Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Cell Sci ; 132(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31201282

RESUMO

Oculocutaneous albinism (OCA) is a heterogeneous and autosomal recessive hypopigmentation disorder, which is caused by mutations of genes involved in pigment biosynthesis or melanosome biogenesis. We have previously identified NCKX5 (also known as SLC24A5) as a causative gene for OCA type 6 (OCA6). However, the pathogenesis of OCA6 is unknown. We found that NCKX5 is localized to mitochondria, not to melanosomes. Pharmacological inhibition of mitochondrial function or NCKX exchanger activity reduced pigment production. Loss of NCKX5 attenuated Ca2+ enrichment in melanosomes, which compromised PMEL fibril formation, melanosome maturation and pigment production. Thus, we have defined a new class of hypopigmentation attributable to dysfunctional mitochondria and an impairment of mitochondrial Ca2+ transfer into melanosomes. Thus, it is possible that mitochondrial function could have a role in the graying of hair in older people and formation of hypopigmented lesions in vitiligo patients.


Assuntos
Melanossomas/metabolismo , Mitocôndrias/metabolismo , Pigmentos Biológicos/biossíntese , Trocador de Sódio e Cálcio/metabolismo , Animais , Cálcio/metabolismo , Melaninas/biossíntese , Camundongos , Fatores de Tempo , Antígeno gp100 de Melanoma , Rede trans-Golgi/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(52): 13324-13329, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530665

RESUMO

Skin pigmentation is under strong directional selection in northern European and Asian populations. The indigenous KhoeSan populations of far southern Africa have lighter skin than other sub-Saharan African populations, potentially reflecting local adaptation to a region of Africa with reduced UV radiation. Here, we demonstrate that a canonical Eurasian skin pigmentation gene, SLC24A5, was introduced to southern Africa via recent migration and experienced strong adaptive evolution in the KhoeSan. To reconstruct the evolution of skin pigmentation, we collected phenotypes from over 400 ≠Khomani San and Nama individuals and high-throughput sequenced candidate pigmentation genes. The derived causal allele in SLC24A5, p.Ala111Thr, significantly lightens basal skin pigmentation in the KhoeSan and explains 8 to 15% of phenotypic variance in these populations. The frequency of this allele (33 to 53%) is far greater than expected from colonial period European gene flow; however, the most common derived haplotype is identical among European, eastern African, and KhoeSan individuals. Using four-population demographic simulations with selection, we show that the allele was introduced into the KhoeSan only 2,000 y ago via a back-to-Africa migration and then experienced a selective sweep (s = 0.04 to 0.05 in ≠Khomani and Nama). The SLC24A5 locus is both a rare example of intense, ongoing adaptation in very recent human history, as well as an adaptive gene flow at a pigmentation locus in humans.


Assuntos
Antiporters/genética , Pigmentação da Pele/genética , Adulto , África Austral , Alelos , Antiporters/metabolismo , Povo Asiático/genética , População Negra/genética , Demografia/métodos , Evolução Molecular , Feminino , Fluxo Gênico , Variação Genética/genética , Genética Populacional/métodos , Genótipo , Haplótipos , Humanos , Masculino , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único/genética , População Branca/genética
3.
Evol Ecol Res ; 20(1): 107-132, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34899072

RESUMO

BACKGROUND: Stickleback fish are widely used to study the genetic and ecological basis of phenotypic evolution. Although several major loci have now been identified that contribute to evolutionary differences between wild populations, further study of the phenotypes associated with particular genes and mutations has been limited by the difficulty of generating targeted mutations at precise locations in the stickleback genome. APPROACH AND AIMS: We compared different methods of expressing single-guide RNAs (sgRNAs) and Cas9 activity in fertilized stickleback eggs. We used an easily scored pigmentation gene (SLC24A5) to screen for molecular lesions, phenotypic effects, and possible germline transmission of newly induced alleles. We then used the optimized CRISPR methods to target two major evolutionary loci in sticklebacks, KITLG and EDA. We hypothesized that coding region mutations in the KITLG gene would alter body pigmentation and possibly sex determination, and that mutations in the EDA gene would disrupt the formation of most armor plates, fin rays, spines, teeth, and gill rakers. RESULTS: Targeted deletions were successfully induced at each target locus by co-injecting one-cell stage stickleback embryos with either Cas9 mRNA or Cas9 protein, together with sgRNAs designed to protein-coding exons. Founder animals were typically mosaic for multiple mutations, which they transmitted through the germline at overall rates of 21 to 100%. We found that the copy of KITLG on the X chromosome (KITLGX) has diverged from the KITLG on the Y chromosome (KITLGY). Predicted loss-of-function mutations in the KITLGX gene dramatically altered pigmentation in both external skin and internal organ, but the same was not true for KITLGY mutations. Predicted loss-of-function mutations in either the KITLGX or KITLGY genes did not lead to sex reversal or prevent fertility. Homozygous loss-of-function mutations in the EDA gene led to complete loss of armor plates, severe reduction or loss of most soft rays in the dorsal, anal, and caudal fins, and severe reductions in tooth and gill raker number. In contrast, long dorsal and pelvic spines remained intact in EDA mutant animals, suggesting that common co-segregation of plate loss and spine reduction in wild populations is unlikely to be due to pleiotropic effects of EDA mutations. CONCLUSION: CRISPR-Cas9 approaches can be used to induce germline mutations in key evolutionary loci in sticklebacks. Targeted coding region mutations confirm an important role for KITLG and EDA in skin pigmentation and armor plate reduction, respectively. They also provide new information about the functions of these genes in other body structures.

4.
Semin Cell Dev Biol ; 24(6-7): 576-86, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23583561

RESUMO

The characterisation of the pleiotropic effects of coat colour-associated mutations in mammals illustrates that sensory organs and nerves are particularly affected by disorders because of the shared origin of melanocytes and neurocytes in the neural crest; e.g. the eye-colour is a valuable indicator of disorders in pigment production and eye dysfunctions. Disorders related to coat colour-associated alleles also occur in the skin (melanoma), reproductive tract and immune system. Additionally, the coat colour phenotype of an individual influences its general behaviour and fitness. Mutations in the same genes often produce similar coat colours and pleiotropic effects in different species (e.g., KIT [reproductive disorders, lethality], EDNRB [megacolon] and LYST [CHS]). Whereas similar disorders and similar-looking coat colour phenotypes sometimes have a different genetic background (e.g., deafness [EDN3/EDNRB, MITF, PAX and SNAI2] and visual diseases [OCA2, RAB38, SLC24A5, SLC45A2, TRPM1 and TYR]). The human predilection for fancy phenotypes that ignore disorders and genetic defects is a major driving force for the increase of pleiotropic effects in domestic species and laboratory subjects since domestication has commenced approximately 18,000 years ago.


Assuntos
Pleiotropia Genética/genética , Cor de Cabelo/genética , Mutação/genética , Alelos , Animais , Cor , Humanos , Camundongos
5.
Animals (Basel) ; 13(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37048437

RESUMO

The Chinese giant salamander (Andrias davidianus) has been increasingly popular in the aquaculture market in China in recent years. In the breeding process of Andrias davidianus, we found that some albino individuals were extremely rare and could not be inherited stably, which severely limits their commercialization in the aquaculture market. In this study, we performed transcriptome and small RNA (sRNA) sequencing analyses in the skin samples of wild-type (WT) and albino (AL) Andrias davidianus. In total, among 5517 differentially expressed genes (DEGs), 2911 DEGs were down-regulated in AL, including almost all the key genes involved in melanin formation. A total of 25 miRNAs were differentially expressed in AL compared to WT, of which 17 were up-regulated. Through the integrated analysis, no intersection was found between the target genes of the differentially expressed miRNAs and the key genes for melanin formation. Gene Ontology (GO) and KEGG pathway analyses on DEGs showed that these genes involved multiple processes relevant to melanin synthesis and the key signal pathway MAPK. Interestingly, the transcription factors SOX10 and PAX3 and the Wnt signaling pathway that play a key role in other species were not included, while the other two transcription factors in the SOX family, SOX21 and SOX7, were included. After analyzing the key genes for melanin formation, it was interesting to note an alternative splicing form of the MITF in WT and a critical mutation of the SLC24A5 gene in AL, which might be the main reason for the skin color change of Andrias davidianus. The results contributed to understanding the molecular mechanism of skin pigmentation in Andrias davidianus and accelerating the acquisition process of individuals with specific body colors by genetic means.

6.
Pigment Cell Melanoma Res ; 35(2): 212-219, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34870899

RESUMO

Oculocutaneous albinism (OCA) 6 is a non-syndromic type of OCA that has distinct ocular symptoms and variable cutaneous hypopigmentation. The causative gene of OCA6 is SLC24A5, which encodes NCKX5, a K+ -dependent Na+ /Ca2+ exchanger 5. NCKX5 is involved in the maturation of melanosomes, but its function is still unclear. In this study, we characterized a Japanese patient with OCA6. Genetic analysis revealed compound heterozygous variants in SLC24A5, c.590 + 1dupG, and c.598G>A (p.G200R). To clarify the functional significance of the missense variant, we generated a knock-in (KI) mouse model carrying the mouse homolog of the G200R variant using the CRISPR/Cas9 system. Chemical analysis showed decreased amounts of eumelanin in the hair and skin of KI mice, while levels of benzothiazine units in pheomelanin were significantly increased in their hair. Retinal pigment was also decreased in KI mice. Notably, a histopathologic study revealed a significant pigment loss in the retinal pigment epithelium (RPE) but not in the choroid. Immunohistochemically, the expression of NCKX5 in the RPE was decreased but was maintained in the choroid of KI mice. These findings could explain the difference in phenotypic severity between eye symptoms and hypopigmentation in the skin/hair.


Assuntos
Albinismo Oculocutâneo , Hipopigmentação , Epitélio Pigmentado da Retina , Trocador de Sódio e Cálcio , Albinismo Oculocutâneo/genética , Animais , Humanos , Hipopigmentação/genética , Japão , Camundongos , Epitélio Pigmentado da Retina/metabolismo , Trocador de Sódio e Cálcio/metabolismo
7.
Pigment Cell Melanoma Res ; 33(4): 556-565, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32274888

RESUMO

Skin pigmentation is a highly heterogeneous trait with diverse consequences worldwide. SLC24A5, encoding a potent K+ -dependent Na+ /Ca2+ exchanger, is among the known color-coding genes that participate in melanogenesis by maintaining pH in melanosomes. Deficient SLC24A5 activity results in oculocutaneous albinism (OCA) type 6 in humans. In this study, by utilizing a exome sequencing (ES) approach, we identified two new variants [p. (Gly110Arg) and p. (IIe189Ilefs*1)] of SLC24A5 cosegregating with the OCA phenotype, including nystagmus, strabismus, foveal hypoplasia, albinotic fundus, and vision impairment, in three large consanguineous Pakistani families. Both of these variants failed to rescue the pigmentation in zebrafish slc24a5 morphants, confirming the pathogenic effects of the variants. We also phenotypically characterized a commercially available zebrafish mutant line (slc24a5ko ) that harbors a nonsense (p.Tyr208*) allele of slc24a5. Similar to morphants, homozygous slc24a5ko mutants had significantly reduced melanin content and pigmentation. Next, we used these slc24a5ko zebrafish mutants to test the efficacy of nitisinone, a compound known to increase ocular and fur pigmentation in OCA1 (TYR) mutant mice. Treatment of slc24a5ko mutant zebrafish embryos with varying doses of nitisinone did not improve melanin production and pigmentation, suggesting that treatment with nitisinone is unlikely to be therapeutic in OCA6 patients.


Assuntos
Albinismo Oculocutâneo/genética , Antiporters/genética , Cicloexanonas/farmacologia , Variação Genética , Nitrobenzoatos/farmacologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Adolescente , Adulto , Idoso , Animais , Criança , Segregação de Cromossomos/genética , Modelos Animais de Doenças , Família , Feminino , Fundo de Olho , Humanos , Larva/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Morfolinos/farmacologia , Paquistão , Linhagem , Fenótipo , Pigmentação da Pele/efeitos dos fármacos , Resultado do Tratamento , Adulto Jovem
8.
Biochim Biophys Acta Biomembr ; 1862(12): 183318, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32333855

RESUMO

Melanosomes are unique organelles in melanocytes that produce melanin, the pigment for skin, hair, and eye color. Tyrosinase is the essential and rate-limiting enzyme for melanin production, that strictly requires neutral pH for activity. pH maintenance is a result of the combinational function of multiple ion transport proteins. Thus, ion homeostasis in melanosomes is crucial for melanin synthesis. Defect of the ion transport system causes various pigmentation phenotypes, from mild effect to severe disorders such as albinism. In this review, we summarize the up-to-date knowledge of the ion transport system, such as transport function, structure, and the physiological roles and mechanisms of the ion transport proteins in melanosomes. In addition, we propose a model of melanosomal ion transport system-how the functional coupling of multiple transport proteins modulates and maintains ion homeostasis. We discuss melanin synthesis in terms of the ion transport system.


Assuntos
Melanossomas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Albinismo Oculocutâneo/genética , Albinismo Oculocutâneo/patologia , Humanos , Concentração de Íons de Hidrogênio , Transporte de Íons , Lisossomos/metabolismo , Melaninas/biossíntese , Proteínas de Membrana Transportadoras/genética , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Pigmentação da Pele
9.
J Dermatol ; 46(11): 1027-1030, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31486119

RESUMO

Oculocutaneous albinism (OCA) is a rare and heterogeneous disorder characterized by hypopigmentation of the skin, hair and eyes. Thirty OCA type 6 (OCA6) patients with 24 mutations in SLC24A5 have been reported across various populations; however, only one patient has been identified in a Chinese population. This study identifies two novel SLC24A5 frame-shift variants in two unrelated Chinese patients and both are predicted to be pathogenic by American College of Medical Genetics guidelines. The genotypes and phenotypes of all three Chinese OCA6 patients are unique compared with those identified in other populations. All of the mutations identified to date in Chinese OCA6 patients are predicted to be non-functional, a finding that is useful in guiding genetic diagnosis and counseling for OCA6 in China.


Assuntos
Albinismo Oculocutâneo/genética , Antiporters/genética , Albinismo Oculocutâneo/etnologia , Povo Asiático , Pré-Escolar , Feminino , Mutação da Fase de Leitura , Humanos , Lactente
10.
Pigment Cell Melanoma Res ; 32(1): 55-67, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29981211

RESUMO

NCKX5 is a bidirectional K+ -dependent Na+ -Ca2+ exchanger, which belongs to the SLC24A gene family. In particular, the A111T mutation of NCKX5 has been associated with reduced pigmentation in European populations. In contrast to other NCKX isoforms, which function in the plasma membrane (PM), NCKX5 has been shown to localize either in the trans-Golgi network (TGN) or in melanosomes. Moreover, sequences responsible for retaining its intracellular localization are unknown. This study addresses two major questions: (i) clarification of intracellular location of NCKX5 and (ii) identification of sequences that retain NCKX5 inside the cell. We designed a set of cDNA constructs representing NCKX5 loop deletion mutants and NCKX2-NCKX5 chimeras to address these two questions after expression in pigmented MNT1 cells. Our results show that NCKX5 is not a PM resident and is exclusively located in the TGN. Moreover, the large cytoplasmic loop is the determinant for retaining NCKX5 in the TGN.


Assuntos
Pigmentação , Potássio/farmacologia , Trocador de Sódio e Cálcio/química , Trocador de Sódio e Cálcio/metabolismo , Sequência de Aminoácidos , Animais , Autoantígenos/metabolismo , Cálcio/metabolismo , Contagem de Células , Células HEK293 , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Mutação/genética , Pigmentação/efeitos dos fármacos , Estrutura Secundária de Proteína , Transporte Proteico/efeitos dos fármacos , Relação Estrutura-Atividade , Peixe-Zebra , Rede trans-Golgi/efeitos dos fármacos , Rede trans-Golgi/metabolismo
12.
Curr Genomics ; 9(2): 110-4, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19440451

RESUMO

Ancestry informative markers (AIMs) are human polymorphisms that exhibit substantially allele frequency differences among populations. These markers can be useful to provide information about ancestry of samples which may be useful in predicting a perpetrator's ethnic origin to aid criminal investigations. Variations in human pigmentation are the most obvious phenotypes to distinguish individuals. It has been recently shown that the variation of a G in an A allele of the coding single-nucleotide polymorphism (SNP) rs1426654 within SLC24A5 gene varies in frequency among several population samples according to skin pigmentation. Because of these observations, the SLC24A5 locus has been evaluated as Ancestry Informative Region (AIR) by typing rs1426654 together with two additional intragenic markers (rs2555364 and rs16960620) in 471 unrelated individuals originating from three different continents (Africa, Asia and Europe). This study further supports the role of human SLC24A5 gene in skin pigmentation suggesting that variations in SLC24A5 haplotypes can correlate with human migration and ancestry. Furthermore, our data do reveal the utility of haplotype and combined unphased genotype analysis of SLC24A5 in predicting ancestry and provide a good example of usefulness of genetic characterization of larger regions, in addition to single polymorphisms, as candidates for population-specific sweeps in the ancestral population.

13.
Int J Paleopathol ; 23: 54-59, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29606375

RESUMO

Most of the vitamin D necessary for the maintenance of human health and successful reproduction is made in the skin under the influence of a narrow portion of the electromagnetic spectrum emitted from the sun, namely ultraviolet B radiation (UVB). During the course of human evolution, skin pigmentation has evolved to afford protection against high levels of UVR while still permitting cutaneous production of vitamin D. Similar pigmentation phenotypes evolved repeatedly as the result of independent genetic events when isolated human populations dispersed into habitats of extremely low or high UVB. The gradient of skin color seen in modern human populations is evidence of the operation of two clines, one favoring photoprotection near the equator, the other favoring vitamin D production nearer the poles. Through time, human adaptations to different solar regimes have become more cultural than biological. Rapid human migrations, increasing urbanization, and changes in lifestyle have created mismatches between skin pigmentation and environmental conditions leading to vitamin D deficiency. The prevalence and significance for health of vitamin D deficiencies, and the definition of optimal levels of vitamin D in the bloodstream are subjects of intense research and debate, but two of the causes of vitamin D deficiency - lack of sun exposure and abandonment of vitamin D rich foods in the diet - are traceable to changes in human lifestyles accompanying urbanization in prehistory.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Pele , Vitamina D , Humanos , Pigmentação da Pele
14.
G3 (Bethesda) ; 7(8): 2799-2806, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28655738

RESUMO

A unique eye color, called tiger-eye, segregates in the Puerto Rican Paso Fino (PRPF) horse breed and is characterized by a bright yellow, amber, or orange iris. Pedigree analysis identified a simple autosomal recessive mode of inheritance for this trait. A genome-wide association study (GWAS) with 24 individuals identified a locus on ECA 1 reaching genome-wide significance (Pcorrected = 1.32 × 10-5). This ECA1 locus harbors the candidate gene, Solute Carrier Family 24 (Sodium/Potassium/Calcium Exchanger), Member 5 (SLC24A5), with known roles in pigmentation in humans, mice, and zebrafish. Humans with compound heterozygous mutations in SLC24A5 have oculocutaneous albinism (OCA) type 6 (OCA6), which is characterized by dilute skin, hair, and eye pigmentation, as well as ocular anomalies. Twenty tiger-eye horses were homozygous for a nonsynonymous mutation in exon 2 (p.Phe91Tyr) of SLC24A5 (called here Tiger-eye 1), which is predicted to be deleterious to protein function. Additionally, eight of the remaining 12 tiger-eye horses heterozygous for the p.Phe91Tyr variant were also heterozygous for a 628 bp deletion encompassing all of exon 7 of SLC24A5 (c.875-340_1081+82del), which we will call here the Tiger-eye 2 allele. None of the 122 brown-eyed horses were homozygous for either tiger-eye-associated allele or were compound heterozygotes. Further, neither variant was detected in 196 horses from four related breeds not known to have the tiger-eye phenotype. Here, we propose that two mutations in SLC24A5 affect iris pigmentation in tiger-eye PRPF horses. Further, unlike OCA6 in humans, the Tiger-eye 1 mutation in its homozygous state or as a compound heterozygote (Tiger-eye 1/Tiger-eye 2) does not appear to cause ocular anomalies or a change in coat color in the PRPF horse.


Assuntos
Antiporters/genética , Cor de Olho/genética , Estudo de Associação Genômica Ampla , Cavalos/genética , Iris/fisiologia , Animais , Éxons/genética , Feminino , Técnicas de Genotipagem , Homozigoto , Masculino , Linhagem , Fenótipo , Deleção de Sequência/genética , Pigmentação da Pele/genética
15.
Homo ; 68(2): 134-144, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28242083

RESUMO

Twenty-two variants (single nucleotide polymorphisms - SNPs) of the genes involved in hair pigmentation (OCA2, HERC2, MC1R, SLC24A5, SLC45A2, TPCN2, TYR, TYRP1) were genotyped in a group of 186 Polish participants, representing a range of hair colours (45 red, 64 blond, 77 dark). A genotype-phenotype association analysis was performed. Using z-statistics we identified three variants highly associated with different hair colour categories (rs12913832:A>G in HERC2, rs1805007:T>C and rs1805008:C>T in MC1R). Two variants: rs1800401:C>T in OCA2 and rs16891982:C>G in SLC45A2 showed a high probability of a relation with hair colour, although that probability did not exceed the threshold of statistical significance after applying the Bonferroni correction. We created and validated mathematical logistic regression models in order to test the usefulness of the sets of polymorphisms for hair colour prediction in the Polish population. We subjected four models to stratified cross-validation. The first model consisted of three polymorphisms that proved to be important in the associative analysis. The second model included, apart from the mentioned polymorphisms, additionally rs16891982:C>G in SLC45A. The third model included, apart from the variants relevant in the associating analysis, rs1800401:C>T in OCA. The fourth model consisted of the set of polymorphisms from the first model supplemented with rs16891982:C>G in SLC45A and rs1800401:C>T in OCA. The validation of our models has shown that the inclusion of rs16891982:C>G in SLC45A and rs1800401:C>T in OCA increases the prediction of red hair in comparison with the algorithm including only rs12913832:A>G in HERC2, rs1805007:T>C and rs1805008:C>T in MC1R. The model consisting of all the five above-mentioned genetic variants has shown good prediction accuracies, expressed by the area under the curve (AUC) of the receiver operating characteristics: 0.84 for the red-haired, 0.82 for the dark-haired and 0.71 for the blond-haired. A genotype-phenotype association analysis brought results similar to those in other studies and confirmed the role of rs16891982:C>G, rs12913832:A>G, rs1805007:T>C and rs1805008:C>T in hair colour determination in the Polish population. Our study demonstrated for the first time the possibility of a share of the rs1800401:C>T SNP in the OCA2 gene in hair colour determination. Including this single nucleotide polymorphism in the actual hair colour predicting models would improve their predictive accuracy.


Assuntos
Cor de Cabelo/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Algoritmos , Antígenos de Neoplasias/genética , Feminino , Estudos de Associação Genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Modelos Logísticos , Masculino , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Modelos Genéticos , Polônia , Receptor Tipo 1 de Melanocortina/genética , Ubiquitina-Proteína Ligases , Adulto Jovem
16.
Leg Med (Tokyo) ; 17(4): 261-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25801600

RESUMO

Pigmentation is a variable and complex trait in humans and it is determined by the interaction of environmental factors, age, disease, hormones, exposure to ultraviolet radiation and genetic factors, including pigmentation genes. Many polymorphisms of these genes have been associated with phenotypic diversity of skin, eyes and hair color in homogeneous populations. Phenotype prediction from biological samples using genetic information has benefited forensic area in some countries, leading some criminal investigations. Herein, we evaluated the association between polymorphisms in the genes SLC24A5 (rs1426654) and ASIP (rs6058017) with skin, eyes and hair colors, in 483 healthy individuals from Brazilian population for attainable use in forensic practice. The volunteers answered a questionnaire where they self-reported their skin, eye and hair colors. The polymorphic homozygous genotype of rs1426654∗A and rs6058017∗A in SLC24A5 and ASIP respectively, showed strongest association with fairer skin (OR 47.8; CI 14.1-161.6 and OR 8.6; CI 2.5-29.8); SLC24A5 alone showed associations with blue eyes (OR 20.7; CI 1.2-346.3) and blond hair (OR 26.6; CI 1.5-460.9). Our data showed that polymorphic genotypes (AA), in both genes, are correlated with characteristics of light pigmentation, while the ancestral genotype (GG) is related to darker traits, corroborating with previous studies in European and African populations. These associations show that specific molecular information of an individual may be useful to access some phenotypic features in an attempt to help forensic investigations, not only on crime scene samples but also in cases of face reconstructions in unknown bodies.


Assuntos
Proteína Agouti Sinalizadora/genética , Antiporters/genética , Genética Forense/métodos , Genética Populacional , Pigmentação/genética , Grupos Populacionais/genética , Povo Asiático/genética , População Negra/genética , Brasil , Cor de Olho/genética , Frequência do Gene/genética , Cor de Cabelo/genética , Humanos , Indígenas Sul-Americanos/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Pigmentação da Pele/genética , População Branca/genética
17.
Gene ; 533(1): 398-402, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24096233

RESUMO

BACKGROUND: Oculocutaneous Albinism (OCA) is a heterogeneous group of inherited diseases involving hair, skin and eyes. To date, six forms are recognized on the effects of different melanogenesis genes. OCA4 is caused by mutations in SLC45A2 showing a heterogeneous phenotype ranging from white hair, blue irides and nystagmus to brown/black hair, brown irides and no nystagmus. The high clinic variety often leads to misdiagnosis. Our aim is to contribute to OCA4 diagnosis defining SLC45A2 genetic variants in Italian patients with OCA without any TYR, OCA2 and TYRP1 gene defects. MATERIALS AND METHODS: After the clinical diagnosis of OCA, all patients received genetic counseling and genetic test. Automatic sequencing of TYR, OCA2, and TYRP1 genes was performed on DNA of 117 albino patients. Multiplex Ligation-dependent Probe Amplification (MLPA) was carried out on TYR and OCA2 genes to increase the mutation rate. SLC45A2 gene sequencing was then executed in the patients with a single mutation in one of the TYR, OCA2, TYRP1 genes and in the patients, which resulted negative at the screening of these genes. RESULTS: SLC45A2 gene analysis was performed in 41 patients and gene alterations were found in 5 patients. Four previously reported SLC45A2 mutations were found: p.G100S, p.W202C, p.A511E and c.986delC, and three novel variants were identified: p.M265L, p.H94D, and c.1156+1G>A. All the alterations have been detected in the group of patients without mutations in the other OCA genes. CONCLUSIONS: Three new variants were identified in OCA4 gene; the analysis allowed the classification of a patient previously misdiagnosed as OA1 because of skin and hair pigmentation presence. The molecular defects in SLC45A2 gene represent the 3.4% in this cohort of Italian patients, similar to other Caucasian populations; our data differ from those previously published by an Italian researcher group, obtained on a smaller cohort of patients.


Assuntos
Albinismo Oculocutâneo/genética , Antígenos de Neoplasias/genética , Proteínas de Membrana Transportadoras/genética , Mutação , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Itália , Masculino
18.
G3 (Bethesda) ; 3(11): 2059-67, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24048645

RESUMO

Divergent natural selection caused by differences in solar exposure has resulted in distinctive variations in skin color between human populations. The derived light skin color allele of the SLC24A5 gene, A111T, predominates in populations of Western Eurasian ancestry. To gain insight into when and where this mutation arose, we defined common haplotypes in the genomic region around SLC24A5 across diverse human populations and deduced phylogenetic relationships between them. Virtually all chromosomes carrying the A111T allele share a single 78-kb haplotype that we call C11, indicating that all instances of this mutation in human populations share a common origin. The C11 haplotype was most likely created by a crossover between two haplotypes, followed by the A111T mutation. The two parental precursor haplotypes are found from East Asia to the Americas but are nearly absent in Africa. The distributions of C11 and its parental haplotypes make it most likely that these two last steps occurred between the Middle East and the Indian subcontinent, with the A111T mutation occurring after the split between the ancestors of Europeans and East Asians.


Assuntos
Antiporters/genética , Filogenia , Seleção Genética , Pigmentação da Pele/genética , Alelos , Antiporters/classificação , Análise por Conglomerados , Genética Populacional , Haplótipos , Humanos , Filogeografia , Polimorfismo de Nucleotídeo Único , Recombinação Genética
20.
Horm Mol Biol Clin Investig ; 7(1): 279-293, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23525585

RESUMO

BACKGROUND: Lower serum vitamin D (25(OH)D) among individuals with African ancestry is attributed primarily to skin pigmentation. However, the influence of genetic polymorphisms controlling for skin melanin content has not been investigated. Therefore, we investigated differences in non-summer serum vitamin D metabolites according to self-reported race, genetic ancestry, skin reflectance and key pigmentation genes (SLC45A2 and SLC24A5). MATERIALS AND METHODS: Healthy individuals reporting at least half African American or half European American heritage were frequency matched to one another on age (+/- 2 years) and sex. 176 autosomal ancestry informative markers were used to estimate genetic ancestry. Melanin index was measured by reflectance spectrometry. Serum vitamin D metabolites (25(OH)D3, 25(OH)D 2 and 24,25(OH)2D3) were determined by high performance liquid chromatography (HPLC) tandem mass spectrometry. Percent 24,25(OH)2D3 was calculated as a percent of the parent metabolite (25(OH)D3). Stepwise and backward selection regression models were used to identify leading covariates. RESULTS: Fifty African Americans and 50 European Americans participated in the study. Compared with SLC24A5 111Thr homozygotes, individuals with the SLC24A5 111Thr/Ala and 111Ala/Ala genotypes had respectively lower levels of 25(OH)D3 (23.0 and 23.8 nmol/L lower, p-dominant=0.007), and percent 24,25(OH)2D3 (4.1 and 5.2 percent lower, p-dominant=0.003), controlling for tanning bed use, vitamin D/fish oil supplement intake, race/ethnicity, and genetic ancestry. Results were similar with melanin index adjustment, and were not confounded by glucocorticoid, oral contraceptive, or statin use. CONCLUSIONS: The SLC24A5 111Ala allele was associated with lower serum vitamin 25(OH)D3 and lower percent 24,25(OH)2D3, independently from melanin index and West African genetic ancestry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA