IC50 value at the concentration of 0.96 mM (0.63 mg/mL) and 1.39 mM (0.92 mg/mL), respectively. IP6 niosomal suspension showed significantly higher (p < 0.05) activity and showed cytotoxic effect in SK-MEL-2 cancer cell line. Crucial events of cellular proliferation and differentiation, like expression of ornithine decarboxylase (ODC), proliferating cell nuclear antigen (PCNA), cycloxygenase-2 (COX-2) and Cyclin D1 were initiated from the fourth hour through application of 7,12-dimethylbenzanthracene (DMBA) on albino mice. The DMBA altered expression of aforesaid enzymes was significantly (P < 0.001) prevented by concomitant application of niosomal formulations. Results of cell line study, Western blotting, RT-PCR, and histopathology suggested that IP6 niosomal suspension could constitute a promising approach for prevention of cellular proliferation as well as DMBA induced dysregulation of cellular proliferation/differentiation and inflammation.


Assuntos
9,10-Dimetil-1,2-benzantraceno/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Epiderme/efeitos dos fármacos , Inflamação/tratamento farmacológico , Ácido Fítico/farmacologia , Animais , Química Farmacêutica/métodos , Ciclina D1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Epiderme/metabolismo , Feminino , Camundongos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Células Tumorais Cultivadas
5.
Biomolecules ; 13(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36979354

RESUMO

Cancer is one of the main causes of human mortality worldwide. Despite the advances in the diagnostics, surgery, radiotherapy, and chemotherapy, the search for more effective treatment regimens and drug combinations are relevant. This work aimed to assess the radiomodifying effect and molecular mechanism of action of fucoidan from the brown alga Saccharina cichorioides (ScF) and product of its autohydrolysis (ScF_AH) in combination with pacificusoside D from the starfish Solaster pacificus (SpD) on the model of viability and invasion of three-dimension (3D) human melanoma cells SK-MEL-2. The cytotoxicity of ScF (IC50 JB6 Cl41 > 800 µg/mL; IC50 SK-MEL-2 = 685.7 µg/mL), ScF_AH (IC50 JB6 Cl41/SK-MEL-2 > 800 µg/mL), SpD (IC50 JB6 Cl41 = 22 µM; IC50 SK-MEL-2 = 5.5 µM), and X-ray (ID50 JB6 Cl41 = 11.7 Gy; ID50 SK-MEL-2 = 6.7 Gy) was determined using MTS assay. The efficiency of two-component treatment of 3D SK-MEL-2 cells was revealed for ScF in combination with SpD or X-ray but not for the combination of fucoidan derivative ScF_AH with SpD or X-ray. The pre-treatment of spheroids with ScF, followed by cell irradiation with X-ray and treatment with SpD (three-component treatment) at low non-toxic concentrations, led to significant inhibition of the spheroids' viability and invasion and appeared to be the most effective therapeutic scheme for SK-MEL-2 cells. The molecular mechanism of radiomodifying effect of ScF with SpD was associated with the activation of the initiator and effector caspases, which in turn caused the DNA degradation in SK-MEL-2 cells as determined by the Western blotting and DNA comet assays. Thus, the combination of fucoidan from brown algae and triterpene glycoside from starfish with radiotherapy might contribute to the development of highly effective method for melanoma therapy.


Assuntos
Laminaria , Melanoma , Animais , Humanos , Apoptose , Linhagem Celular Tumoral , Estrelas-do-Mar , Melanoma/metabolismo , DNA/uso terapêutico
6.
Genes (Basel) ; 14(6)2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37372458

RESUMO

Telomeres play an essential role in protecting the ends of linear chromosomes and maintaining the integrity of the human genome. One of the key hallmarks of cancers is their replicative immortality. As many as 85-90% of cancers activate the expression of telomerase (TEL+) as the telomere maintenance mechanism (TMM), and 10-15% of cancers utilize the homology-dependent repair (HDR)-based Alternative Lengthening of Telomere (ALT+) pathway. Here, we performed statistical analysis of our previously reported telomere profiling results from Single Molecule Telomere Assay via Optical Mapping (SMTA-OM), which is capable of quantifying individual telomeres from single molecules across all chromosomes. By comparing the telomeric features from SMTA-OM in TEL+ and ALT+ cancer cells, we demonstrated that ALT+ cancer cells display certain unique telomeric profiles, including increased fusions/internal telomere-like sequence (ITS+), fusions/internal telomere-like sequence loss (ITS-), telomere-free ends (TFE), super-long telomeres, and telomere length heterogeneity, compared to TEL+ cancer cells. Therefore, we propose that ALT+ cancer cells can be differentiated from TEL+ cancer cells using the SMTA-OM readouts as biomarkers. In addition, we observed variations in SMTA-OM readouts between different ALT+ cell lines that may potentially be used as biomarkers for discerning subtypes of ALT+ cancer and monitoring the response to cancer therapy.


Assuntos
Neoplasias , Telomerase , Humanos , Homeostase do Telômero/genética , Telomerase/genética , Telomerase/metabolismo , Linhagem Celular , Neoplasias/genética , Replicação do DNA
7.
Elife ; 102021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33587036

RESUMO

The Parkinson's disease protein α-synuclein (αSyn) promotes membrane fusion and fission by interacting with various negatively charged phospholipids. Despite postulated roles in endocytosis and exocytosis, plasma membrane (PM) interactions of αSyn are poorly understood. Here, we show that phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3), two highly acidic components of inner PM leaflets, mediate PM localization of endogenous pools of αSyn in A2780, HeLa, SK-MEL-2, and differentiated and undifferentiated neuronal SH-SY5Y cells. We demonstrate that αSyn binds to reconstituted PIP2 membranes in a helical conformation in vitro and that PIP2 synthesizing kinases and hydrolyzing phosphatases reversibly redistribute αSyn in cells. We further delineate that αSyn-PM targeting follows phosphoinositide-3 kinase (PI3K)-dependent changes of cellular PIP2 and PIP3 levels, which collectively suggests that phosphatidylinositol polyphosphates contribute to αSyn's function(s) at the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Doença de Parkinson/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , alfa-Sinucleína/metabolismo , Membrana Celular/genética , Humanos , Doença de Parkinson/genética , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Transporte Proteico , alfa-Sinucleína/genética
8.
Exp Ther Med ; 22(6): 1382, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34650630

RESUMO

The present study aimed to discuss the effects and relative mechanisms of NEDD4 E3 ubiquitin protein ligase (NEDD4) in cutaneous melanoma (CMM) occurrence and development. Clinical cancer and adjacent normal tissues samples were collected to analyze pathological changes and protein expression of NEDD4. Moreover, small interfering (si)RNA was used to knockdown NEDD4 expression in SK-MEL-2 and Malme-3M cells. Cellular proliferation, apoptosis, invasiveness and migration were examined using colony formation, flow cytometric, Transwell and wound-healing assays, respectively. In addition, the relative mRNA and protein expression levels of NEDD4, notch receptor 1 (Notch1) and PTEN were evaluated via reverse transcription-quantitative (RT-q) PCR and western blotting. It was found that NEDD4 mRNA and protein expression were significantly upregulated (both P<0.01). Following NEDD4-knockdown, colony number was significantly decreased, while the apoptotic rate was significantly increased, the invasive cell number was significantly inhibited and the wound-healing capacity was significantly decreased. Following si-NEDD4 transfection, RT-qPCR and western blotting revealed that NEDD4 and Notch1 mRNA and protein expression levels were significantly downregulated, while those of PTEN were significantly upregulated in the SK-MEL-2 and Malme-3M cell lines. Collectively, the current results suggest that NEDD4-knockdown effectively suppressed CMM biological activity by regulating the Notch1/PTEN pathway in vitro.

9.
Front Pharmacol ; 11: 922, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625101

RESUMO

Excessive pigmentation and reduced elasticity are the major skin problems that dermatologists and cosmetologists address. Compounds that inhibit melanin production might contribute to improving skin problems. In this study, we investigated whether coumaric acid- and caffeic acid-conjugated peptides might affect alpha-melanocyte stimulating hormone-induced melanin production, tyrosinase activity, and melanin synthesis-related gene expression in SK-MEL-2 human melanoma cells. Coumaric acid and caffeic acid showed no significant cytotoxicity, and they inhibited melanin production. In addition, coumaric acid- and caffeic acid-conjugated peptides suppressed tyrosinase activity more than arbutin, a known tyrosinase inhibitor. Quantitative real-time PCR (qRT-PCR) results also showed that both peptides inhibited the expression of melanin synthesis-related genes, TYR, TYRP1, TYRP2, and MITF. In particular, among the nine conjugated peptides tested, caffeic acid linked to a Gly-Gly-Gly linker and conjugated to the tripeptide, ARP, showed the greatest inhibition of gene expression in the qRT-PCR analysis. These results suggested that the inhibition of melanin exerted by coumaric acid- and caffeic acid-conjugated peptides might provide important information for the development of pigmentation-related skin diseases and cosmetic products.

10.
Heliyon ; 6(3): e03640, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32258485

RESUMO

A dataset of seventy-two (72) cytotoxic compounds of the National Cancer Institute (NCI) was studied by QSAR and docking approaches to gain deeper insights into ligands selectivity on SK-MEL-2 cell line. The QSAR model was built using fifty (50) molecules and the best-generated model based on multiple linear regression showed, respectively good quality of fits ( R 2 (0.864), R a d j u s t e d 2 (0.845), Q2 cv (0.799) and R p r e d 2 (0.706)). The model's predictive ability was determined by a test set of twenty-two (22) compounds. Compounds 30 and 41 were selected as templates for in silico design because they had high pGI50 activity and are in the model's applicability domain. The obtained information from the model was explored to design novel molecules by introducing various modifications. Moreover, the designed compounds with better-predicted activity (pGI50) values were selected and docked on the active site of the protein (PDB-CODE: 3OG7) which is responsible for melanoma cancer to elucidate their binding mode. AN2 (-12.1kcalmol-1) and AC4 (-12.4kcalmol-1) showed a better binding score for the target when compared with (vemurafenib, -11.3kcalmol-1) the known inhibitor of the target (V600E-BRAF). These findings may be very helpful in early anti-cancer drug development.

11.
Front Pharmacol ; 11: 602889, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33390991

RESUMO

FGIN-1-27 is a synthetic mitochondrial diazepam binding inhibitor receptor (MDR) agonist that has demonstrated pro-apoptotic, anti-anxiety, and steroidogenic activity in various studies. Here we report, for the first time, the anti-melanogenic efficacy of FGIN-1-27 in vitro and in vivo. FGIN-1-27 significantly inhibited basal and α-melanocyte-stimulating hormone (α-MSH)-, 1-Oleoyl-2-acetyl-sn-glycerol (OAG)- and Endothelin-1 (ET-1)-induced melanogenesis without cellular toxicity. Mushroom tyrosinase activity assay showed that FGIN-1-27 did not directly inhibit tyrosinase activity, which suggested that FGIN-1-27 was not a direct inhibitor of tyrosinase. Although it was not capable of modulating the catalytic activity of mushroom tyrosinase in vitro, FGIN-1-27 downregulated the expression levels of key proteins that function in melanogenesis. FGIN-1-27 played these functions mainly by suppressing the PKA/CREB, PKC-ß, and MAPK pathways. Once inactivated, it decreased the expression of MITF, tyrosinase, TRP-1, TRP-2, and inhibited the tyrosinase activity, finally inhibiting melanogenesis. During in vivo experiments, FGIN-1-27 inhibited the body pigmentation of zebrafish and reduced UVB-induced hyperpigmentation in guinea pig skin, but not a reduction of numbers of melanocytes. Our findings indicated that FGIN-1-27 exhibited no cytotoxicity and inhibited melanogenesis in both in vitro and in vivo models. It may prove quite useful as a safer skin-whitening agent.

12.
ChemMedChem ; 12(22): 1893-1905, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-28940806

RESUMO

A new series of spirocyclic σ receptor (σR) ligands were prepared and studied. Most were found to have a high affinity and selectivity for σ1 R; three compounds were shown to be σ1 R agonists, while another proved to be the only σ1 R antagonist. Only one of the σ1 R agonists (BS148) also exhibited σ2 R selectivity and was able to inhibit the growth of metastatic malignant melanoma cell lines without affecting normal human melanocytes. The antiproliferative activity of this compound suggested an σ2 R agonist profile. Further, preliminary investigations indicated that the mechanism of metastatic malignant melanoma cell death induced by BS148 is due, at least in part, to apoptosis.


Assuntos
Analgésicos Opioides/farmacologia , Antineoplásicos/farmacologia , Melanoma/tratamento farmacológico , Piperidinas/farmacologia , Receptores sigma/agonistas , Compostos de Espiro/farmacologia , Analgésicos Opioides/síntese química , Analgésicos Opioides/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Masculino , Melanoma/patologia , Camundongos , Modelos Moleculares , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Compostos de Espiro/síntese química , Compostos de Espiro/química , Relação Estrutura-Atividade
13.
Nat Prod Res ; 29(23): 2261-4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25623835

RESUMO

Calotropis procera (family: Asclepiadaceae) contains cardiac glycosides which are cytotoxic to cancer cells. The extracts of C. procera have been reported to be cytotoxic to many cancer cell lines and this is the first report against the human skin melanoma cells (SK-MEL-2). The SK-MEL-2 cells treated with C. procera methanolic extract (CPME) were analysed for growth inhibition and apoptosis. The exposure of phosphatidylserine in apoptotic SK-MEL-2 was analysed by using the Annexin-V FITC flow cytometry method. In CPME-treated SK-MEL-2 cells, 19.6% of apoptotic and 58.3% dead cells were observed. The 15.97% and 15.85% of early apoptotic cells were found at 20 µg/mL of the ouabain and paclitaxel, respectively. Active caspases, nuclear degradation confirmed apoptotic SK-MEL-2 cells in time- and dose-dependent manner. The cell cycle analysis shows that CPME treated cells halt at G2/M phase. Significant cytotoxic activity of CPME against SK-MEL-2 may be attributed to its high cardenolide content.


Assuntos
Apoptose/efeitos dos fármacos , Calotropis/química , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Caspases/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Fragmentação do DNA , Humanos , Melanoma/patologia , Fosfatidilserinas/análise , Neoplasias Cutâneas , Melanoma Maligno Cutâneo
14.
Biomol Ther (Seoul) ; 22(3): 207-12, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25009701

RESUMO

Skin hyperpigmentation is one of the most common skin disorders caused by abnormal melanogenesis. The mechanism and key factors at play are not fully understood. Previous reports have indicated that cystamine (CTM) inhibits melanin synthesis, though its molecular mechanism in melanogenesis remains unclear. In the present study, we investigated the effect of CTM on melanin production using ELISA reader and the expression of proteins involved in melanogenesis by Western blotting, and examined the involvement of transglutaminase-2 (Tgase-2) in SK-MEL-2 human melanoma cells by gene silencing. In the results, CTM dose-dependently suppressed melanin production and dendrite extension in α-MSH-induced melanogenesis of SK-MEL-2 human melanoma cells. CTM also suppressed α-MSH-induced chemotactic migration as well as the expressions of melanogenesis factors TRP-1, TRP-2 and MITF in α-MSH-treated SK-MEL-2 cells. Meanwhile, gene silencing of Tgase-2 suppressed dendrite extension and the expressions of TRP-1 and TRP-2 in α-MSH-treated SK-MEL-2 cells. Overall, these findings suggested that CTM suppresses α-MSH-induced melanogenesis via Tgase-2 inhibition and that therefore, Tgase-2 might be a new target in hyperpigmentation disorder therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA